This item still needs to be validated !
Title: Glucose-induced glycogenesis in the liver involves the glucose-6-phosphate-dependent dephosphorylation of glycogen synthase
Authors: Cadefau, Joan ×
Bollen, Mathieu
Stalmans, Willy #
Issue Date: May-1997
Series Title: The Biochemical journal. vol:322 ( Pt 3) pages:745-50
Abstract: Non-metabolized glucose derivatives may cause inactivation of phosphorylase but, unlike glucose, they are unable to elicit activation of glycogen synthase in isolated hepatocytes. We report here that, after the previous inactivation of phosphorylase by one of these glucose derivatives (2-deoxy-2-fluoro-alpha-glucosyl fluoride), glycogen synthase was progressively activated by addition of increasing concentrations of glucose. Under these conditions, the degree of activation of glycogen synthase was linearly correlated with the intracellular glucose-6-phosphate (Glc-6-P) concentration. Addition of glucosamine, an inhibitor of glucokinase, decreased both parameters in parallel. Further experiments using an inhibitor of either protein kinases (5-iodotubercidin) or protein phosphatases (microcystin) in isolated hepatocytes indicated that Glc-6-P does not affect glycogen-synthase kinase activity but enhances the glycogen-synthase phosphatase reaction. Experiments in vitro showed that the synthase phosphatase activity of glycogen-bound type-1 protein phosphatase was increased by physiological concentrations of Glc-6-P (0.1-0.5 mM), but not by 2.5 mM fructose-6-P, fructose-1-P or glucose-1-P. At physiological ionic strength, the glycogen-associated synthase phosphatase activity was nearly entirely Glc-6-P-dependent, but Glc-6-P did not relieve the strong inhibitory effect of phosphorylase a. The large stimulatory effects of 2.5 mM Glc-6-P, with glycogen synthase b and phosphorylase a as substrates, appeared to be mostly substrate-directed, while the modest effects observed with casein and histone IIA pointed to an additional stimulation of glycogen-bound protein phosphatase-1 by Glc-6-P. We conclude that glucose elicits hepatic synthase phosphatase activity both by removal of the inhibitor, phosphorylase a, and by generation of the stimulator, Glc-6-P.
ISSN: 0264-6021
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Biochemistry Section (Medicine) (-)
Department of Cellular and Molecular Medicine - miscellaneous
Laboratory of Biosignaling & Therapeutics
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science