This item still needs to be validated !
Title: ATP and nitric oxide modulate a Ca(2+)-activated non-selective cation current in macrovascular endothelial cells
Authors: Suh, Suk H ×
Watanabe, Hiroyuki
Droogmans, Guy
Nilius, Bernd #
Issue Date: Jul-2002
Series Title: Pflügers Archiv : European journal of physiology. vol:444 issue:3 pages:438-45
Abstract: We have studied the properties of a non-selective cation current (NSC(Ca)) in macrovascular endothelial cells derived from human umbilical vein (EA cells) that is activated by an increase of intracellular Ca(2+) concentration, [Ca(2+)](i). Current-voltage relationships are linear and the kinetics of the current is time-independent. Current-[Ca(2+)](i) relationships were fitted to a Ca(2+) binding site model with a concentration for half-maximal activation of 417 +/- 76 nM, a Hill coefficient of 2.3 +/- 0.8 and a maximum current of -23.9 +/- 2.7 pA/pF at -50 mV. The Ca(2+)-activated channel is more permeable to Na(+) than for Cs(+) ( P(Cs)/ P(Na)=0.58, n=7), but virtually impermeable to Ca(2+). Current activation was transient if ATP was omitted from the pipette solution. The maximal currents at 300 and 500 nM [Ca(2+)](i) were smaller than in the absence of ATP, but were not significantly different at 2 microM. The intracellular Ca(2+) concentration for half-maximal activation of the Ca(2+)-activated current was shifted to 811 +/- 12 nM in the absence of ATP. Substitution of ATP by the non-hydrolysable ATP analogue adenylylimidodiphosphate (AMP-PNP) did not affect current activation. Sodium nitroprusside (SNP) decreased NSC(Ca) in a concentration-dependent manner. The nitric oxide (NO) donors S-nitroso- N-acetylpenicillamine (SNAP) and 3-morpholinosydnonimine (SIN-1) also inhibited NSC(Ca). In contrast, nitro- L-arginine (NLA), which inhibits all NO-synthases, potentiated NSC(Ca), whereas superoxide dismutase (SOD), which inhibits the breakdown of NO, inhibited NSC(Ca). It is concluded that the Ca(2+)-activated non-selective action channel in EA cells is modulated by the metabolic state of the cell and by NO.
ISSN: 0031-6768
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Physiology Section (-)
Laboratory of Ion Channel Research
Department of Cellular and Molecular Medicine - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science