This item still needs to be validated !
Title: Effect of adenine nucleotides on myo-inositol-1,4,5-trisphosphate-induced calcium release
Authors: Missiaen, Ludwig ×
Parys, Jan
De Smedt, Humbert
Sienaert, Ilse
Sipma, Henk
Vanlingen, Sara
Maes, K
Casteels, Rik #
Issue Date: Sep-1997
Series Title: The Biochemical journal. vol:325 ( Pt 3) pages:661-6
Abstract: The effects of a whole series of adenine nucleotides on Ins(1,4,5)P3-induced Ca2+ release were characterized in permeabilized A7r5 smooth-muscle cells. Several adenine nucleotides activated the Ins(1, 4,5)P3 receptor. It was observed that 3'-phosphoadenosine 5'-phosphoulphate, CoA, di(adenosine-5')tetraphosphate (Ap4A) and di(adenosine-5')pentaphosphate (Ap5A) were more effective than ATP. Ap4A and Ap5A also interacted with a lower EC50 than ATP. In order to find out how these adenine nucleotides affected Ins(1,4, 5)P3-induced Ca2+ release, we have measured their effect on the response of permeabilized A7r5 cells to a progressively increasing Ins(1,4,5)P3 concentration. Stimulatory ATP and Ap5A concentrations had no effect on the threshold Ins(1,4,5)P3 concentration for initiating Ca2+ release, but they stimulated Ca2+ release in the presence of supra-threshold Ins(1,4,5)P3 concentrations by increasing the co-operativity of the release process. Inhibition of the Ins(1,4,5)P3-induced Ca2+ release at higher ATP concentrations was associated with a further increase in co-operativity and also with a shift in threshold towards higher Ins(1,4,5)P3 concentrations. ATP had no effect on the non-specific Ca2+ leak in the absence of Ins(1,4,5)P3. We conclude that the adenine-nucleotide-binding site can be activated by many different adenine nucleotides. Binding of these compounds to the transducing domain of the Ins(1,4,5)P3 receptor increases the efficiency of transmitting Ins(1,4,5)P3 binding to channel opening. The inhibition by high ATP concentrations is exerted at a different site, related to Ins(1,4,5)P3 binding.
ISSN: 0264-6021
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Physiology Section (-)
Laboratory of Molecular and Cellular Signaling
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science