Title: Regulation of the mouse epithelial Ca2(+) channel TRPV6 by the Ca(2+)-sensor calmodulin
Authors: Lambers, Tim T ×
Weidema, A Freek
Nilius, Bernd
Hoenderop, Joost G J
Bindels, René J M #
Issue Date: Jul-2004
Series Title: Journal of Biological Chemistry vol:279 issue:28 pages:28855-61
Abstract: TRPV5 and TRPV6 are members of the superfamily of transient receptor potential (TRP) channels and facilitate Ca(2+) influx in a variety of epithelial cells. The activity of these Ca(2+) channels is tightly controlled by the intracellular Ca(2+) concentration in close vicinity to the channel mouth. The molecular mechanism underlying the Ca(2+)-dependent activity of TRPV5/TRPV6 is, however, still unknown. Here, the putative role of calmodulin (CaM) as the Ca(2+) sensor mediating the regulation of channel activity was investigated. Overexpression of Ca(2+)-insensitive CaM mutants (CaM(1234) and CaM(34)) significantly reduced the Ca(2+) as well as the Na(+) current of TRPV6- but not that of TRPV5-expressing HEK293 cells. By combining pull-down assays and co-immunoprecipitations, we demonstrated that CaM binds to both TRPV5 and TRPV6 in a Ca(2+)-dependent fashion. The binding of CaM to TRPV6 was localized to the transmembrane domain (TRPV6(327-577)) and consensus CaM-binding motifs located in the N (1-5-10 motif, TRPV6(88-97)) and C termini (1-8-14 motif, TRPV6(643-656)), suggesting a mechanism of regulation involving multiple interaction sites. Subsequently, chimeric TRPV6/TRPV5 proteins, in which the N and/or C termini of TRPV6 were substituted by that of TRPV5, were co-expressed with CaM(34) in HEK293 cells. Exchanging, the N and/or the C termini of TRPV6 by that of TRPV5 did not affect the CaM(34)-induced reduction of the Ca(2+) and Na(+) currents. These results suggest that CaM positively affects TRPV6 activity upon Ca(2+) binding to EF-hands 3 and 4, located in the high Ca(2+) affinity CaM C terminus, which involves the N and C termini and the transmembrane domain of TRPV6.
ISSN: 0021-9258
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Laboratory of Ion Channel Research
Department of Cellular and Molecular Medicine - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science