Title: On the molecular interactions between plasminogen-staphylokinase, alpha2-antiplasmin and fibrin
Authors: Lijnen, Roger ×
Van Hoef, B
Matsuo, O
Collen, Desire #
Issue Date: Jan-1992
Series Title: Biochimica et Biophysica Acta vol:1118 issue:2 pages:144-8
Abstract: The molecular interactions between the plasminogen-staphylokinase complex, alpha 2-antiplasmin and fibrin were studied by measuring the effect of CNBr-digested fibrinogen on the inhibition rate of the plasminogen-staphylokinase complex by alpha 2-antiplasmin. The second-order rate constant for the inhibition of plasminogen-staphylokinase by alpha 2-antiplasmin was 2.7 +/- 0.3.10(6) M-1 s-1 (mean +/- S.D.; n = 7). Addition of CNBr-digested fibrinogen, but not of fibrinogen, resulted in a concentration-dependent reduction of the apparent inhibition rate constant, with a 50 percent reduction at a concentration of 5 nM CNBr-digested fibrinogen. The second-order rate constant for the inhibition of the low-Mr plasminogen-staphylokinase complex (plasminogen lacking the kringle structures comprising the lysine-binding sites) by alpha 2-antiplasmin was about 30-fold lower (9.3 +/- 0.7.10(4) M-1 s-1, mean +/- S.D.; n = 4) than that of plasminogen-staphylokinase and was not affected by addition of CNBr-digested fibrinogen. Inhibition of the plasminogen-staphylokinase complex by the chloromethylketone D-Val-Phe-Lys-Ch2Cl is 9-fold less efficient than that of plasmin (k2/Ki of 700 M-1 s-1 versus 6300 M-1 s-1). Our results confirm and establish that rapid inhibition of plasminogen-staphylokinase by alpha 2-antiplasmin requires the availability of the lysine-binding sites in the plasminogen moiety of the complex. Fibrin, but not fibrinogen, reduces the inhibition rate by alpha 2-antiplasmin by competition for interaction with the lysine-binding site. Protection of the plasminogen-staphylokinase complex bound to fibrin from rapid inhibition by alpha 2-antiplasmin thus appears to contribute to the fibrin-specificity of clot lysis with staphylokinase in a plasma milieu, by allowing preferential plasminogen activation at the fibrin surface, while the free complex is rapidly inhibited in plasma.
ISSN: 0006-3002
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Molecular and Vascular Biology
Vesalius Research Centre (-)
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science