This item still needs to be validated !
Title: Maitotoxin induces insertion of different ion channels into the Xenopus oocyte plasma membrane via Ca(2+)-stimulated exocytosis
Authors: Weber, Wolf-Michael ×
Popp, C
Clauss, W
Van Driessche, Willy #
Issue Date: Feb-2000
Series Title: Pflügers Archiv : European journal of physiology. vol:439 issue:3 pages:363-9
Abstract: The activation of cation channels in oocytes of Xenopus laevis by the marine poison maitotoxin (MTX) was monitored as membrane current (I(m)), conductance (Gm) and membrane surface area determined by continuous measurements of membrane capacitance (Cm). When MTX (25 pM) was added to the bathing solution there was an abrupt, large increase in inward membrane currents. Current/voltage relationships (I/V curves) were linear and suggested activation of voltage-independent non-selective cation channels (NSCC). MTX-induced Ca(2+)-sensitive currents were mainly carried by Na+ and were suppressed by low (0 mM) or high (40 mM) external Ca2+ concentrations and removal of Na+. Gadolinium (Gd3+, 10-500 microM) also had inhibitory effects, demonstrating the possible involvement of stretch-activated cation channels (SACC). In a high concentration (500 microM), amiloride substantially reduced the MTX-activated current while lower amiloride concentrations (50-100 microM) stimulated the current further. Continuous measurements of Cm revealed that MTX induced exocytotic delivery and functional insertion of new channel proteins into the plasma membrane, indicated by a Ca(2+)-dependent increase in membrane surface area by around 28%. From these data we conclude that MTX activates NSCC that require relatively high concentrations of amiloride to be blocked. Furthermore, MTX possibly stimulates activation of Gd(3+)- and Ca(2+)-sensitive mechanosensitive cation channels. Stimulation of these channels is achieved by exocytotic delivery and functional insertion of new channels into the plasma membrane in a pathway that depends on the presence of extracellular Ca2+.
ISSN: 0031-6768
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Department of Cellular and Molecular Medicine - miscellaneous
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science