Title: Electrophysiology and noise analysis of K+-depolarized epithelia of frog skin
Authors: Tang, J ×
Abramcheck, F J
Van Driessche, Willy
Helman, S I #
Issue Date: Dec-1985
Series Title: The American journal of physiology. vol:249 issue:5 Pt 1 pages:C421-9
Abstract: Epithelia of frog skin bathed either symmetrically with a sulfate-Ringer solution or bathed asymmetrically and depolarized with a 112 mM K+ basolateral solution (Kb+) were studied with intracellular microelectrode techniques. Kb+ depolarization caused an initial decrease of the short-circuit current (Isc) with a subsequent return of the Isc toward control values in 60-90 min. Whereas basolateral membrane resistance (Rb) and voltage were decreased markedly by high [Kb+], apical membrane electrical resistance (Ra) was decreased also. After 60 min, intracellular voltage averaged -27.3 mV, transcellular fractional resistance (fRa) was 86.8%, and Ra and Rb were decreased to 36.1 and 13.0%, of their control values, respectively. Amiloride-induced noise analysis of the apical membrane Na+ channels revealed that Na+ channel density was increased approximately 72% while single-channel Na+ current was decreased to 39.9% of control, roughly proportional to the decrease of apical membrane voltage (34.0% of control). In control and Kb+-depolarized epithelia, the Na+ channel density exhibited a phenomenon of autoregulation. Inhibition of Na+ entry (by amiloride) caused large increases of Na+ channel density toward saturating values of approximately 520 X 10(6) channels/cm2 in Kb+-depolarized tissues.
ISSN: 0002-9513
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Department of Cellular and Molecular Medicine - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science