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ABSTRACT 

Isostearic acid, a C18 saturated branched chain fatty acid containing one or more methyl or ethyl 

groups on the carbon chain, is of great interest for the oleochemical industry due to its interesting 

physicochemical properties. Its current industrial production, as a side product of the acid clay 

catalyzed dimerization of unsaturated fatty acids, lacks efficiency. Therefore, research focusses 

strongly on new catalytic systems based on zeolites. Significantly higher yields of branched fatty 

acids can be obtained using zeolites, demonstrating their superiority compared to acid clay 
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catalysts. Despite previous efforts, there is insufficient insight in the product itself and the catalytic 

system to use it optimally. With this knowledge, it would however be possible to tune zeolite 

catalysts to meet predetermined product compositions and thus application characteristics. This 

perspective aims to provide the knowledge required to get a profound insight in the current state-

of-the-art while pointing at remaining questions and challenges. Focus is on the reaction 

mechanisms taking place during reaction, the analysis of the reaction product and the zeolite 

catalysts themselves. 

INTRODUCTION 

Vegetable and animal oils and fats mainly consist of triacylglycerides, esters of glycerol and 

three fatty acids. The fatty acids can differ in chain length, degree of saturation and double bond 

configuration. Most common vegetable oils and fats contain fatty acids, consisting of 16 to 20 

carbon atoms and 0 to 3 cis double bonds.1 More than 200 million tons of vegetable and animal 

oils and fats are produced annually worldwide.2 About 80 % is used for human nutrition, while 6 

% is used in animal feed. The remaining 14 % of these oils and fats are used in the chemical 

industry, where it is still the most important renewable source of carbon and used for the 

production of biodiesel and (base) oleochemicals.3 Therefore, their use comes with some important 

advantages besides the renewable character, as they are readily available from natural and waste 

sources, biodegradable and safe to use. Hence, they also fit well in the twelve principles of green 

chemistry.4,5   

In the oleochemical industry, the oils and fats are first converted to basic oleochemicals (i.e., 

free fatty acids, fatty acid methyl esters, glycerol, fatty alcohols and fatty amines) through different 
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chemical reactions. They are used directly in a wide variety of applications or can be converted to 

a wide range of specialty chemicals.6–8  

A significant group of specialty oleochemicals are dimer fatty acids, formed during the 

dimerization of unsaturated fatty acids such as tall oil fatty acids and, to a lesser extent, oleic acid 

and linoleic acid. The dimerization can be performed thermally at 270-290 °C, but is typically 

performed at lower temperatures (190-240 °C) in the presence of an acid clay catalyst such as 

Bentonite or Montmorillonite. While the thermal oligomerization is believed to be a Diels-Alder 

type reaction and will not be discussed in further detail, the catalytic oligomerization with acid 

clays is considered to proceed via multiple mechanisms such as Diels-Alder reaction, radical 

reaction and Brønsted acid activation of the double bond with the formation of a carbocation 

intermediate. The charge of this carbocation can shift to different carbon atoms in the chain. 

Rearrangement of the carbon skeleton can also occur via this carbocation. A complex product 

mixture is ultimately formed during the dimerization reaction, consisting of a monomeric and an 

oligomeric fraction, which can be separated utilizing molecular distillation or wiped-film 

evaporation (Figure 1). The oligomeric fraction consists of dimers and higher oligomers such as 

trimers. The dimers are a complex mixture of cyclic, acyclic, aromatic and bicyclic compounds, 

which all occur in the form of different isomers (see Scheme 1 for generalized chemical structures) 

and are used in a wide variety of products such as lubricants, polyamide resins, epoxy resins and 

inks. When the dimerization is performed in the presence of an acid clay, the monomeric fraction 

contains, amongst others, unreacted fatty acids, cyclic fatty acids, lactones and, more importantly, 

branched fatty acids. These branched fatty acids are formed by rearrangement of the carbocation 

intermediates and contain one or more methyl or ethyl groups on the carbon chain. After 

hydrogenation and purification by crystallization, isostearic acid (Figure 2) is obtained, which is 
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a collection of methyl chain-substituted positional isomers of great interest for the oleochemical 

industry.7,9–13 

 

 

Figure 1 General overview of the production process of oligomeric acids and isostearic acid from 

unsaturated fatty acids using acid clays as a catalyst.10,13,14 Legend: uFA: unsaturated fatty acid; 

sFA: saturated fatty acid.  

 

Figure 2 Isostearic acid. The dashed line indicates the possible positions (C6 to C17) of the alkyl 

branch on the carbon chain. 

Scheme 1 Overview of suggested general chemical structures of fatty acid dimers starting from 

an unsaturated fatty acid (A). Possible products are estolides (B), aromatic dimers (C), cyclic 

dimers (D and E) and aliphatic dimers (F).13  
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Rx indicates a carbon chain with an undefined amount of carbon atoms. When starting from oleic 
acid as feed, each Rx with a different x will have a different length. 

 

Given its unique structure, isostearic acid contains some of the most interesting features of both 

saturated and unsaturated straight-chain fatty acids. As it is free of unsaturations, it is stable against 

oxidation and can be used in long shelf life or high-temperature applications.14,15 Because of the 

presence of one or more methyl (and some ethyl groups) on the carbon chain, it also exhibits low-

temperature properties comparable to those of unsaturated fatty acids. Moreover, isostearic acid 

has a high viscosity index, good biodegradability, and high solubility in organic solvents. As such, 

isostearic acid is sometimes referred to as ‘the perfect fatty acid’ and is used in several applications 

such as lubricants (both for high and low-temperature applications) and greases. It is also an 

essential ingredient in cosmetics and personal care products. Here, the color and odor stability of 

isostearic acid plays an important role, just like its high solubility in organic solvents.14–16 Other 

applications include detergents, surfactants and hydraulic fluids.14 Despite the many possible 
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applications of isostearic acid, currently, it is mainly used in demanding applications due to its 

high cost price.14,15,17–27 Partly due to a growing cosmetics industry and a rising demand for 

isostearic acid in the lubricants and greases industry, the compound annual growth rate (CAGR) 

for the isostearic acid market is now estimated at 5-6 %.28–30 

Despite the great potential of isostearic acid, the increasing number of applications and the 

growing global market, it is industrially still produced as a by-product of the dimerization of 

unsaturated fatty acids. Yields are merely around 25 %, and its purification (consisting of 

distillation and crystallization as the major steps) is time and energy consuming. Moreover, the 

clay catalyst cannot be reused and is disposed of after single use.20,21 Consequently, new processes 

in which isostearic acid is produced in high yields are thus explored and have been the subject of 

quite some papers and patents published over the last 25 years. Here, the focus has notably shifted 

from acid clay to zeolite catalysis, which is considered promising for the selective synthesis of 

branched fatty acids due to their shape selective properties.31,32 

This perspective aims to discuss the current state-of-the-art process regarding the production and 

analysis of branched fatty acids. First, the mechanistic properties of the isomerization of 

unsaturated fatty acids to branched fatty acids will be tackled. As a result, insight will be gained 

into which parts of the mechanism are responsible for the isomerization of unsaturated fatty acids 

to branched fatty acids and what triggers other (parallel and consecutive) side reactions. Secondly, 

the tools to analyze the complex isomerization product will be discussed. Being able to identify 

the product distribution accurately is essential since it can be linked to the type of zeolite used. 

Finally, an overview of the current state-of-the-art regarding zeolite catalysis will be given. Special 

attention will be paid to the catalytic and structural properties of the zeolites necessary to obtain 

highly active (and selective) catalysts.  
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ISOMERIZATION MECHANISM 

As was already briefly mentioned in the introduction, a very complex reaction mixture is 

obtained during the isomerization reaction, containing both a monomeric and an oligomeric 

fraction. The desired branched fatty acids are part of the monomeric fraction. All other compounds 

in the monomeric and oligomeric fractions are considered byproducts and should be avoided if 

isostearic acid is the target product. 

Depending on the Brønsted acid catalyst used, the reaction product often consists of multiple 

(positional and/or geometrical) isomers, which gives rise to the complex product composition. 

Moreover, the position of the branch on the carbon chain has an influence on the physicochemical 

properties of future applications.14,15 Hence, it epitomizes the importance of thoroughly 

understanding the reaction mechanism and accurately analyzing the product distribution.  

MONOMERIC FRACTION 

The complexity of the reaction product is caused by the type of catalysis that takes place during 

the reaction (Scheme 2). A Brønsted acid site will react with the unsaturated fatty acid (A in 

Scheme 2), creating a carbocation. This carbocation has a considerable lifetime at the catalyst’s 

surface and is an intermediate from which a multitude of different products can be formed, but the 

most important one is the creation of the wanted branched fatty acids. The carbocation, which can 

be both a three-membered (B in Scheme 2) or four-membered ring (E in Scheme 2), will lose a 

proton creating a methyl (C in Scheme 2) or ethyl branch (F in Scheme 2) on the carbon chain 

respectively. The unsaturation remains present on the carbon chain and can move along it via the 

carbocation mechanism, leading to positional isomerization. As such, branches can be formed at 

several positions, creating multibranched fatty acids (D in Scheme 2).15,20,21,24,33 The dashed lines 

in Scheme 2 indicate that according to the movement of the unsaturation on the carbon chain, the 
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branch and unsaturation can be at any position on the carbon chain, except positions C2 to C5. The 

unsaturation can be present both in cis and trans configuration due to the geometrical isomerization 

of one configuration into the other. However, the trans isomer is preferred as it is 

thermodynamically more stable than the cis geometrical isomer.17,34,35 When a carbocation is 

formed at position C5 or C4, ring closure will occur by reaction of the carboxyl group with the 

carbocation, yielding (branched) lactones.17,20,21,23,24 Both gamma-stearolactone (B in Scheme 3) 

and delta-stearolactone (C in Scheme 3) can be formed, but gamma-lactones are 

thermodynamically favored.36 However, the presence of (branched) lactones in the reaction 

product is considered undesired. 

 

Scheme 2 Proposed reaction mechanism for the skeletal isomerization of unsaturated fatty acids 

(A) to unsaturated branched chain fatty acids via a three-membered carbocation (B) or four-

membered carbocation (E) yielding a methyl branched (C) or ethyl branched (F) unsaturated fatty 

acid respectively. Monobranched unsaturated fatty acids can be further converted to multibranched 

unsaturated fatty acids (D). 
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Dashed lines indicate the presence of an unsaturation or branch along the carbon chain, except 
at positions C2-C5.20,37 Rx

y indicates a carbon chain with an undefined amount of carbon atoms. 
When starting from oleic acid as feed, each Rx

y with a different x or y will have a different length. 

 

Scheme 3 Proposed reaction mechanism for the formation of gamma-lactones (B) and delta-

lactones (C), stearic acid (D) and linoleic acid (E) starting from an unsaturated fatty acid (A).17,38 
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Rx
y indicates a carbon chain with an undefined amount of carbon atoms. When starting from 

oleic acid as feed, each Rx
y with a different x or y will have a different length. 

 

The created carbocation takes part in monomolecular reactions and can also react with another 

unsaturated fatty acid. Via a hydrogen transfer mechanism, two mono-unsaturated fatty acids can 

be converted into a saturated fatty acid (D in Scheme 3) and a double-unsaturated fatty acid (E in 

Scheme 3).17 The latter does not necessarily have to be a conjugated fatty acid, as different isomers 

are possibly formed via the carbocation mechanism. 

OLIGOMERIC FRACTION 

Oligomeric compounds, both dimeric and larger, are formed by the reaction of a fatty acid with 

another fatty acid or oligomer. While previously mentioned compounds in the monomeric fraction 

were formed via a carbocation reaction, the formation of oligomers does not necessarily proceed 

via the same mechanism. Previous research has shown that also radical reactions and Diels-Alder 

reactions are possible. As such, (depending on the reaction mechanism), multiple dimers and larger 
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oligomers can be formed, making the product mixture complex regarding its composition. Despite 

the considerable amount of research performed in the past to elucidate their molecular structures, 

there is still no certainty or general agreement about it.13 Moreover, taking into account the 

complexity of the reaction and, as such, the product’s composition, one can understand that a lot 

of the different monomeric isomers present in the reaction product (i.e. branched fatty acids, 

unsaturated fatty acids) can be incorporated in the dimers and oligomers. On top of that, the dimer 

itself can further react and undergo isomerization reactions. Consequently, a very heterogeneous 

intricate mixture of products is created. A more general overview of possible families of dimers is 

given in Scheme 1. On the one side, there are linear dimers that are formed via a carbocation 

mechanism. A first example is estolides (B in Scheme 1), formed via the attack of a carboxyl 

group of one fatty acid on the carbocation of another fatty acid. As an estolide still contains 

unsaturation, more fatty acids can be connected to it.36 A second example is the unsaturated 

aliphatic dimers (F in Scheme 1), formed by the attack of a carbocation of one fatty acid on the 

double bond of another one.39–41 On the other side, there is the formation of cyclic (D and E in 

Scheme 1) dimers. For instance, they can be formed via the Diels-Alder reaction of a conjugated 

unsaturated fatty acid with another unsaturated fatty acid.40,41 Furthermore, the creation of 

aromatic dimers (C in Scheme 1) is also possible through dehydrogenation steps, which are readily 

occurring on the (unsaturated) 6 membered ring structures of the intermediates. 

ANALYSIS OF REACTION PRODUCTS 

As already stated in the second paragraph, the product obtained after the isomerization of 

unsaturated fatty acids to unsaturated branched fatty acids is very complex, consisting of a 

monomeric and oligomeric fraction. Each fraction consists of different chemical compounds 

present in different isomeric forms. The presence of geometrical and positional isomers of 
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unsaturated (branched) fatty acids, in particular, causes the compositional analysis to be 

challenging but necessary. Therefore, reaction products are often hydrogenated before analysis to 

reduce the number of different compounds present in the raw branched product and facilitate the 

analysis.17,22,25,26 A thorough analysis of the reaction products obtained after the isomerization of 

unsaturated fatty acids to unsaturated branched fatty acids is of the utmost importance. It can also 

provide more mechanistic insights into the ongoing catalysis and its control of selectivity during 

the isomerization reaction. As such, one can identify those zeolite characteristics responsible for 

high yields of the desired product and select/tune zeolites, e.g., through selection or modification 

of the pore architecture and acidity properties, in such a way that they become more active and 

selective towards this desired product. 

Until now, only more general analysis protocols have been reported to quantify the total amount 

of branched fatty acids and some byproducts such as lactones, hydroxyl fatty acids and dimers. 

(HT-)GC and GC-MS analysis are most often used here to quantify both the monomeric and 

oligomeric fraction.17,22,25,26 Other techniques, e.g. gel permeation chromatography, might be 

considered as a useful technique for the quantification of the oligomeric fraction. Detailed 

information about the types of branched fatty acids formed during the reaction is rarely given. 

Nevertheless, more information on this subject would be interesting, as the position and amount 

of branches on the carbon chain can influence the physicochemical properties (e.g., phase and 

melting behavior) of the product and thus also of potential applications or their quality for a 

specific application.14,15 

Some progress regarding this subject has been made by the group of Ngo et al. The reported 

analysis is based on derivatizing the fatty acids to 3-pyridylcarbinol (‘picolinyl’) esters instead of 

regular fatty acid methyl esters (FAMES). Furthermore, the analysis is performed on a highly polar 
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Supelco SP-2340 capillary column connected to a mass spectrometer. As picolinyl esters (example 

given in Figure 3) have a very distinct fragmentation pattern on GC-MS, it is possible to determine 

both the position and type of the branch on the carbon chain. However, the co-elution of some of 

the picolinyl ester isomers was not prevented during the GC-MS analysis. As such, a large amount 

of structural information was missing. As a result, the product could only be divided into groups 

of isomers.22 To obtain a better separation, Ngo et al. opted for a GCxGC-TOF-MS analysis, 

combining a Restek Dioxin 20 column as the first dimensional column with a Restek PCB column 

as the second dimensional column. This technique proved that the isomerization of unsaturated 

fatty acids to unsaturated branched fatty acids with a Ferrierite zeolite results in at least 28 different 

types of isomers. Moreover, it was demonstrated that Ferrierite’s product distribution significantly 

differed from that of e.g. Mordenite. Unfortunately, no details were given about the types of 

isomers present in the product or any specific differences between the products.25 As such, there 

are no clear structural properties/activity – selectivity relationships. The influence of the zeolite on 

the product distribution of the branched fatty acids was also suggested by Zhang et al. It was 

pointed out that the use of large-pore zeolites results in a relatively large fraction of ethyl-branched 

fatty acids and multibranched fatty acids. However, no details were given concerning the used 

analysis protocols.42 

 

Figure 3 3-pyridylcarbinol ester of 10-methylheptadecanoic acid. Numbers 1 to 17 indicate the 

different carbon atoms on the carbon chain. A gap will be visible on the mass spectrum between 

m/z/ 248 and m/z 275, indicating the position of the methyl branch on carbon 10.  
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STATE-OF-THE-ART AND CHALLENGES 

Given the high oleochemical value of branched fatty acids, quite some research on improving 

the yield has been done since 1980. A proposed adjustment to the clay-catalyzed process is the 

addition of co-catalysts. Foglia et al. use Bentonite in combination with isobutane, said to suppress 

cracking reactions, and dichloromethane, from which a protonic acid can be generated during the 

reaction. This method results in a product consisting of 59 wt% branched fatty acids (Table 1, 

entry 1). When these additives are not included, a product consisting of merely 29 % of branched 

fatty acids is obtained (Table 1, entry 2). However, a one-on-one comparison is difficult since 

different reaction conditions (temperature, duration, catalyst loading) were used. Although higher 

yields of branched fatty acids can be obtained using clay catalysts, the amount of oligomers in the 

reaction product remains high. This property is intrinsic to such clay catalysts due to their non-

confined catalytically active sites.43 Therefore, inspired by the selectivity control for the 

isomerization of olefins and paraffins in the petro-refinery and chemistry business, virtually all 

recent research focuses on another class of catalysts: zeolites. 

Zeolites are crystalline aluminosilicates constructed of SiO2 and AlO4 tetrahedra connected via 

shared oxygen atoms. As such, structures with well-defined pores and specific topologies are 

created. The presence of Al in the framework induces a net negative charge, which has to be 

compensated by a cation. When this cation is a proton, the zeolite has a Brønsted acidic 

character.19,44,45 By using zeolites, it is indeed possible to obtain much higher yields of branched 

fatty acids. The increased yield can be attributed to their shape selective properties, as a result of 

the molecular-sized confined space around the active site, retarding/avoiding dimerization. In 

addition, zeolites are robust and reusable up to 20 times when used to isomerize unsaturated fatty 

acids to unsaturated branched chain fatty acids.27  
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In the past, zeolites with a more or less accessible microporous structure have been tested as 

suitable catalysts for the isomerization of unsaturated fatty acids to unsaturated branched chain 

fatty acids. On the one hand, there are the two-dimensional zeolites, i.e. zeolites with a pore 

network that is accessible for the reagent in two directions of the zeolite crystal. A pore is 

considered accessible for the reagent - here an unsaturated C18 fatty acid - if it has at least a 10 

membered ring (MR) pore. Wiedemann et al. have shown that smaller pores, i.e. 8 MR pores, do 

not take part in the isomerization reaction as they are too small.46 Since the International Zeolite 

Association (IZA) also includes pores larger than 6 MR in the dimensionality of the zeolite, the 

dimensionalities mentioned in this perspective can differ from those originally provided by IZA.47 

As a result of the more open structure, two-dimensional zeolites are said to be less prone to 

deactivation than one-dimensional zeolites (i.e. zeolites with a pore network that is accessible for 

the reagent in only one direction of the zeolite crystal). However, when using these two-

dimensional zeolites, such as ZSM-5 (10 MR) and Beta (12 MR), only moderate yields are 

obtained. When Beta is used, the unsaturated branched chain fatty acid yield is somewhat lower 

compared to the yield obtained with Bentonite (Table 1, entries 6 to 10). With ZSM-5, the obtained 

yield is somewhat higher than Bentonite, but long reaction times are needed to achieve high 

conversions (Table 1, entry 3).19,43,48,49 On the other hand, there are one-dimensional zeolites, i.e. 

zeolites with a pore network that is accessible for the reagent in only one direction of the zeolite 

crystal. When Mordenite (12 MR) is used, a yield of approximately 70 % is achieved (Table 1, 

entries 12 and 13).50,51 However, most research so far has been performed with Ferrierite (10 MR). 

This zeolite was considered a very promising catalyst for the first time, already in 2007, by Ngo 

et al. because of its high surface area and high density of Brønsted acid sites.22 Indeed, with 

Ferrierite, almost complete feed conversion is possible with high branched fatty acid yields (Table 
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1, entries 14 to 21).17,22,52 This is not surprising, as Ferrierite is well known for its good 

performance in the isomerization of hydrocarbons such as n-butene.53,54 Similarly, 10 MR zeolites 

are known catalysts for the hydroisomerization of n-alkanes and are applied in the dewaxing of 

diesel fractions.55–59 In this context, bifunctional catalysts are used, consisting of a solid acid 

support (often a zeolite) and a transition metal in the presence of hydrogen. The latter is used for 

the dehydrogenation of the n-alkane to n-alkene, which can then be isomerized via the acid 

function of the catalyst. Finally, the isomerized alkene is hydrogenated to branched alkane via the 

metal function of the catalyst. Especially one-dimensional 10 MR zeolites such as ZSM-22 have 

shown a very specific shape selectivity towards monobranched alkanes. Two theories are 

suggested to explain these observations: I) pore mouth and key-lock selectivity (PMKLS) and II) 

the free-energy landscape (FEL) approach.60 PMKLS suggests that the isomerization of the alkane 

occurs in the pore mouth of the zeolite, i.e. the entrance of the pore at the outer surface of the 

zeolite. Sorption can occur in one pore mouth, yielding alkanes with a branch at the end of the 

carbon chain, or, simultaneously in two adjacent pore mouths (key-lock), yielding alkanes with a 

branch more at the center of the carbon chain or even dibranched isomers (Figure 4). This theory 

works well for zeolites such as ZSM-22 and ZSM-23 (both one-dimensional 10 MR zeolites) 

performing hydroisomerization reactions on alkanes.60–62 The FEL approach is used in quantum 

chemistry, and here the effect of the zeolite structure on thermodynamic characteristics is taken 

into account. As such, it is assumed that one can predict how the structure of the zeolite will affect 

its shape selectivity by quantifying how the zeolite topology affects the free energies of formation 

of reactants, intermediates and products in the zeolite, and this while ignoring the actual chemical 

characteristics of the zeolite. This theory can be used more widely and is not limited to 

hydroisomerization reactions with one-dimensional 10 MR zeolites.60,63  
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Figure 4 Overview of different adsorption configurations (both pore mouth (A) and key-lock (B, 

C, D, E and F)) on a ZSM-22 zeolite.61 Reprinted with permission from ref 61. Copyright 2001, 

Elsevier. 

From Table 1, it is clear that the use of zeolites for the isomerization of unsaturated fatty acids 

to unsaturated branched chain fatty acids is often combined with the use of additives. The first 

commonly used additive is water (when the reagent is a fatty acid) or a lower alcohol (when the 

reagent is a fatty acid ester). It is assumed that by using water, the activity of the zeolite can be 

improved due to the modification of Lewis acid sites, viz. incompletely coordinated Al sites, to 

Brønsted acid sites.17,51,64 However, the benefits of water as an additive with regard to the activity 

of the zeolite are not very pronounced. In some cases the use of water shows indeed a positive 

effect on the activity of the zeolite (Table 1, entries 7 and 8), whereas in other cases this benefit is 

insignificant and thus negligible (Table 1, entries 3, 4, 14 and 15). Moreover, recent data from 
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Wiedemann et al. and Sarker et al. have shown that the presence of water in the reaction mixture 

promotes the formation of lactones and estolides, both of which are unwanted side products.17,19 

Furthermore, water may also destabilize the zeolite at high hydrothermal conditions by irreversibly 

destructing the zeolite structure, which is essential to maintain a high selectivity, through 

desilication or dealumination reactions.65 This is especially a problem for structurally imperfect 

zeolite catalysts (as all commercial ones) as well as for zeolites with large pores and low Al 

content.66,67 Given pore confinement is at the origin of the high selectivity control, the robustness 

of the zeolite structure in the reaction is essential. Nevertheless, this point is, for the isomerization 

conditions of unsaturated fatty acids, until now, not extensively investigated in literature. The 

second additive that is frequently used, is a bulky Lewis base that binds to the Brønsted acid sites 

present at the external surface of the zeolite but is too large to enter the pores of the zeolite. As 

such, the external Brønsted acid sites are neutralized, while the internal ones are still available for 

catalysis. The aim is to counteract the formation of bulky side products such as dimers, while the 

formation of monomeric (side) products remains possible in the micropores of the zeolite. Most 

often, triphenylphosphine (TPP) is used, but other bulky phosphines or amines can be used as well, 

as long as they cannot enter the micropores of the zeolite. Different research groups have shown 

that the presence of TPP in the reaction mixture indeed has a positive effect on the selectivity of 

the zeolite, as the amount of oligomers present in the reaction product reduces significantly. 

However, the presence of these bulky Lewis bases can have a negative effect on the activity of the 

zeolite, depending on the reaction conditions used (Table 1, entries 4, 5, 8, 9, 16 to 21).16–18,52,68,69 

This effect is attributed to the blockage of the pore mouths of the zeolite. As such, the catalytically 

active sites are not sufficiently accessible for the isomerization reaction.13 In analogy with the 

hydroisomerization of n-alkanes with zeolites, the catalytic conversion of unsaturated fatty acids 
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to unsaturated branched chain fatty acids is also believed to occur in the pore mouths of the zeolite 

and not within the microporous network itself. This finding was suggested for the first time by 

Wiedemann et al., who looked in more detail at the deactivation mechanisms during a reaction 

with Ferrierite in the presence of water and TPP. It was observed that deactivation of the Ferrierite 

zeolite is likely to occur via two distinct mechanisms. The first one is the strong adsorption of 

polyenylic species, formed via hydrogen transfer mechanisms, on the acid sites in the pore mouths 

of the zeolite. As such, the isomerization reaction is slowed down.17,70 The second one is linked to 

the formation of cokes in the zeolite pores. Wiedemann et al. have shown that the pores of the 

Ferrierite zeolite get blocked very early in the reaction by the formation of cokes. The amount of 

cokes present in the zeolite crystals remains more or less constant during the reaction. As such, the 

reaction cannot take place (largely) inside the micropores of the zeolite. They reasoned that, as 

TPP was also present in the reaction mixture and blocked the acid sites on the zeolite’s surface, 

the reaction could only take place in the pore mouths of the zeolite.17,46,70 As stated earlier, it is not 

surprising that pore mouth catalysis is suggested for this type of reaction, as it was already 

suggested by Martens et al. for the hydroisomerization of long n-alkanes with one-dimensional 10 

MR zeolites, such as ZSM-22.59,61,62,71 Specifically for Ferrierite, pore mouth catalysis has been 

suggested for the isomerization of n-butene.72,73 Nevertheless, more research is necessary to 

confirm that the isomerization of fatty acids with 10 MR zeolites also takes place via pore mouth 

catalysis, given that the adsorption of fatty acids may behave differently due to their bipolar 

structure with a polar head and nonpolar tail. 

The zeolite characteristics responsible for a high activity and selectivity towards branched fatty 

acids are not fully elucidated. Wiedemann et al. found that the initial activity of Ferrierite, shown 

as the conversion after 8 minutes, correlates well with the number of Brønsted acid sites present 
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in the 10 MR pores, measured with pyridine IR. High yields of branched fatty acids can be 

explained by the high ratio of Brønsted to Lewis acid sites.70 Ha et al., who tested different Beta 

zeolites calcined at different temperatures, also mention the relationship between high Brønsted 

acidity and high activity.24 Zhang et al., in contrast, claim that not only the Si/Al ratio is an essential 

measure for a zeolite’s activity, as it correlates to its acidity, but also the accessibility of the acid 

sites for the reagent. For the first time, a mesoporous zeolite (MAS-5) was used. MAS-5 is a zeolite 

with mesopores between 15 and 500 Å consisting of primary and secondary nano-sized zeolite 

structural units in the walls of the mesopores. These structural units consist of microporous Beta 

zeolite, giving the zeolite the advantages of both a microporous and a mesoporous zeolite as it has 

an acidity and thermal and hydrothermal stability comparable to conventional, microporous 

zeolites. Additionally, by introducing mesopores in a zeolite, the substrate and product can diffuse 

in and out the zeolite more easily, which should give rise to a higher catalytic activity. When 

compared to a Beta zeolite with a similar Si/Al ratio, one can see that the presence of mesopores 

indeed positively influences the activity of the zeolite (Table 1 entries 10 and 11).21,74 In contrast, 

the most active Beta zeolite in the work of Ha et al. has a relatively low surface area.24 Zeolites 

such as the MAS-5 are considered hierarchical zeolites, i.e. zeolites that contain, on top of and 

interconnected with a microporous pore network, a pore network consisting of meso- and/or 

macropores. They can be obtained via different methods, both during zeolite synthesis (i.e. via 

bottom-up methods) or after zeolite synthesis (i.e. via top-down methods) and have proven to show 

an improved catalytic performance compared to microporous zeolites in many applications.44 The 

use of hierarchical zeolites for the isomerization of unsaturated fatty acids to unsaturated branched 

chain fatty acids is still very limited as next to Zhang et al., only Bolshakov et al. recently looked 

into it. They used a bottom-up synthesized hierarchical Ferrierite and compared it to a reference, 



 21 

non-hierarchical, Ferrierite. Due to the presence of the hierarchical pore system, higher yields of 

branched fatty acids were obtained, which was attributed to an improved mass transport. The 

influence of mesoporosity on the mono versus multi branching ratio or other impacts on the 

isomerization selectivity were unfortunately not reported.75  

Table 1 Overview of patents and journal papers concerning the branching of unsaturated fatty 

acids.  

Entr
y 

Catalyst  Si
/A
l 

Loadi
ng 
(wt% 
on 
feed) 

Substrat
e 

Additives 
(wt% on 
feed) 

T 
(°
C) 

t 
(h) 

BFA’
s 
(wt%
) 

X  
(%) 

Y 
(
%
) 

S 
(%
) 

Ref. 

1 Bentonite ― 10 Methyl 
oleate 

Isobutane 
(60), 1,2-
dichloroeth
ane (200) 

23
0 

2 59 ― ― ― 43 

2 Bentonite ― 5 Methyl 
oleate 

― 25
0 

24 29 ― ― ― 43 

3 H-ZSM-
5 

11
.5 

5 Oleic 
acid 

― 26
0 

24 65 9
8 

― ― 19 

4 H-ZSM-
5 

11
.5 

5 Oleic 
acid 

Water (2) 26
0 

24 68 1
0
0 

― ― 19 

5 H-ZSM-
5 

11
.5 

5 Oleic 
acid 

Water (2), 
TPP (0.375) 

26
0 

24 80 9
8 

― ― 19 

6 H-Beta 50 10 Oleic 
acid 

― 25
0 

7 46 7
4 

59 79 49 

7 H-Beta 12
.5 

5 Oleic 
acid 

― 26
0 

4 43 7
9 

― ― 19 

8 H-Beta 12
.5 

5 Oleic 
acid 

Water (3.6) 26
0 

4 53 8
9 

― ― 19 

9 H-Beta 12
.5 

5 Oleic 
acid 

Water (3.6), 
TPP (0.375) 

26
0 

4 41 7
0 

― ― 19 

10 H-Beta  25 10 Oleic 
acid  

― 25
0 

5 ― 4
9 

― ― 74 
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11 H-MAS-
5  

25 10 Oleic 
acid 

― 25
0 

5 31 6
0 

―  74 

12 H-
Mordenit
e 

6.
5 

5 Oleic 
acid 

― 26
5 

4 ― ― 68 ― 51 

13 H-
Mordenit
e 

7 8 Oleic 
acid 

Water (2) 28
0 

6 ― ― 71 ― 64 

14 H-Fer 10 5 Oleic 
acid 

― 26
0 

8 74 9
9 

― ― 19 

15 H-Fer 10 5 Oleic 
acid 

Water (3.6) 26
0 

8 73 1
0
0 

― ― 19 

16 H-Fer 9 5 Oleic 
acid 

Water (3.6), 
TPP (0.125) 

25
0 

6 48 7
2 

― ― 52 

17 H-Fer 9 5 Oleic 
acid 

Water (3.6), 
TPP (0.125) 

25
0 

22 77 9
9 

― ― 52 

18 H-Fer 9 5 Oleic 
acid 

Water (3.6) 28
0 

6 67 9
9 

― ― 52 

19 H-Fer  9 5 Oleic 
acid 

Water (3.6), 
TPP (0.5) 

28
0 

6 79 9
8 

― ― 52 

20 H-Fer 9 5 Oleic 
acid 

Water (1) 26
0 

6 62 9
5 

67 70 17 

21 H-Fer 9 5 Oleic 
acid 

Water (1), 
TPP (0.375) 

26
0 

6 75 9
2 

81 88 17 

Legend: BFA’s: branched fatty acids; X: conversion; Y: yield; S: selectivity; TPP: 
triphenylphosphine. 

CONCLUSIONS 

Due to their unique properties, branched fatty acids are of great interest to the oleochemical 

industry. However, their current industrial production is limited and only as a side product of the 

acid clay catalyzed dimerization of fatty acids. Yields are low, and purification is very energy-

consuming. Hence, efforts were made to increase their yields, mainly relying on zeolites as a 

catalyst. As such, important steps forward were made, but a considerable amount of questions 
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remain open. This perspective aims to provide all the knowledge required to get a profound insight 

in the current state-of-the-art while pointing at these remaining questions.  

Despite the efforts of some research groups, additional improvements are required concerning 

the analysis of the reaction product. Due to the type of chemistry taking place, i.e. carbocation 

chemistry, the product is extremely complex and consists of a high amount of isomers, both in the 

fraction of branched fatty acids as in the fraction of unwanted side products. A deepened 

knowledge here would create a better understanding between a product’s composition and its 

physicochemical properties.  

The use of zeolite catalysts has made it possible to tremendously increase the yield of branched 

fatty acids, compared to the current industrial process. While it was already pointed out in literature 

that different zeolites give different product compositions, and thus that its activity and selectivity 

strongly depends on the characteristics of the zeolite, the reason for this remains unclear due to the 

lack of available detailed (molecular) information about these differences. Nevertheless, more 

detailed insights in the reaction products could help researchers to understand how the zeolite 

catalyst is capable of improving e.g. selectivity. Proper knowledge on this matter, combined with 

a more detailed product analysis, would make it possible to design application-specific catalytic 

systems.  

Clearly, plenty opportunities are still ahead, not only regarding the analysis of the reaction 

products but also with regard to further improving the catalytic system. The focus here should be 

on developing additive-free, robust catalytic systems yielding high amounts of branched fatty acids 

under moderate reaction conditions, which can act as a sustainable alternative for the currently 

used acid clays. It might also be interesting to look at cheaper zeolite systems of greater industrial 

interest than the currently used Ferrierite or at continuous reaction systems such as fixed bed or 
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continuous stirred tank reactors, as current research is almost exclusively performed on batch 

systems. A thorough and systematic insight into the relationship between activity/selectivity and 

zeolite characteristics will be essential here. It will make it possible to tune the catalytic system 

towards the desired yields and product properties. Finally, improved insights into the deactivation 

mechanisms during reaction will make it possible to develop more robust zeolites and tailor-made 

regeneration protocols, free of additives and suited for industrial applications.  
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SYNOPSIS  

This perspective discusses the current state-of-the-art and shortcomings regarding the high 

selective valorization of fatty acids to branched fatty acids, a high-end oleochemical product, 

using zeolites. 
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