Title: Extending a tabular knowledge-based framework with feature selection
Authors: Wets, G ×
Vanthienen, Jan
Piramuthu, S #
Issue Date: Aug-1997
Publisher: Pergamon-elsevier science ltd
Series Title: Expert systems with applications vol:13 issue:2 pages:109-119
Abstract: Tabular knowledge-based systems are known for their ease in verification and validation of knowledge bases. The main drawback of these systems is the combinatorial explosion that occurs as the number of conditions used in the table is increased. In this paper, we alleviate this problem by incorporating a new feature selection method, based on the 'blurring' measure, in the tabular knowledge-based framework. The framework consists of three stages. In the first stage, raw data are preprocessed to reduce the data set sufficiently using feature selection. Rules are then generated and incorporated in the system. In the second stage, based on the extracted rules, the knowledge is modelled by means of decision tables. Verification and validation checks are also performed during this stage. In the final stage of the framework, the modelled knowledge is incorporated in an expert system environment, to facilitate consultation of the knowledge base. The different stages of the framework are illustrated using direct mail-order company data. (C) 1997 Elsevier Science Ltd.
ISSN: 0957-4174
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Research Center for Management Informatics (LIRIS), Leuven
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science