Title: Acute regulation of hepatic protein phosphatases by glucagon, insulin, and glucose
Authors: Tóth, B ×
Bollen, Mathieu
Stalmans, Willy #
Issue Date: Nov-1988
Series Title: Journal of Biological Chemistry vol:263 issue:28 pages:14061-6
Abstract: The intravenous administration of glucagon to anesthetized rats resulted within 5 min in a 20% drop in the hepatic phosphorylase phosphatase activity, as measured in a post-mitochondrial supernatant at low dilution, but it did not affect the activity of glycogensynthase phosphatase. On the other hand, the injection of insulin plus glucose caused increases by about 35% in both phosphatase activities. Upon subcellular fractionation these effects were recovered in the cytosol, but not in the glycogen/microsomal fraction. However, activity changes in the latter fraction were observed after recombination with the liver cytosol from a hormone-treated animal. Preincubation of the liver cytosol with modulator protein (a specific inhibitor of type-1 protein phosphatases) cancelled the activity changes induced by insulin plus glucose. No hormonal effects on hepatic protein phosphatase activities were observed when the fractions were either diluted an additional 10-fold or pretreated with trypsin. An acute hormonal regulation of protein phosphatases could also be demonstrated in the perfused liver. When added to the perfusion medium, glucose as well as insulin increased the cytosolic protein phosphatase activities by about 25%. Their effect was additive, irrespective of the order of addition. On the other hand, the addition of glucagon and/or vasopressin resulted in a 20% drop in the phosphorylase phosphatase activity. The presence of glucagon did not interfere with the effectiveness of insulin, and vice versa. The changes in the phosphorylase phosphatase activities induced by glucagon, insulin, and glucose represented changes in the Vmax only. We propose that the acute control of the hepatic glycogen synthase phosphatase and phosphorylase phosphatase activities is mediated by transferable, cytosolic effector(s).
ISSN: 0021-9258
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Biochemistry Section (Medicine) (-)
Department of Cellular and Molecular Medicine - miscellaneous
Laboratory of Biosignaling & Therapeutics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science