Title: Relationship between force and Ca2+ in anococcygeal and vas deferens smooth muscle cells of the mouse
Authors: Boland, B ×
Himpens, Bernard
Gillis, J M
Casteels, Rik #
Issue Date: Aug-1992
Series Title: Pflügers Archiv : European journal of physiology. vol:421 issue:1 pages:43-51
Abstract: We compared the changes of the cytoplasmic Ca2+ concentration ([Ca2+]i), as measured with the fluorescent Ca2+ indicator fura-2, and the force development in intact smooth muscle of the tonic anococcygeus (AC) and the phasic vas deferens (VD) of the mouse, during activation by K+ depolarization and by agonists. Resting [Ca2+]i was observed to be 33% lower in AC (80 nM) than in VD (115 nM), while the Ca2+ threshold for contraction was found to be about 120 nM in AC and 160 nM in VD. For a similar [Ca2+]i increase, the agonist stimulation induced a higher force development than the K+ depolarization in both muscle types. During prolonged depolarization, the force/calcium ratio increased in AC but strongly declined in VD. This decline of the force/calcium ratio in VD during depolarization was partially reversed by lowering [Ca2+]o. Our results indicate that the Ca2+ threshold for force development was about 150% of the resting [Ca2+]i in both cell types. The resting [Ca2+]i was lower in the tonic AC than in the phasic VD. Agonist-induced sensitization to Ca2+ occurred in both muscle types. The tonic and phasic smooth muscles essentially differed in the respective modulation of their Ca2+ sensitivity during contraction. The desensitization to Ca2+ was specific for phasic muscle, in which it occurred as an early, time- and Ca(2+)-dependent process that was partially reversible.
ISSN: 0031-6768
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Physiology Section (-)
Laboratory of Molecular and Cellular Signaling
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science