Title: Photodynamic therapy with hypericin induces vascular damage and apoptosis in the RIF-1 mouse tumor model
Authors: Chen, Bin
Roskams, Tania
Xu, Yan
Agostinis, Patrizia
de Witte, Peter # ×
Issue Date: Feb-2002
Publisher: Wiley-Liss
Series Title: International Journal of Cancer vol:98 issue:2 pages:284-90
Abstract: Hypericin, a polycyclic quinone obtained from plants of the genus Hypericum, has been proven to be a potent photosensitizer. The mechanism of tumor eradication and mode of cell death induced by in vivo photodynamic therapy (PDT) with hypericin were investigated in the present study using 2 therapeutic protocols. RIF-1 tumors were exposed to laser light at either 0.5 hr or 6 hr after hypericin administration (5 mg/kg, i.v.). A significant reduction in tumor perfusion, as determined by the retention of fluorescein in the tumor tissue, was detected immediately after both PDT treatments. Further decrease in tumor perfusion was observed in the hours after treatment. The re-establishment of tumor perfusion, however, occurred 24 hr after 6 hr-interval PDT, but not after 0.5 hr-interval PDT. The kinetics of tumor cell survival estimated by the in vivo/in vitro clonogenic assay revealed no or limited cell death when tumors were explanted immediately after irradiation, whereas a delayed but progressive cell death was detected when tumors remained in situ after both PDT treatments. The detection of nucleosomal DNA fragmentation by agarose gel electrophoresis or TUNEL assay and the assessment of cell morphology by light microscopy indicated that apoptosis was the most prominent tumor response to hypericin-mediated PDT. Furthermore, immunohistochemical analysis of the tumor tissue showed an increased expression of both Fas and Fas ligand after irradiation, suggesting that this cell death pathway might contribute to the overall PDT-induced apoptotic response. In conclusion, our results demonstrate that apoptosis, likely occurring as a result of vascular damage, is responsible for the tumor eradication by PDT with hypericin in this tumor model.
ISSN: 0020-7136
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Translational Cell & Tissue Research
Biochemistry Section (Medicine) (-)
Laboratory for Pharmaceutical Biology (-)
Laboratory of Cell Death Research & Therapy
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science