Title: PNUTS enhances in vitro chromosome decondensation in a PP1-dependent manner
Authors: Landsverk, Helga B ×
Kirkhus, Marie
Bollen, Mathieu
Küntziger, Thomas
Collas, Philippe #
Issue Date: Sep-2005
Publisher: Published by Portland Press on behalf of the Biochemical Society
Series Title: Biochemical Journal vol:390 issue:Pt 3 pages:709-17
Abstract: PP1 (protein phosphatase-1) is a serine/threonine phosphatase involved in mitosis exit and chromosome decondensation. In the present study, we characterize the subcellular and subnuclear localization of PNUTS (PP1 nuclear targeting subunit), a nuclear regulatory subunit of PP1, and report a stimulatory role of PNUTS in the decondensation of prometaphase chromosomes in two in vitro systems. In interphase, PNUTS co-fractionates, together with a fraction of nuclear PP1, primarily with micrococcal nuclease-soluble chromatin. Immunofluorescence analysis shows that PNUTS is targeted to the reforming nuclei in telophase following the assembly of nuclear membranes and concomitantly with chromatin decondensation. In interphase cytosolic extract, ATP-dependent decondensation of prometaphase chromosomes is blocked by PP1-specific inhibitors. In contrast, a recombinant PNUTS(309-691) fragment accelerates chromosome decondensation. This decondensation-promoting activity requires the consensus RVXF PP1-binding motif of PNUTS, whereas a secondary, inhibitory PP1-binding site is dispensable. In a defined buffer system, PNUTS(309-691) also elicits decondensation in an exogenous PP1-dependent manner and, as in the cytosolic extract, a W401A (Thr401-->Ala) mutation that destroys PP1 binding abolishes this activity. The results illustrate an involvement of the PNUTS:PP1 holoenzyme in chromosome decondensation in vitro and argue that PNUTS functions as a PP1-targeting subunit in this process. We hypothesize that targeting of PNUTS to reforming nuclei in telophase may be a part of a signalling event promoting chromatin decondensation as cells re-enter interphase.
ISSN: 0264-6021
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Biochemistry Section (Medicine) (-)
Laboratory of Biosignaling & Therapeutics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science