Title: TRP channels in disease
Authors: Nilius, Bernd ×
Voets, Thomas
Peters, John #
Issue Date: Aug-2005
Series Title: Science's STKE [electronic resource] : signal transduction knowledge environment. vol:2005 issue:295 pages:re8
Abstract: The mammalian TRP (transient receptor potential) family consists of six main subfamilies termed the TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPP (polycystin), TRPML (mucolipin), and TRPA (ankyrin) groups. These subfamilies encompass 28 ion channels that function as diverse cellular sensors. All of the channels are permeable to monovalent cations, and most are also permeable to Ca(2+). There are strong indications that TRP channels are involved in many diseases. At this point, four channelopathies have been identified in which a defect in a TRP channel-encoding gene is the direct cause of disease. TRPs are also involved in some systemic diseases because of their role as receptors for irritants, inflammation products, and xenobiotic toxins. Other indications of the involvement of TRPs in several diseases come from correlations between the levels of channel expression and disease symptoms or from the mapping of TRP-encoding genes to susceptible chromosome regions. Finally, the phenotypes of TRP knockout mice and other transgenic models allow a degree of extrapolation to human diseases. We present an overview of current knowledge about the role of TRP channels in human disease and highlight some TRP "suspects" for which a role in disease can be anticipated. An understanding of the genetics of disease may lead to the development of targeted new therapies.
ISSN: 1525-8882
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Physiology Section (-)
Laboratory of Ion Channel Research
Department of Cellular and Molecular Medicine - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.