This item still needs to be validated !
Title: A sarco/endoplasmic reticulum Ca(2+)-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells
Authors: Wuytack, Frank ×
Papp, B
Verboomen, Hilde
Raeymaekers, Luc
Dode, Leonard
Bobe, R
Enouf, J
Bokkala, S
Authi, K S
Casteels, Rik #
Issue Date: Feb-1994
Series Title: Journal of Biological Chemistry vol:269 issue:2 pages:1410-1416
Abstract: An organellar-type of Ca2+ pump formerly detected by means of its phosphoprotein intermediate in platelets and in lymphoid cells, and which runs in acid gels at 97 kDa, is now characterized as sarco/endoplasmic reticulum Ca2+ATPase 3 (SERCA3). SERCA3 is co-expressed in these cells along with the housekeeping SERCA2b. This conclusion is based on the following observations. 1) Tryptic digestion the phosphoprotein intermediate of SERCA3 expressed in COS cells yields a phosphorylated fragment of about 80 kDa, which can be clearly distinguished from the 57-kDa fragments formed in the SERCA1 and SERCA2 pumps. This 80-kDa fragment comigrates with a similar phosphoprotein fragment previously observed in human platelets (Papp, B., Enyedi, A., Pászty, K., Kovács, T., Sarkadi, B., Gárdos, G., Wuytack, F., and Enouf, J. (1992) Biochem. J. 288, 297-302). 2) An antiserum directed against an NH2-terminal SERCA3-specific peptide (N89) reacts with SERCA3 expressed in COS cells and with the 97-kDa protein in rat platelets and the corresponding protein in human platelets. Likewise an antiserum against the rat SERCA3 terminus (C90) binds to SERCA3 expressed in COS cells and to the 97-kDa band in rat platelets, but it does not recognize the human platelet pump. In conformity with the predicted absence of the T1 tryptic cleavage site in SERCA3, the autophosphorylated aspartyl residue and the COOH-terminal epitope were co-localized on the 80-kDa fragment. 3) The co-expression of nearly equal levels of SERCA3 and SERCA2b messengers in human lymphoblastoid Jurkat cells and in proliferating rat mucosal mast cells was also demonstrated by reverse transcriptase polymerase chain reaction.
ISSN: 0021-9258
Publication status: published
KU Leuven publication type: IT
Appears in Collections:Physiology Section (-)
Laboratory of Cellular Transport Systems
× corresponding author
# (joint) last author

Files in This Item:

There are no files associated with this item.

Request a copy


All items in Lirias are protected by copyright, with all rights reserved.

© Web of science