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Abstract
Datasets comprised of large sets of both predictor and outcome variables are becoming 
more widely used in research. In addition to the well-known problems of model complexity 
and predictor variable selection, predictive modelling with such large data also presents a 
relatively novel and under-studied challenge of outcome variable selection. Certain out-
come variables in the data may not be adequately predicted by the given sets of predictors. 
In this paper, we propose the method of Sparse Multivariate Principal Covariates Regres-
sion that addresses these issues altogether by expanding the Principal Covariates Regres-
sion model to incorporate sparsity penalties on both of predictor and outcome variables. 
Our method is one of the first methods that perform variable selection for both predic-
tors and outcomes simultaneously. Moreover, by relying on summary variables that explain 
the variance in both predictor and outcome variables, the method offers a sparse and suc-
cinct model representation of the data. In a simulation study, the method performed better 
than methods with similar aims such as sparse Partial Least Squares at prediction of the 
outcome variables and recovery of the population parameters. Lastly, we administered the 
method on an empirical dataset to illustrate its application in practice.
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1  Introduction

Following the advancements of technology for data collection, most research disciplines 
are faced with challenges arising from an abundance of data. In deriving a prediction 
model, researchers are increasingly encountering a setting where they handle a bulk of 
data at both ends of predictor and outcome variables. For example, Stein et al. (2010) pro-
posed a model that predicts the volume of each location of the brain (measured by large 
fMRI data) by numerous predictors from genome-wide association (GWAS) data. Specific 
genetic polymorphisms that are strongly associated with different parts of the brain were 
explored and identified therein. Similarly, Mayer et al. (2018) used genome-wide expres-
sion data in predicting responses of cell lines to several types of drugs. The study adopted 
random forests to find subsets of biologically meaningful associations between transcrip-
tion rates and responses to drugs. Other examples include image-on-image regression 
in which an image is employed to predict another image (Guo et al., 2022), or multitrait 
GWAS where multiple correlated phenotypic traits are modelled together by genotypic 
variables (Kim et  al., 2016; Oladzad et  al., 2019). Studies that investigate associations 
between genes (Park & Hastie, 2008), or across protein and DNA (Zamdborg & Ma, 2009) 
are also along these lines.

Predictive modelling in the presence of such large amounts of data presents two well-
known issues. First, a constructed prediction model with many variables is difficult to 
interpret due to the sheer number of coefficients; studying the predictor-outcome relation-
ship becomes complicated. Second, certain predictor variables may be redundant. In a set-
ting like the fMRI-GWAS study (Stein et al., 2010) where variables are collected without a 
specific research question, there is a need to screen out non-essential predictors that do not 
have any predictive power.

One way to deal with the two abovementioned problems pertaining to model interpret-
ability and redundant predictor variables is the method of Principal Covariates Regression 
(PCovR; De Jong and Kiers, 1992. It is a combination of Principal Component Analysis 
(PCA) and Ordinary Least Squares (OLS) being applied in fields including chemometrics 
(Boqué & Smilde, 1999), material science (Helfrecht et al., 2020), health science (Taylor 
et al., 2019) and clinical psychology (Nelemans et al., 2019). PCovR introduces ‘principal 
covariates’; a low number of summary variables that condense the information in the large 
volume of predictor variables, akin to principal components in PCA. The outcome variable 
is then regressed on the principal covariates, significantly decreasing the number of regres-
sion coefficients to be estimated. However, since all of the predictor variables are involved 
in constructing the principal covariates, a large set of coefficients connecting the predictors 
with the covariates still has to be estimated. Understanding the nature of the covariates by 
inspecting these coefficients therefore becomes very cumbersome. To this end, PCovR has 
been extended to incorporate regularization penalties that induce sparseness in these coef-
ficients (e.g. Van Deun et al., 2018; Park et al., 2020). This not only allows the covariates 
to be easily interpreted, but also discards the predictors that are redundant.

A related but rarely visited issue is that some of the outcome variables may also be 
redundant. They may not have a substantial relationship with any of the predictors, mean-
ing that they cannot be predicted by the available sets of predictors. Such outcome vari-
ables are expected especially in the context of an exploratory research setup. For example, 
in a multitrait GWAS setup comparable to the aforementioned studies, not all phenotypes 
may have strong relationships with the available transcription rates. Researchers may want 
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to identify a subset of phenotypes that are relevant to the available genetic predictors and 
obtain a more concise and interpretable prediction model.

Removal of unpredictable outcome variables in such cases offers benefits that 
extend beyond improved model interpretability. It can enhance the quality of predic-
tions because these irrelevant outcomes may obscure relevant predictive relationships 
pertaining to other outcome variables (Fowlkes & Mallows, 1983; Steinley & Brusco, 
2008). A redundant outcome may be mistakenly included in the model, which can 
impair out-of-sample prediction of relevant outcome variables, as well as the entire set 
of outcome variables. This concept can be seen analogous to how eliminating redun-
dant predictors in a regression setting can treat overfitting and improve the predictive 
performance.

Settings that can benefit from the exclusion of irrelevant outcome variables are 
increasingly common these days with the growing number of investigations that incor-
porate non-targeted and naturally-occurring sources of data; prior information con-
cerning predictor-outcome relationship is not available. Throughout the paper, we refer 
to these outcome variables that are not predictable by the given set of predictors as 
‘inactive outcomes’, and otherwise as ‘active outcomes’. This terminology is used in 
other papers that address outcome variable selection (Su et al., 2016; Hu et al., 2022).

While PCovR and its sparse extensions accommodate for issues arising from a large 
set of predictors, they are primarily designed to address a single outcome variable. 
Similarly, whereas methods designed to eliminate redundant predictor variables have 
been extensively studied (Tibshirani, 1996; Zou & Hastie, 2005; Yuan & Lin, 2006), 
regression problems involving variable selection at the level of outcome variables have 
not received much attention. There have been many approaches to regress multivariate 
outcome variables jointly on the predictors instead of modelling the outcomes individ-
ually, but most of these works were confined to identifying common sets of predictors 
that are important for predicting all of the outcome variables (Obozinski et al., 2006; 
Peng et  al., 2010; Luo, 2020). Similarly, while multivariate methods such as Partial 
Least Squares (PLS) and Reduced Rank Regression (RRR) that have their basis on 
reducing the dimensionality of the variables have been extended to incorporate spar-
sity, the majority of these extensions have only targeted predictor variables (Lê Cao 
et  al., 2011; Chung & Keles, 2010; Chen & Huang, 2012). To our knowledge, there 
has been only a handful of studies that target outcome variable selection; these include 
regularized regression approaches (An & Zhang, 2017; Hu et al., 2022), a sparse RRR 
method (Chen et  al., 2012) and a method within a framework of envelope modelling 
(Su et al., 2016).

In this paper, we propose the method of Sparse Multivariate Principal Covariates 
Regression (SMPCovR), an extension of PCovR methodology that tackles the variable 
selection problem for both predictor and outcome variables. Starting from the PCovR 
model, sparseness is promoted in both sides of the model; in constructing the covari-
ates from the predictors and in predicting the outcome variables based on the covari-
ates. The resulting model is not only sparse and easy to interpret, but also eliminates 
redundant predictor variables and inactive outcome variables, from which improve-
ment with respect to prediction can be expected. It contributes to the under-studied 
problem of variable selection of outcome variables.

The paper is arranged as follows. The next section provides methodological details 
of SMPCovR. We begin with a discussion of PCovR since it is the basis of our cur-
rent method. A simulation study that comparatively evaluates SMPCovR along with 
other methods devised with similar research aims is presented afterwards. The method 
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is also administered to an empirical dataset for an illustrative purpose, as well as to 
expand upon the comparison against competitive methods in a practical data setting. 
The paper concludes with a disussion. The R implementation of SMPCovR can be 
found on Github: https://​github.​com/​soogs/​SMPCo​vR. The code for generating the 
results in this paper is also available therein.

2 � Methods

2.1 � Notation

The following notation is used throughout the paper: scalars, vectors and matrices are denoted 
by italic lowercase, bold lowercase and bold uppercase letters respectively. Transposing is 
indicated by the superscript T . Lowercase subscripts running from 1 to corresponding upper-
case letters denote indexing (i.e., i ∈ {1, 2,… , I} ). Superscripts (X) and (Y) highlight affiliation 
with predictor and outcome variables, respectively. To denote estimates, a ̂ over the symbol 
denoting the population parameter is used. X refers to a I × J matrix containing the standard-
ized scores of J predictors obtained from I observation units (that is, each column has mean 
zero and variance equal to one). Y denotes a I × K matrix of K continuous outcome variables 
that are mean-centered and scaled to variance equal to one, also observed on the same I obser-
vation units. The total number of covariates or components is denoted by R.

2.2 � PCovR

We begin by discussing the method of PCovR and show how the method extends to the cur-
rent method of SMPCovR. PCovR (De Jong & Kiers, 1992) is a combination of PCA and 
OLS. It models the predictor and outcome variables by using principal covariates which can 
be understood as summary variables. These covariates are linear combination of the predictors 
which are obtained such that they explain the variance in the predictor and outcome variables 
simultaneously. PCovR decomposes the predictors X and the outcome variables Y as follows:

where W denotes the weights matrix of size J × R : the predictor variables are multiplied 
by the weights to construct principal covariates T = XW with wjr the weight correspond-
ing to the jth predictor variable and the rth covariate. It can be seen that both Y and X are 
modelled on the basis of the covariates XW . The first line of equation (1) is the model for 
the outcome variables: P(Y) refers to the regression coefficients matrix of size K × R with 
p
(Y)

rk
 the regression coefficient linking the rth covariate with the kth outcome variable. The 

residuals pertaining to the outcome variables are denoted by E(Y) . On the other hand, the 
second line of the equation gives the model for the predictors. P(X) indicates the loadings 
matrix of size J × R ; p(X)

rj
 is the loading that connects the rth covariate with the jth predic-

tor variable.
The following loss function is minimized when estimating the model parameters:

(1)
Y = ���

(Y)T + �
(Y)

X = ���
(X)T + �

(X)

https://github.com/soogs/SMPCovR
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where 0 ≤ � ≤ 1 is a user-specified tuning parameter that expresses the balance between 
focussing on the reconstruction of predictors or the prediction of the outcome variables 
in deriving the covariates. With � specified as 0, the method boils down to PCA where 
principal components are found by only considering the predictors. When � = 1 , the 
method becomes equivalent to RRR (Izenman, 1975; Kiers & Smilde, 2007). Constraints 
are needed to identify a unique solution from (2); an orthonormality constraint is usually 
placed upon the covariates ( TTT = (XW)T (XW) = I).

The principal covariates can be understood as underlying processes that explain the 
relation of the outcome variables to the predictor variables. Thus, it is often of research 
interest to interpret the constructed covariates. All of the parameter sets W , P(X) and P(Y) 
can be studied as they offer insights from different angles. The weights matrix W provides 
the composition of the covariates as it prescribes how the predictor variables are combined 
to form the covariates. The loadings matrix P(X) shows how the covariates recover back the 
predictors. Additionally, if the covariates are scaled to variance equal to one ( TTT = II ), 
the loadings are equivalent to the correlation between the covariates and the predictors. 
Lastly, the regression coefficients P(Y) represent how the covariates are used to predict the 
outcome variables. Unlike the weights and the loadings matrices, the regression coeffi-
cients concern the link between the covariates and the outcome variables.

2.3 � SMPCovR

When large sets of predictor variables and outcome variables are present, inspecting the 
PCovR estimates to understand the nature of the covariates becomes difficult. Also, the 
dataset may present redundant predictors and inactive outcomes. The novel method of 
SMPCovR induces sparseness in the weights W and regression coefficients P(Y) so that 
these issues are resolved within the context of PCovR.

2.3.1 � Model and objective function

SMPCovR models the predictor and the outcome variables in the same manner as the 
PCovR model above yet with the additional constraint that only few variables make up 
the covariates and that not all outcome variables are predictable by (all) covariates. Such a 
sparse model can be attained by adding penalties to the objective expressed in (2):

(2)L(W, P(X)
,P(Y)) = �

���Y − XWP(Y)T���
2

2

‖Y‖2
2

+ (1 − �)

���X − ���
(X)T���

2

2

‖X‖2
2

,

(3)

L
�
W,P(X)

,P(Y)
�
=

�

‖Y‖2
2

���Y − XWP(Y)T���
2

2
+

1 − �

‖X‖2
2

���X − XWP(X)T���
2

2

+
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r

�1
��wr

��1 +
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r

�2
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2
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where the loadings associated with the predictors P(X) are constrained to be column-orthog-
onal ( P(X)TP(X) = I ) in order to avoid trivial solutions with very small weights (close to 
zero) and very large loadings. Just as in the objective criterion for PCovR, the first and 
the second terms are sum of squares that concern the regression problem and the PCA 
problem, respectively. The two terms are balanced by specification of the � parameter 
( 0 ≤ � ≤ 1 ). Note that the constraint on the covariates employed for PCovR is removed for 
this objective criterion.

The terms with �1 and �2 respectively refer to the lasso and ridge penalties for the 
weights, while the terms with �1 and �2 indicate the lasso and the ridge penalties imposed 
on the regression coefficients. While the lasso penalty enforces the coefficients to zero and 
discards variables from the model, the incorporation of the ridge penalty prevents diver-
gence occurring due to covariates being correlated. This combination of the lasso and ridge 
penalties is also known as the elastic net penalty (Zou & Hastie, 2005). The combina-
tion is necessary because the lasso penalty alone is shown to be inconsistent in the high-
dimensional case, while the ridge penalty alone does not impose any sparsity. When all of 
the regression coefficients corresponding to an outcome variable are forced to zero, this 
outcome variable is modelled by zero and excluded from the model. Likewise, all of the 
weights corresponding to a predictor being penalized to zero removes the predictor vari-
able from the model.

2.3.2 � Algorithm

Estimates of the SMPCovR parameters can be obtained by alternating least squares. In 
turn, one of the parameter sets among W , P(X) and P(Y) is estimated conditionally upon 
fixed values of the others. The elastic net problems for W and P(Y) are convex problems, 
and they are both tackled via coordinate descent (Friedman et al., 2010). On the other hand, 
the conditional problem for P(X) is known as an Orthogonal Procrustes Problem (Schöne-
mann, 1966); it is not convex, but has a closed-form solution (Ten Berge, 1993). Since each 
of the estimation problems for W , P(X) and P(Y) can converge at the global optimum of the 
conditional (penalized) least squares problem, the resulting alternating least squares proce-
dure is monotonic. However, there is no guarantee of convergence to the global optimum 
for the combined problem (3), due to its non-convexity. To avoid local minima, we rec-
ommend to use multiple random starting values, along with rational starting values based 
on PCovR. Further details on the algorithm for minimizing the objective function can be 
found in Appendix 1, including the schematic outline of the algorithm and the derivation 
of solutions to the conditional updates (Appendices 2, 3, 4).

2.3.3 � Model selection

The SMPCovR method entails the following list of tuning parameters that shape the model 
construction.

•	 Number of covariates R
•	 Weighting parameter �
•	 Lasso parameter concerning weights �1
•	 Ridge parameter concerning weights �2
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•	 Lasso parameter concerning regression coefficients �1
•	 Ridge parameter concerning regression coefficients �2

We employ k-fold cross-validation (CV) as a standard model selection method for all of the 
tuning parameters except for the number of covariates R. Although a conventional model 
selection scheme with CV would consider all possible combinations of different values for 
all of the tuning parameters involved, such an exhaustive strategy would be computation-
ally intensive, considering that the method is devised to cater for large sets of both predic-
tor and outcome variables. Therefore, a sequential approach is adopted where the param-
eters are tuned in turn. Such a sequential approach has been shown to be a suitable model 
selection strategy for the methods that precede SMPCovR: PCovR and sparse PCovR 
(Vervloet et al., 2016; Park et al., 2020).

The number of covariates R is tuned as the first step of the sequential approach. PCA is per-
formed on the concatenated data matrix [Y X] to find a suitable number of principal compo-
nents. This number of components would be adopted as the number of covariates R for SMP-
CovR. A typical approach is the use of scree plot in which an ‘elbow’ is searched for from a 
plot that illustrates the amount of variance each principal component explains. However, since 
this location of the elbow can involve a subjective opinion, the acceleration factor technique 
(Raîche et al., 2013) is employed instead. It is an objective method that finds at which princi-
pal component the amount of explained variance changes most abruptly. The method retains 
the components that precede the component where the abrupt change in variance takes place 
(Cattell, 1966). It is along the same line as other strategies devised to objectively search for the 
elbow, such as the Convex Hull method (Wilderjans et al., 2013). We make use of the imple-
mentation in the R package “nFactors” (Raîche & Magis, 2020).

The subsequent step is to determine the values of � , �1 and �2 simultaneously via CV. In 
doing so, the number of covariates found in the previous step is used. Also, the parameters 
pertaining to the weights �1 and �2 are fixed at a small value of 10−7 . For the CV, we employ 
the R2 measure computed from the CV test set to evaluate the out-of-sample prediction quality 
of the model parameters:

where Ytest and Xtest refer to the outcome and predictor variables in the CV test set. We 
rely on the one standard error rule (1SE rule; Hastie et al., 2009) to select the final model 
after CV. Among the model configurations that fall within the 1 SE region from the maxi-
mum R2

cv
 , the 1SE rule would favour the model with the lowest model complexity. There-

fore, within the 1SE region, the models with the smallest � , the largest �1 and the small-
est �2 values are selected. While smaller � values are linked with lower model complexity 
because they are more robust to overfitting than larger � , we found in our experiments that 
the combination of larger values of �1 and smaller values of �2 promote greater sparsity in 
the coefficients.

By using the selected values of � , �1 and �2 , the parameters for the weights, �1 and �2 , 
are tuned in the final stage of the procedure. This is because the impact of these parameters 
towards the model fit is relatively small, compared to the other parameters. In an investiga-
tion into different model selection procedures for sparse PCA, de Schipper and Van Deun 
(2021) reported that even a model with very sparse weights can result in good recovery of 

(4)R2

cv
= 1 −

‖‖‖‖
Ytest − XtestŴP̂

(Y)T‖‖‖‖

2

2

‖‖Y
test‖‖

2

2

,
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the true underlying component scores. Furthermore, methods that precede SMPCovR have 
also adopted this procedure to select the sparsity parameters for the weights at the final stage, 
resulting in good retrieval of the true model parameters (Park et al., 2020, 2023). Employing 
the 1SE rule again, models with the largest �1 and the lowest �2 values were selected, as they 
lead to more sparsity in the coefficients. A concrete demonstration of this model selection 
procedure for SMPCovR is provided in Sect. 4.1.2, where details of administering each of the 
steps of this procedure on an empirical dataset are presented.

2.3.4 � Related methods

Our proposed method of SMPCovR accommodates three goals: (a) it is a prediction 
method for multiple continuous outcome variables, (b) it represents underlying predictive 
processes by covariates, and (c) it provides sparse coefficients and performs variable selec-
tion at both sides of predictor and outcome variables. This section compares SMPCovR to 
other methods that are devised with a similar set of aims.

Sparse PCovR Sparse PCovR (SPCovR; Van Deun et al., 2018) is an immediate prede-
cessor of SMPCovR. The method finds sparse weights, but sparseness is not imposed to the 
regression coefficients P(Y) . In fact, SMPCovR without the lasso penalty on the regression 
coefficients boils down to SPCovR. Although the covariates can be found considering the 
multiple outcomes, an entire set of regression coefficients P(Y) is estimated which is bur-
dening for model interpretation. This also implies that inactive outcome variables are not 
filtered out from the model, and they may hinder the prediction quality.

Sparse Partial Least Squares (sPLS; Lê Cao et al., 2008; Chung and Keles, 2010) is a 
sparse extension to PLS, which is a well-known method in the same spirit as PCovR; it 
models predictor and outcome variables simultaneously by introducing summary variables 
(Wold, 1982; Wold et al., 1984). Just like in PCovR, these summary variables account for 
variance in both predictor and outcome variables. However, PLS does not incorporate the 
balancing parameter � . Although sPLS can model multiple outcome variables and per-
forms variable selection for the predictors, it has not been extended to also enforce sparse-
ness on coefficients that connect the summary variables with the outcome variables. How-
ever, outcome variable selection has been addressed within the framework of envelope 
modelling (Su et  al., 2016). Envelope modelling1 has been shown to be connected with 
PLS; the two methods target the same population parameters, but they differ in the method 
of estimation (Cook et al., 2013). Yet, the method in Su et al. (2016) is only designated for 
variable selection for the outcomes, and not for the predictor variables; the authors suggest 
a prior subset selection of predictor variables in the case of high dimensionality. Therefore, 
similarly to sPLS, the method does not address the complete set of goals of SMPCovR.

1  Envelope modelling (Cook et  al., 2010) is a recent branch of methods that identifies ‘material’ and 
‘immaterial’ parts of predictor and outcome variables. A linear model is constructed only on the basis of 
the useful ‘material’ parts, which allows efficient estimation and overcomes problems such as collinearity.
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3 � Simulation study

We have conducted a simulation study in which we examine the performance of SMP-
CovR, SPCovR and sPLS with respect to the retrieval of underlying processes and the 
prediction of the multiple outcome variables. These underlying processes are specified by 
covariates that underlie the simulated data. The covariates were defined to only explain the 
variance for the subsets of predictor and outcome variables; other predictors and outcomes 
were defined to be redundant and inactive, respectively. We excluded the envelope method 
(Su et al., 2016) as it does not have a publicly available software implementation.

Owing to the sparsity penalty imposed upon the regression coefficients, we expect SMP-
CovR to outperform the other two methods in prediction when some outcome variables 
are inactive. By filtering out the inactive variables that are not related with the underly-
ing covariates, overfitting of these inactive variables would be avoided. As a consequence, 
this would result in better prediction quality of the outcome variables overall, compared to 
SPCovR and sPLS.

Since the defined covariates underlie both predictor and outcome variables, the qual-
ity of retrieval of the underlying processes can be studied from two angles: (1) covari-
ate-predictor relationships and (2) covariate-outcome relationships. With respect to the 
covariate-predictor relationships, it is anticipated that SMPCovR and SPCovR would show 
comparable performance because they are equipped with the same set of sparsity penalties 
on the weights. In contrast, sPLS is hypothesized to underperform as PLS-based meth-
ods have shown to be less effective in recovering the weights that prescribe the relation-
ships between covariates and predictors (Park et al., 2020). On the other hand, it is natural 
that SMPCovR would provide better recovery of regression coefficients that represent the 
covariate-outcome relationships than the other two methods. Owing to the sparsity penalty 
imposed on the regression coefficients, SMPCovR would be able to discern between the 
important and unimportant covariate-outcome associations, while the other methods would 
only provide non-zero coefficients.

3.1 � Design and procedure

Fixing the number of observations I to 100, the predictor variables were generated from 
an underlying model comprised of three covariates. While varying the number of outcome 
variables Y to be at either K = 5 or K = 20 , we generated J = 200 predictor variables for 
the high-dimensional setting and J = 30 for the low-dimensional setting. The following 
setup was used.

T (size 100 × 3 ) is the covariate scores matrix which is generated from  a multivariate 
normal distribution characterized by the mean vector � = 0 and the diagonal covariance 
matrix � with diagonal elements fixed at 502 . Therefore, the three covariates are the same 

(5)

T ∼ MVN(0,� = 502I)

E(X) ∼ MVN(0,�E(X) = �2I)

E(Y) ∼ MVN(0,�E(Y) = �2I)

X ← TWT + E(X)

Y ← TP(Y)T + E(Y)
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size in variance and are uncorrelated. The weights matrix W (size J × 3 ) is defined with 
82% and 85% level of sparsity for low and high-dimensional setups, respectively. Further-
more, it is ensured that the columns of the weights matrix are orthogonal to each other 
( WTW = I ; this constraint is not included in our objective function; it is used specifically 
for the data generation here). Since the covariates are defined to be uncorrelated, the model 
we use here can be seen as a PCA decomposition where the weights are equal to loadings. 
This is how X is defined by multiplying T and W . The weights matrix defined for a low-
dimensional setup can be seen in Table 1.

It can be seen that out of the 30 predictors in the low-dimensional setting, 14 predictors 
are redundant; they are not related with any covariates. In the high-dimensional setting, 
110 predictors out of the 200 are defined as being redundant. Similarly, in specifying the 

Table 1   Weights defined for the 
low-dimensional setup

1 2 3

0.5 0 0
0.5 0 0
0.5 0 0
0.5 0 0
0 0.354 0
0 0.354 0
0 0.354 0
0 0.354 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0.354 0
0 0.354 0
0 0.354 0
0 0.354 0
0 0 0.5
0 0 0.5
0 0 0.5
0 0 0.5
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



Machine Learning	

1 3

regression coefficients P(Y) (size K × 3 ), 40% of the outcome variables are always defined 
as inactive; more details regarding the regression coefficients follow below.

E(X) (size 100 × J ) and E(Y) (size 100 × K ) denote the residual matrices corresponding 
to the predictor and outcome variables, respectively. They are drawn from multivariate 
normal distributions with zero mean vector and diagonal covariance matrices �E(X) and 
�E(Y) , respectively. The two residual matrices are generated such that they are uncor-
related with each other, and also with the covariate scores. The variance of the residual 
matrices are governed by the design factors of the simulation study (given below): pro-
portion of variance in X and Y explained by the underlying covariates. Four data char-
acteristics were manipulated, based on the data generating model provided above. The 
different levels of the manipulated factors are given by square brackets.

Study setup

1.	 Number of predictors J: [200], [30]
2.	 Number of outcome variables: [5], [20]
3.	 Proportion of variance in X and Y explained by the covariates (Variance Accounted For; 

VAF): [0.9], [0.5]

The first and the second design factors concern the dimensionality of the predictor and 
outcome variables, respectively. The P(Y) matrices created by the third design factor are 
shown below. We show the matrices corresponding to 5 outcome variables; the coef-
ficients were defined in a similar manner for the case with 20 outcome variables, (pro-
vided in Appendix 5).

The columns indicate the regression coefficients corresponding to each covariate. As 
aforementioned, 40% of the outcome variables (2 out of 5) are not linked with any of the 
covariates. Fully crossing the design factors and generating 20 datasets per condition, 
2 × 2 × 2 × 50 = 400 datases were produced. Three different analyses were administered 
to each of these datasets: SMPCovR, SPCovR and sPLS.

This data generating model is comprised of weights that have ‘simple structure’, 
with each important predictor linked only to a single covariate. However, in practice, 
the underlying processes may not be as straightforward, as multiple covariates may be 
associated with the predictors. To account for this, we conducted an additional simula-
tion study where the weights are defined to be not in the simple structure. The findings 
are provided in Appendix 6, and they are in agreement with the results obtained from 
this simulation study.
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3.2 � Model selection

The model selection procedure for SMPCovR in the simulation study follows the proce-
dure detailed in Sect. 2.3.3, except for the number of covariates which is fixed at three, 
by following the true covariate structure. For the first round of 5-fold CV, the weighting 
parameter � and the regularization parameters for regression coefficients �1 and �2 were 
selected simultaneously, while the other parameters �1 and �2 were fixed at a small value 
of 10−7 . The following ranges were considered: 

1.	 � : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
2.	 �1 : equally distanced sequence of size 7 from 10−5 to 0.5 on the natural log scale
3.	 �2 : equally distanced sequence of size 7 from 10−5 to 0.5 on the natural log scale

Crossing these ranges, 9 × 7 × 7 = 441 model configurations were assessed with CV. The 
1SE rule was used as described in Sect. 2.3.3 to select the values. With these parameters 
fixed, the parameters for the weights �1 and �2 were tuned by 5-fold CV. The following 
ranges were considered: 

1.	 �1 : equally distanced sequence of size 7 from 10−5 to 0.5 on the natural log scale
2.	 �2 : equally distanced sequence of size 7 from 10−5 to 0.5 on the natural log scale

For this second round of CV, 7 × 7 = 49 models were considered. The 1SE rule was 
employed again to select the values for these parameters.

With regards to SPCovR, the number of covariates was fixed at three following the true 
number of covariates. Then, the following ranges of the parameters were considered simul-
taneously with 5-fold CV: 

1.	 � : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
2.	 �1 : equally distanced sequence of size 10 from 10−5 to 0.5 on the natural log scale
3.	 �2 : equally distanced sequence of size 7 from 10−5 to 0.5 on the natural log scale

In total, 9 × 10 × 7 = 630 models were evaluated. The 1SE rule was employed in such a 
way that the model with the smallest � , the largest lasso, and the smallest ridge parameters 
was chosen, as they encourage a more sparse model to be found.

Lastly, the number of covariates for sPLS was fixed at three again. The number of non-
zero coefficients (linking the predictor variables with the covariates) to be included in the 
sPLS model was chosen through 5-fold CV. The range of [4, 8, 12, 16, 20, 28] non-zero 
coefficients per covariate was considered for the low-dimensional setup ( 63 = 216 models 
in total), while the range of [25, 40, 50, 75, 80, 100, 120, 125, 150, 160, 175, 200] was 
employed for the high-dimensional setup ( 123 = 1728 models in total). We used the 1SE 
rule to pick out the model with the least number of non-zero coefficients.

3.3 � Evaluation criteria

The following four measures were employed to study the performance of the methods: 
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1.	 R2
out

 : proportion of explained variance in the entire set of the outcome variables in the 
out-of-sample test dataset.

2.	 R2
outactive

 : proportion of explained variance in the subset of active outcome variables in 
the out-of-sample test dataset.

3.	 Correct weights classification rate: proportion of the elements in W correctly classified 
as zero and non-zero elements relative to the total number of coefficients.

4.	 Correct regression coefficients classification rate: proportion of the elements in P(Y) 
correctly classified as zero and non-zero elements relative to the total number of coef-
ficients (computed only for SMPCovR)

An independent test set (of 100 observation units) needed for computing the out-of-sample 
R2 measures was generated following the same data generating procedures as the data used 
for model-fitting. The out-of-sample R2 measures are defined as in the following equations:

where Yout and Xout indicate the outcome and predictor variables, respectively, from the 
out-of-sample test data. The subscript K⋆ denotes a subset within the sequence of indices 
for outcome variables K⋆ ⊆ {1, 2,… ,K} . It comprises of indices corresponding to the 
outcomes defined as being active. When SMPCovR excludes outcome variables from the 
model, it provides zero-predictions for these outcomes. In computing the R2 measures, 
these zero-predictions are compared against Yout.

The correct classification rates concerning the weights and the regression coefficients 
represent the method’s ability in retrieving the underlying processes. As SPCovR and sPLS 
only provide non-zero regression coefficients, they were excluded for the criterion of cor-
rect regression coefficients classification.

3.4 � Results

3.4.1 � Out‑of‑sample R2
out and R2

outactive

Figure 1 clearly shows the outperformance of SMPCovR over the other methods. None of 
the study design factors led to results pointing in another direction. When the VAF was 
lower, the performance of SMPCovR stood out more prominently. The outperformance of 
SMPCovR comes from the fact that the method screens out the inactive outcome variables, 
while the other methods include these outcome variables. This can be understood as a case 
of overfitting, since the other methods are modelling inactive outcomes which are only 
comprised of error variance.

(6)R2

out
= 1−

‖‖‖‖
Yout − XoutŴP̂

(Y)T‖‖‖‖

2

2

‖‖Y
out‖‖

2

2
,

(7)R2

outactive
= 1 −

‖‖‖‖
Yout

K⋆ − XoutŴP̂
(Y)T

K⋆

‖‖‖‖

2

2

‖‖Y
out

K⋆
‖‖
2

2
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Figure 2 reports the R2
outactive

 values computed only on the basis of active outcome varia-
bles; it can be seen that the three methods result in similar quality of prediction for the 
active outcomes. Hence, the strength of SMPCovR originates from correct identification of 
active and inactive outcome variables. It appears that when the underlying model is a 
covariate model, prediction of active outcomes appears to be straightforward for these 
methods. This is sensible, because once the covariates are accurately retrieved (in our sim-
ulation study, the results from the correct weights classification rate imply good recovery 
of covariates from all three methods), the task of predicting active outcomes becomes a 
low-dimensional regression problem. However, a major challenge in setups where inactive 
outcomes are expected may be to discern between active and inactive outcomes. It not only 
singles out relevant outcomes, but also contributes to the overall quality of prediction. By 
not distinguishing between the two types of outcomes, SPCovR and sPLS modelled the 
inactive outcomes and hence resulted in diminished prediction quality concerning the 
entire set of outcome variables. On the other hand, SMPCovR excluded the inactive out-
comes and gained in overall prediction performance.

3.4.2 � Correct weights classification rate

Figure  3 portrays that the most impactful design factor in the comparative performance 
with respect to correct identification of the zero versus non-zero weights is the dimension-
ality of the predictors. In the low-dimensional setting, SMPCovR and SPCovR resulted in 

Fig. 1   Boxplots of the out of sample R2
out

 . Each panel corresponds to one of the 8 conditions
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comparable levels of correct classification rate which are higher than that of sPLS. In con-
trast, when the number of predictor variables exceeds the number of observations, the three 
methods have resulted in similar classification rates. Nevertheless, across most of the data 
conditions, it can be seen that similar levels of classification rates were obtained between 
the three methods.

3.4.3 � Correct classification rate for regression coefficients

It appears that the true structure of the regression coefficients is recovered well in most 
conditions by SMPCovR. In addition, Appendix 7 shows the rate of correctly classified 
outcome variables. It can be seen that the method is able to provide a fairly good clas-
sification between active and inactive outcomes in most of the replicate datasets. Further-
more, to evaluate the performance of SPCovR and sPLS in handling the true zero regres-
sion coefficients, we inspected the coefficients that the two methods provided for the true 
zero regression coefficients. The mean absolute discrepancy of the estimated coefficients 
from zero are reported in Appendix 8. It can be observed that the coefficients from the two 
methods are quite far away from zero under low dimensionality. For high-dimensional data, 
while the mean discrepancy of SPCovR becomes near-zero, sPLS shows high discrepancy. 
This finding supports the use of a sparsity-inducing penalty on the regression coefficients, 
because without it, the methods struggle to derive near-zero values (Fig. 4).

Fig. 2   R2
out

active

 computed only on the basis of active outcomes. Each panel corresponds to one of the 8 conditions
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4 � Empirical illustration

We illustrate the use of SMPCovR by administering the method to an empirical dataset. 
We also apply SPCovR and sPLS on the same dataset to evaluate the effectiveness of our 
proposed method in a pratical setting.

4.1 � Pittsburgh cold study

4.1.1 � Dataset and pre‑processing

We adopted the dataset from the third wave of the Pittsburgh Cold Study (PCS) which took 
place from 2007 to 2011.2 Healthy participants were invited and administered nasal drops 
of rhinovirus that causes symptoms of common cold. Severity of 16 types of symptoms 
related to cold and flu were self-reported each day up to five days after the virus exposure. 
Out of the 16, there were 8 symptoms that were known to comprise the common cold: 

Fig. 3   Boxplots of the correct classification rate for the W . Each panel corresponds to one of the 8 condi-
tions

2  The data were collected by the Laboratory for the Study of Stress, Immunity, and Disease at Carnegie 
Mellon University under the directorship of Sheldon Cohen, PhD; and were accessed via the Common Cold 
Project website (www.​commo​ncold​proje​ct.​com; grant number NCCIH AT006694).

http://www.commoncoldproject.com
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headache, sneezing, chills, sore throat, runny nose, nasal congestion, cough and malaise 
(Jackson et al., 1958). Among the other symptoms, fever, muscle ache, joint ache and poor 
appetite have been identified as symptoms of flu (Monto et al., 2000), while there were 4 
other related symptoms such as chest congestion, sinus pain, earache and sweating. Hence, 
it can be expected that the participants are more likely to develop the 8 cold symptoms 
than the other symptoms, as they were exposed to rhinovirus. Furthermore, 187 variables 
regarding the participants were also collected under various themes including blood chem-
istry, health practices and psychosocial states.

The participants are categorized into two groups according to the diagnosis of cold 
infection. This diagnosis was conducted by combining the serological testing of blood and 
illness criteria, and most of the participants were not diagnosed of cold infection. There-
fore, we selected a subset of 46 participants by excluding the observations with missing 
values in the variables and to obtain a balance between the size of two diagnosis groups. 
Using the symptom variables as the outcome and the other variables as the predictors, we 
conduct SMPCovR to target the regression problem of symptom severity while construct-
ing a model that describes the underlying predictive processes characterized by subsets of 
important predictor and outcome variables.

Fig. 4   Boxplots of the correct classification rate for the P(Y) . Each panel corresponds to one of the 8 condi-
tions
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4.1.2 � Model selection

SMPCovR Prior to the model selection and estimation, both predictor and outcome vari-
ables were centered and standardized such that the variance of each variable was equal to 
1. We followed the model selection strategy outlined in Sect. 2.3.3. First, with the accel-
eration factor technique, the number of covariates was determined to be two. Appendix 9 
shows the proportion of variance explained with increasing number of components. The 
first round of 5-fold CV was administered to select the values for �, �1 and �2 , by employing 
the following ranges for the parameters. 

1.	 � : [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]
2.	 �1 : 0 and equally distanced sequence of size 19 from 10−5 to 0.5 on the natural log scale
3.	 �2 : 0 and equally distanced sequence of size 19 from 10−5 to 0.5 on the natural log scale

Crossing these ranges, 9 × 19 × 19 = 3249 model configurations were assessed with CV. 
There were 34 models that fall within the 1 SE region from the maximum R2

cv
 . Table 2 

presents 10 of these, arranged in an descending order of �1 , followed by ascending orders 
of � and �2.

As parameters concerning the weights were fixed at 10−7 , it can be observed that all of 
the model configurations in the 1 SE region provided only non-zero values for the weights. 
As outlined in Sect. 2.3.3, we selected the model comprised with the largest �1 , the smallest 
� and the smallest �2 values. Model 1 characterized by the parameters � = 0.6 , �1 = 0.082 
and �2 = 0.045 was therefore chosen. With these parameters fixed, the parameters for the 
weights �1 and �2 were tuned by 5-fold CV. The following ranges were considered: 

1.	 �1 : 0 and equally distanced sequence of size 19 from 10−5 to 0.5 on the natural log scale
2.	 �2 : 0 and equally distanced sequence of size 19 from 10−5 to 0.5 on the natural log scale

Table 2   The configurations of the models that fall within the 1 SE region from the maximum R2
cv

 , from 
the first round of CV. SE denotes the standard error of R2

cv
 , while ‘Outcome included’ refers to the num-

ber of outcome variables included. Note that the total numbers of weights and regression coefficients are 
187 × 2 = 374 and 16 × 2 = 32 , respectively

Model � �1 �2 R
2
cv

SE Nonzero 
weights

Nonzero reg Outcome 
included

1 0.6 0.0824 0.0452 0.0587 0.0145 374 14 13
2 0.6 0.0452 0.5000 0.0575 0.0411 374 21 16
3 0.8 0.0136 0.0824 0.0655 0.0291 374 27 15
4 0.8 0.0136 0.5000 0.0586 0.0109 374 29 15
5 0.9 0.0136 0.1503 0.0673 0.0277 374 29 16
6 0.5 0.0074 0.1503 0.0604 0.0196 374 30 16
7 0.7 0.0074 0.5000 0.0845 0.0373 374 32 16
8 0.9 0.0074 0.1503 0.0808 0.0515 374 32 16
9 0.9 0.0041 0.5000 0.0615 0.0669 374 32 16
10 0.3 0.0022 0.0001 0.0633 0.0496 374 32 16
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For this second round of CV, 19 × 19 = 361 models were considered. Within the 1 SE 
region, 9 models were found, which are provided in Table  3, arranged in a descending 
order of �1 combined with an ascending order of �2.

Following the rationale of selecting the largest �1 and the smallest �2 values, Model 1 
was chosen with �1 = 0.0041 and �2 = 10−4 . This model ‘provided the least number of 
non-zero weights and regression coefficients, while including the least number of out-
comes. Table 4 displays the weights and regression coefficients of this model.

4.1.3 � Results

Table 4 presents the weights and regression coefficients found by the chosen model. It first 
shows that only the first covariate is able to predict the cold symptoms; the model has 
excluded the second covariate in predicting the outcome variables. Out of the 187 pre-
dictor variables, 21 predictor variables compose the first covariate. IL-6, IL-8, IL-10 and 
TNF alpha are concentrations of nasal cytokine. These concentrations were measured each 
day for five days after the viral exposure and summed. Among the total 7 variables pre-
sent in the data concerning cytokine, these 4 were picked out by the model. The model 
also selected weight and concentration measures of corpuscular hemoglobin, Non-fasting 
glucose and Urea nitrogen among the 29 blood chemistry variables measured before the 
viral exposure. Whereas lower levels of hemoglobin appears to result in more cold-related 
symptoms, glucose and nitrogen levels seem to have the opposite effect. # weekdays alco-
hol refers to the amount of alcohol usually consumed during weekdays. The alcohol con-
sumption appears to be positively associated with the cold-related symptoms. This was 
the only variable chosen among 17 variables regarding health practices such as smok-
ing, sleeping and physical activity. The next 5 variables concern measures from various 
psychosocial assessment scales measured before the viral exposure. Sadness and fatigue 
were found to be related with cold symptoms from the 13 PANAS (Positive and Negative 
Affect Schedule; Watson et al., 1988) measures that target mood and affect. Similarly, the 
ECR (Experiences in Close Relationships; Fraley et al., 2000) scale concerns adult attach-
ment types. Along the same line, social participation and loneliness were also results from 

Table 3   The configurations of the models that fall within the 1 SE region from the maximum R2
cv

 , from the 
second round of CV. SE denotes the standard error of R2

cv
 , while ‘Outcome included’ refers to the num-

ber of outcome variables included. Note that the total numbers of weights and regression coefficients are 
187 × 2 = 374 and 16 × 2 = 32 , respectively

Model �1 �2 R
2
cv

SE Nonzero 
weights

Nonzero reg Outcome 
included

1 0.0041 1e−04 0.0767 0.0267 33 11 11
2 0.0012 0e+00 0.0895 0.0261 69 12 12
3 0.0012 1e−04 0.0927 0.0164 71 12 12
4 0.0007 0e+00 0.0787 0.0101 102 13 13
5 0.0007 2e−04 0.0805 0.0208 112 12 12
6 0.0007 4e−04 0.0791 0.0164 125 12 12
7 0.0004 0e+00 0.0790 0.0167 132 13 13
8 0.0004 1e−04 0.0797 0.0222 136 13 13
9 0.0004 4e−04 0.0848 0.0244 159 13 13
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Table 4   Weights and regression 
coefficients derived by 
SMPCovR from the PCS dataset. 
The weights are only provided 
for the predictors chosen by 
the model out of the total 187. 
ŵ1 and ŵ2 indicate the weights 
corresponding to the first and 
second covariates respectively. 
The regression coefficients 
corresponding to all of the 
outcome variables in the dataset 
are provided

ŵ2

1

IL-6 0.339
IL-8 0.536
IL-10 0.461
TNF alpha 1.860
Corpuscular Hgb (weight) −0.048
Corpuscular Hgb (conc) −0.533
Non-fasting glucose 0.002
Urea nitrogen 0.210
# weekdays alcohol 0.616
PANAS: sadness 0.938
PANAS: fatigue 0.476
ECR: anxiety 0.123
Social participation −0.154
Loneliness 0.156
Daily: loneliness subscale 0.065
Daily: loneliness 0.090
Daily: negative subscale 0.457
Daily: fatigue subscale 0.546
Daily: fatigue 0.672
Daily: tiredness 0.069
Daily: anger subscale 0.401
ŵ2

2
PANAS: joviality 0.483
PANAS: positive 0.638
IPIP: emo. Stable 0.147
IPIP: agreeable 0.275
Opener: total 0.124
ECR: avoid −0.136
GS-ISEL: total 0.121
PWB: self-acceptance 0.214
PWB: env. mastery 0.180
PWB: positive rel 0.350
PWB: Psych well-being 1.151
# days: hugs 0.078

P̂
(Y)

1 2
Sneezing 0.084 0
Runny nose 0.062 0
Nasal congestion 0.060 0
Cough 0.099 0
Sore throat 0.058 0
Headache 0.002 0
Chills 0.000 0
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self-reported scales before the viral exposure. Lastly, the daily loneliness, negative affect, 
fatigue, tiredness and anger variables come from daily interviews conducted prior to the 
viral exposure. Altogether, the first covariate represents the combined effect of these physi-
ological and behavioural elements in leading to the various cold symptoms.

Eleven symptoms out of the total 16 were indicated to be in relation with the first 
covariate. Seven out of 8 symptoms characterizing the common cold according to Jackson 
et al. (1958)3 were included in the model; it excluded chills. It is also interesting to see that 
symptoms typically associated with flu such as fever and poor appetite are also included 
(Monto et al., 2000), while the participants were not exposed to an influenza virus known 
to cause flu.

The second covariate which is not relevant in predicting the symptoms is constructed 
with 12 predictor variables, most of which originate from the psychosocial assessment 
scales. In addition to the PANAS and ECR scales featured for the first covariate, variables 
from IPIP

(International Personality Item Pool; Goldberg et al., 1999), a well-known scale for the 
big five personality, the Opener scale (Miller et al., 1983) which assesses the tendency to 
“open up” to others, GS-ISEL (Giving Support - Interpersonal Support Evaluation List; 
Cohen et al., 1985) that measures the perceived extent of providing social support to oth-
ers, and Ryff scales of Psychological Well-Being (Ryff, 1989) were found to compose the 
second covariate. Additionally, the number of days experiencing hugs from the daily inter-
view was also included. Together, the second covariate can represent a process that is a 
mixture of social openness, psychological well-being and positive affect.

Although not in relation with the cold symptoms, we found that the second covariate 
explains much more variance in the predictor variables than the first covariate comprised 
of 21 variables. While the two covariates together explained 14.3% of variance in the pre-
dictors, the first covariate took account of 5.3% while the second covariate explained the 
remainnig 9%.

To evaluate the quality of this model in outcome variable prediction, the R2 measures 
were computed. We have calculated six different types of R2 measures: R2

fitall
 , R2

fitsub
 , R2

fitactive
 

R2

loocvall
 , R2

loocvsub
 and R2

loocvactive
 . The first three measures were computed on the basis of in-

Table 4   (continued)
ŵ2

1

Malaise 0.035 0
Chest congestion 0.062 0
Sinus pain 0.070 0
Earache 0.000 0
Muscle ache 0.000 0
Joint ache 0.000 0
Sweating 0.000 0
Fever 0.042 0
Poor appetite 0.074 0

3  headache, sneezing, chills, sore throat, runny nose, nasal congestion, cough and malaise.
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sample data while the next three measures were results from leave-one-out CV. The meas-
ures with the subscript ‘all’ were computed with respect to all of the outcome variables in 
the dataset, while the ones with the subscript ‘sub’ were derived on the basis of the subset 
of 11 outcome variables selected by the SMPCovR model. Lastly, the measures with the 
subscript ‘active’ were computed from the 8 symptoms known to characterize the common 
cold. These 8 outcomes are considered as active outcomes, because the participants were 
exposed to virus causing common cold. Appendix 10 provides the formulae for these 
measures. To obtain a comparative insight about the quality of the SMPCovR method 
under the PCS dataset, we also computed the R2 values using SPCovR and sPLS that were 
employed in the simulation study. We extracted two covariates for both methods in order to 
match the SMPCovR model. As done in the simulation study, 5-fold CV and the 1SE rule 
were employed to select the parameters for SPCovR and the number of non-zero coeffi-
cients for sPLS. Appendix 11 provides the ranges of tuning parameters adopted to generate 
the models for the two methods. Table 5 reports the six different types of R2 measures com-
puted for the three methods.

It can be seen that SMPCovR resulted in the highest R2

loocv
 measures which represent the 

quality of out-of-sample prediction. While SPCovR showed comparable results with SMP-
CovR, sPLS fell short by a big margin. Whereas both SPCovR and sPLS performed well 
for in-sample prediction with high R2

fit
 values, the large discrepancy in the values compared 

to the R2

loocv
 measures signal possible occurrence of overfitting. The models constructed by 

SPCovR and sPLS can be found in Appendix 11. It can be seen that although SPCovR led 
to similar out-of-sample prediction quality as SMPCovR, the method found considerably 
more non-zero weights (100 and 55 for the two covariates, respectively.) On the other hand, 
the sPLS model found was very sparse, only comprised of 6 and 1 non-zero coefficients.

Lastly, we inspected the SMPCovR model by plotting the covariate scores with the 
additional grouping information of diagnosis of cold infection (diagnosed using serologi-
cal testing and illness criteria). Although this grouping information was not provided as a 
predictor, the two groups of cold and no cold can be fairly distinguished. As portrayed by 
the regression coefficients shown in Table 4, it appears that the first covariate is much more 
related with cold diagnosis than the second covariate. To conclude, the SMPCovR method 
was able to meet its goals when analyzing the PCS dataset. It derived a predictive model 
where some of the inactive outcome variables are filtered out while summarizing the pre-
dictor processes into interpretable covariates comprised of a small subset of predictor vari-
ables (Fig. 5).

Table 5   R2 measures attained 
from the three methods from the 
PCS data

SMPCovR SPCovR sPLS

fit
all

0.151 0.266 0.206
fit

sub
0.220 0.353 0.261

fit
active

0.190 0.316 0.197
loocv

all
0.113 0.112 0.052

loocv
sub

0.131 0.111 0.023
loocv

active
0.128 0.105 −0.009
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5 � Discussion

Predictive modelling in the presence of large numbers of predictor and outcome variables 
presents multiple challenges. Constructed models feature a huge number of estimated coef-
ficients, rendering the interpretation infeasible. Moreover, there may be subsets of both 
predictor and outcome variables that are not important. Certain predictor variables may be 
redundant in predicting any of the outcome variables, while some outcome variables may 
not at all be adequately predicted by the available predictors.

In this paper, we proposed the method of SMPCovR that accommodates for these issues 
by relying on PCovR methodology and incorporating sparsity penalties at both sides of pre-
dictors and outcomes. Through a simulation study, it was shown that our method performs 
well at retrieving the coefficients that represent how processes underneath data underlie 
the predictor and outcome variables. With regards to prediction of outcome, SMPCovR 
showed outperformance in the prediction of the entire set of outcome variables, owing to 
the correct exclusion of inactive outcomes. However, concerning exclusively the active out-
comes, SMPCovR did not exhibit a notable improvement in predictive quality compared to 
the other methods. This may be attributed to the fact that the datasets were generated from 
covariates, as discussed in Section 3.4. In other settings where the data generating model is 
not characterized by covariate structures, different results may be expected. For example, 
in the case of the PCS data, where the underlying model is unknown, SMPCovR exhibited 
better prediction of the active outcomes than SPCovR and sPLS. To further investigate 
into this scenario where the underlying model is not based on covariates, we conducted an 
additional simulation study where a linear model was used instead (Appendix 12). In line 
with the results from the PCS data, SMPCovR provided better predictions for the active 
outcomes than the other methods.

Fig. 5   Scatterplot of the two covariates found by SMPCovR. The colours represent the cold diagnosis
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The PCovR methodology provides an advantageous position in the settings with large 
numbers of predictor and outcome variables. The predictors and outcomes are linked with 
the reduced dimensions of the covariates, instead of being directly connected with each 
other. This reduces the number of estimated coefficients by far. In total, (J + K) × R coeffi-
cients need to be found by SMPCovR, while J × K coefficients need estimation in a regular-
ized regression setup with predictors and outcomes directly connected. Using the example 
of the PCS dataset in Section 4, SMPCovR model would comprise of (187 + 16) × 2 = 406 
coefficients at maximum, while a regression model can consist of 187 × 16 = 2992 coef-
ficients. By imposing further sparsity penalties on the coefficients, SMPCovR can derive 
an even more sparse and concise model representation. Furthermore, the reduction of the 
number of coefficients also implies that less number of coefficients need to be forced to 
zero to exclude a variable (both predictor and outcome) altogether from the model. As a 
consequence, SMPCovR is a prediction method with multivariate outcomes that conducts 
variable selection in an effective manner. These strengths also apply generally to other 
regression methods based on dimension reduction such as PLS.

There are limitations to our proposed method. Being characterized with 6 different 
tuning parameters, model selection is a natural complication. To reduce the compua-
tional burden of CV, we employed a sequential model selection approach where sets of 
model parameters were separately tuned in turn, instead of simultaneous selection. The 
sequential approach has been shown suitable for PCovR and SPCovR (Vervloet et al., 
2016; Park et al., 2020). In this study, the strategy resulted in good results in both the 
simulation and empirical studies. However, we did not conduct an extensive investiga-
tion focused on the model selection approaches due to the scope of our paper.

Besides the weakness of the sequential approach that the selection the parameters 
is detached from each other, there are additional concerns regarding the acceleration 
factor technique for determining the number of covariates. While various studies com-
pared the scree test along with many other methods for selecting the number of com-
ponents, the scree test has not been selected as the optimal choice (Jackson, 1993; 
Ferré, 1995; Henry et al., 1999). In fact, there has not been a clear consensus on the 
best method. Although employing CV also to choose the number of covariates could 
have been a choice that is well-aligned with the rest of the model selection procedure, 
it increases the computational burden. Furthermore, it has been reported that CV tends 
to include too many covariates for PCovR (Vervloet et  al., 2016). Consequently, the 
decision to opt for the scree plot approach with the acceleration factor technique was 
guided by its intuitive nature and computational efficiency. Further research is needed 
to gain a deeper understanding of the most effective covariate selection strategies for 
PCovR and its sparse extensions, such as our current method of SMPCovR.

In a similar vein, it is worth noting that estimating the SMPCovR model involves a 
notable time cost. To provide an indication, we ran the SMPCovR model presented in 
Sect. 4.1.3 one hundred times on a laptop equipped with a four-core Intel i5-10210U 
processor with a base clock speed of 2.11 GHz and 8GB of RAM. On average, each 
run took approximately 0.729  s to complete. In contrast, the sPLS model discussed 
in the same section had an average runtime of just 0.031 s. Considering that this dif-
ference in time would be amplified with datasets that are larger than the PCS data, 
combined with the extensive list of parameters to be tuned, it appears that SMPCovR 
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may not be the most efficient choice in practice and that there is room to improve the 
implementation of the method.

Lastly, our method targets a non-convex problem by alternating least squares, which 
can lead to convergence to local minima (please refer to Sect. 2.3.2). While we recom-
mend employing multiple random starting values as well as rational starting values 
based on PCovR, strategies for avoiding local minima, such as simulated annealing 
(Kirkpatrick et al., 1983; e.g. Ceulemans et al., 2007) and (De Jong, 1975) can be con-
sidered for future research.

Our proposed method is one of the first regression methods that conducts variable 
selection in both predictor and outcome variables. With growing availability of large 
datasets and increasing use of data collected without specific research aims, we believe 
such methods are becoming more relevant. The literature also seems to be steering 
towards this direction, with Hu et al. (2022) hinting at an adaptation to the objective 
criterion to allow predictor variable selection on top of the outcome variable selection 
offered in Hu et al. (2022). We expect that PCovR and other multivariate methods that 
leverage from dimension reduction to bear great potential in taking the lead in this 
under-studied research problem.

Appendix 1. SMPCovR algorithm

The SMPCovR loss (3) can be minimized by an alternating least squares procedure. A sche-
matic outline of the algorithm is provided in what follows. It is similar to the procedures pro-
posed to solve SCaDS (de Schipper & Van Deun, 2018), SPCovR (Van Deun et al., 2018) 
and SSCovR (Park et  al., 2020). The algorithm involves solving for all covariates together 
(unlike the deflation approach in which one covariate is solved in turn). The routine continues 
until the algorithm converges into a stationary point, usually a local minium. To avoid local 
minima problems, we recommend to use multiple random and a rational starting value based 
on PCovR.

Algorithm 1   SMPCovR
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Appendix 2. Estimation of W

Conditional estimation of W given the other parameters P(X)
,P(Y) pertains to an elastic net 

regression problem. The SMPCovR objective function (3) is first arranged with respect to the 
hth element of the weights corresponding to the covariate component r∗ : whr∗.

Taking the derivative with respect to whr∗ we get:

where

We can equate the derivative to zero to satisfy the optimality conditions for ŵhr∗ , which can 
be summarized by the following:

where S(.) is a element-wise soft-thresholding operator. With these conditions, we can set 
up the following coordinate descent algorithm.

Algorithm 2   Coordinate descent for the weights
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Appendix 3. Estimation of P(Y)

Conditional estimation of P(Y) given the other parameters WC,P
(X)

C
 is an elastic net regression 

problem. The SMPCovR objective function (3) is first arranged with respect to the regression 
coefficients corresponding to hth outcome variable and r∗ th covariate:

Taking the derivative with respect to phr∗ (Y):

where

We can equate the derivative to zero to satisfy the optimality conditions for p̂(Y)
hr∗

 , which can 
be summarized by the following:

With these conditions, we can set up the following coordinate descent algorithm.

Algorithm 3   Coordinate descent for the regression coefficients P(Y)

Appendix 4. Estimation of P(X)

The loadings P(X) such that P(X)TP(X) = IR are obtained via a closed-form solu-
tion; P(X) = UVT where U and V are found through singular value decomposition of 
XTXW = UDVT.
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Appendix 5. Regression coefficients P(Y) defined for the case with 20 
outcome variables

Appendix 6. Simulation study with weights not in simple structure

In this section, we conducted an additional simulation study where the true weights are 
defined to be not in the simple structure. In the original simulation study featured in the 
main text, each important predictor was defined to be linked only to one covariate. In the 
current simulation study in this section, some of the important predictors were defined to 
be associated with multiple covariates. All of the settings employed in the original sim-
ulation study were directly adopted in this study, except for the weights matrix used for 
the data generating model, and the number of replicate datasets generated. The following 
weights matrix was used for the low-dimensional setup (Table 6).

In comparison with the weights matrix presented in Table 1 employed for the main 
simulation study, it can be seen that 4 additional predictors were defined to each be 
linked with two covariates. For the high-dimensional setting comprised of 200 total 
predictors, 20 additional predictors were defined in this way. Using this new weights 
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matrix, the setup provided in (5) was employed to generate each dataset. In line with the 
original simulation study, the number of observations was fixed at 100.

The design factors in the original simulation study (number of predictors, number of 
outcomes and VAF) were directly adopted (please refer to Section 3.1). Fully crossing 
the factors and generating 20 datasets per condition, 2 × 2 × 2 × 20 = 160 datasets were 
produced. The three methods (SMPCovR, SPCovR and sPLS) were administered to 
each of these datasets, with the model selection procedures kept the same as the original 
simulation study. The four evaluation criteria in the original study were also used here 
to assess the performance of the methods. The next section provides the results.

Table 6   Weights defined for the 
low-dimensional setup for the 
simulation study with weights 
not having simple structure

W

 1 2 3

0.474 0 0
0.474 0 0
0.474 0 0
0.474 0 0
0 0.335 0
0 0.335 0
0 0.335 0
0 0.335 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0.335 0
0 0.335 0
0 0.335 0
0 0.335 0
0 0 0.474
0 0 0.474
0 0 0.474
0 0 0.474
0.200 −0.141 0
0.1 −0.283 0
0.2 0 −0.141
0.1 0 0.283
0 0 0
0 0 0
0 0 0
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Results

Out‑of‑sample R2
out

 and R2
outactive

See Figs. 6, 7.

Fig. 6   Boxplots of the out of sample R2
out

 . Each panel corresponds to one of the 8 conditions. From the 
simulation study with weights not in simple structure
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Correct weights classification rate

Correct classification rate for regression coefficients

Altogether, the results concerning all of the four evaluation criteria were very much in 
line with those from the original simulation study. The only small difference pertains to 
the correct classification of weights displayed in Fig. 8; The performance of SPCovR is 
worse for the current simulation study where the weights are not in the simple structure 
than in the original study (Fig. 9).

Fig. 7   Boxplots of the out of sample R2
out

active

 . Each panel corresponds to one of the 8 conditions. From the 
simulation study with weights not in simple structure
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Fig. 8   Boxplots of the correct classification rate for the W . Each panel corresponds to one of the 8 condi-
tions. From the simulation study with weights not in simple structure
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Appendix 7. Simulation study: proportion of outcomes correctly 
identified as active and inactive by SMPCovR

See Fig. 10.

Fig. 9   Boxplots of the correct classification rate for the P(Y) . Each panel corresponds to one of the 8 condi-
tions. From the simulation study with weights not in simple structure
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Appendix 8. Simulation study: discrepancy from zero regression 
coefficients from SPCovR and sPLS

See Fig. 11.

Fig. 10   Proportion of outcomes correctly identified as active and inactive. Each panel corresponds to one of 
the 8 conditions
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Appendix 9. The scree test with acceleration factor conducted 
to determine the number of covariates for the PCS dataset

See Fig. 12.

Fig. 11   Mean absolute discrepancy of the zero regression coefficients. Each panel corresponds to one of the 
8 conditions
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Appendix 10. The R2 measures computed on the PCS dataset

R2

fitall
 , R2

fitsub
 , R2

fitactive
 , R2

loocvall
 , R2

loocvsub
 and R2

loocvactive
 employed to evaluate the models fitted on the 

PCS dataset were calculated by the following equations.
R2

fitall
 is the R2 measure computed on the in-sample data on the basis of all of the outcome 

variables. This can be considered as the conventional R2 measure:

The R2

fitsub
 measure is computed on the in-sample data, however on the basis of outcome 

variables selected as being active by the SMPCovR model:

with the subscript K∗ indicating a subset within the sequence of indices for outcome vari-
ables K∗ ⊆ {1, 2,… , 16} . It comprises of indices corresponding to the active outcomes 
selected by SMPCovR. As reported in Table 4, YK∗ would comprise of the 11 following 
outcomes: sneezing, runny nose, nasal congestion, cough, sore throat, headache, malaise, 
chest congestion, sinus pain, fever and poor appetite. Since an outcome variable is removed 
from the SMPCovR model if its corresponding row in the estimated regression coefficients 
matrix P̂

(Y) is a zero-vector, the indices of non-zero rows of P̂
(Y) make up the set K∗ . P̂

(Y)

K∗  
denotes the submatrix of P̂

(Y) with non-zero rows.

(16)
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Fig. 12   It can be seen that the sharpest change of slopes occurs at the third principal component. Therefore, 
the number of SMPCovR covariate is determined as two
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Similarly, the R2

fitactive
 measure is computed on the in-sample data, on the basis of outcome 

variables deemed active according to the theory. These are the 8 symptoms known to com-
prise the common cold: headache, sneezing, chills, sore throat, runny nose, nasal congestion, 
cough and malaise (Jackson et al., 1958).

with the subscript K⋆ indicating a subset within the sequence of indices for outcome vari-
ables K⋆ ⊆ {1, 2,… , 16} . It comprises of indices corresponding to the 8 symptoms.

R2

loocvall
 is calculated via leave-one-out CV. All of the outcome variables in the PCS dataset 

are incorporated:

where ytest and xtest refer to the outcome and predictor variables in the CV test set (it is a 
vector, since leave-one-out CV uses one observation unit for each test set).

R2

loocvsub
 is also calculated via leave-one-out CV, but on the basis of active outcome varia-

bles selected by the SMPCovR model:

As for the formula for R2

loocvall
 , ytest and xtest refer to the outcome and predictor variables in 

the CV test set. As for the formula for R2

fitsub
 , the subscript K∗ denotes a subset within the 

sequence of indices for outcome variables K∗ ⊆ {1, 2,… , 16} . It comprises of indices cor-
responding to the active outcomes selected by SMPCovR. As reported in Table  4, YK∗ 
would comprise of the 11 following outcomes: sneezing, runny nose, nasal congestion, 
cough, sore throat, headache, malaise, chest congestion, sinus pain, fever and poor 
appetite.

Lastly, the R2

loocvactive
 measure is computed by leave-one-out CV, on the basis of the 8 

outcome variables deemed active according to the theory on common cold.

with the subscript K⋆ indicating a subset within the sequence of indices for outcome vari-
ables K⋆ ⊆ {1, 2,… , 16} . It comprises of indices corresponding to the 8 symptoms.
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Appendix 11. Model selection for SPCovR and sPLS for the PCS dataset

For SPCovR, the � parameter, lasso parameter and the ridge parameter were tuned by 
5-fold CV. We adopted the sequence [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] for � . 
For both the lasso and the ridge parameters, 0 and equally distanced sequence of size 9 
from 10−5 to 0.5 on the natural log scale was employed as the range. Crossing the three 
ranges, 9 × 10 × 10 = 900 different models were evaluated by CV. With regards to sPLS, 
the range considered for the number of non-zero coefficients per component was the 
multiples of 6 running from 6 to 180 along with 1 and 187 (minimal and maximal num-
ber of non-zero coefficients). With the number of components fixed at two, the 5-fold 
CV was performed for 322 = 1024 total models. After the CV, the 1SE rule was used to 
select the final model for both methods.

Tables  7 and 8 present the weights and regression coefficients from the SPCovR 
model. The model is comprised of 100 and 55 non-zero weights for each covariate. The 
method retrieved much more non-zero weights than SMPCovR across the multiple pre-
dictor themes: blood chemistry, health practices, psychosocial assessment scales, child-
hood experiences and daily interviews.

The weights and regression coefficients found by sPLS are provided in Table 9. The 
model was comprised of much smaller number of non-zero weights than SMPCovR and 
SPCovR. The first covariate only consisted of TNF alpha, one of the 7 variables regard-
ing nasal cytokine. The second covariate was associated with 6 variables from daily 
interviews. With respect to the regression coefficients, most of them were far away from 
zero. This was also in line with our finding in the simulation study, where sPLS did not 
provide near-zero coefficients as estimates for the true zero regression coefficients (see 
Appendix 8).
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Table 7   Weights derived by 
SPCovR from the PCS dataset. 
ŵ1 and ŵ2 indicate the weights 
corresponding to the first and 
second covariates respectively

ŵ1

1

IL-6 0.025
Red blood cells 0.089
Neutrophil proportion 0.007
Corpuscular volume −0.108
Corpuscular Hgb (weight) −0.104
Chloride −0.032
Calcium 0.054
Non-fasting glucose 0.013
Protein 0.011
Albumin 0.011
# weekdays alcohol −0.006
# drinks on weekdays −0.068
# weekly physical activity −0.002
PSQI: too hot 0.014
FES: conflict 0.005
FES: total −0.011
PBI: care −0.057
PBI: total −0.038
RF: total 0.051
Stress at 10 0.017
Stress at 15 0.017
Tot. stress upbringing 0.022
PANAS: fear 0.020
PANAS: hostility 0.040
PANAS: guilt 0.110
PANAS: sadness 0.115
PANAS: joviality −0.177
PANAS: self−assurance −0.088
PANAS: attentive −0.055
PANAS: fatigue 0.110
PANAS: serenity −0.143
PANAS: surprise −0.077
PANAS: negative 0.075
PANAS: positive −0.126
IPIP: conscientiousness −0.095
IPIP: emotional stability −0.164
IPIP: extraversion −0.054
IPIP: agreeableness −0.116
LOT-R: optimism −0.095
Opener: total −0.170
COMM: total −0.012
CM-Ho: total 0.015
Shyness 0.042
ECR: avoid 0.178
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Table 7   (continued)
ŵ1

1

ECR: anxiety 0.059
TSC: network size −0.037
ISEL: total −0.073
GS-ISEL: total −0.124
SNI: total roles −0.022
PCOM: total −0.141
Loneliness 0.139
PSS (10-item): total 0.170
PSS (4-item): total 0.139
PWB: self-acceptance −0.203
PWB: env. mastery −0.184
PWB: positive rel −0.176
PWB: purpose −0.061
PWB: total −0.218
ERQ: suppression 0.076
# days: hugs −0.138
# days: tension 0.019
# days: romance −0.107
Daily: # domains interacted −0.011
Daily: # social partners −0.006
Daily: # social interaction −0.068
# days: social interaction −0.009
Daily: # other activities −0.013
Daily: # errands −0.021
Daily: # leisure activities 0.037
Daily: nap duration −0.020
# days: rested −0.026
Daily: sleep duration 0.009
Daily: minutes in bed 0.013
Daily: loneliness subscale 0.164
Daily: isolated 0.125
Daily: loneliness 0.139
Daily: negative subscale 0.143
Daily: negative affect 0.141
Daily: fatigue subscale 0.058
Daily: depressed subscale 0.139
Daily: anxiety subscale 0.086
Daily: happy −0.146
Daily: tired 0.040
Daily: calm −0.102
Daily: sad 0.078
Daily: energetic −0.106
Daily: hostile 0.087
Daily: on edge 0.060
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Table 7   (continued)
ŵ1

1

Daily: fatigue 0.055
Daily: lively −0.131
Daily: angry 0.085
Daily: cheerful −0.131
Daily: tense 0.099
Daily: at ease −0.112
Daily: unhappy 0.161
Daily: well−being subscale −0.148
Daily: vigor subscale −0.133
Daily: calm subscale −0.115
Daily: positive affect −0.179
Daily: anger subscale 0.101
ŵ2

2
IL-6 0.066
IL-10 0.074
TNF alpha 0.709
Red blood cells 0.053
Corpuscular Hgb (weight) −0.073
Corpuscular Hgb (conc) −0.089
Potassium 0.020
Bilirubin 0.061
Non-fasting glucose 0.026
Urea nitrogen 0.069
Creatine 0.004
# weekdays alcohol 0.004
# weekend days alcohol 0.036
# drinks on weekdays 0.124
# drinks on weekend days 0.008
PSQI: use bathroom 0.141
PSQI: too hot −0.189
PSQI: bad dreams −0.008
FES: expressiveness 0.069
FES: conflict 0.009
PSP: total −0.058
Stress at 10 −0.056
PLI: physical environment 0.097
PLI: social environment −0.054
PANAS: guilt −0.032
PANAS: fatigue 0.087
IPIP: extraversion 0.058
COMM: total 0.198
TSC: network size −0.079
TSC: indirect 0.078
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Table 7   (continued)
ŵ1

1

GS-ISEL: total 0.102
NAR: total −0.110
SNI: # network members 0.013
Social participation −0.237
Perceived community score 0.231
Loneliness 0.019
ERQ: reappraisal −0.023
ERQ: suppression −0.014
# days: sharing 0.116
Daily: # social partners 0.008
Daily: # errands 0.028
Daily: # leisure activities −0.157
# days: at home −0.140
Daily: loneliness subscale −0.040
Daily: isolated −0.003
Daily: fatigue subscale 0.029
Daily: happy 0.009
Daily: tired 0.188
Daily: calm 0.082
Daily: hostile 0.022
Daily: on edge −0.029
Daily: fatigue 0.243
Daily: lively −0.013
Daily: calm subscale 0.039
Daily: anger subscale 0.057

PSQI = Pittsburgh Sleep Quality Index; FES = Family Environ-
ment Scale; PBI = Parental Bonding Instrument; RF = Risky Fami-
lies Questionnaire; PANAS = Positive and Negative Affect Schedule; 
IPIP = International Personality Item Pool; LOT-R = Revised Life 
Orientation Test; COMM = Communal Orientation; CM-Ho = Cook-
Medley Hostility Scale; ECR = Experiences in Close Relationships 
Scale; TSC = Tucker Social Control; ISEL = Interpersonal Support 
Evaluation List; GS-ISEL = Giving Support - Interpersonal Support 
Evaluation List; SNI = Social Network Index; PCOM = Perceived 
Community Scale; PSS = Perceived Stress Scale; PWB = Ryff’s Psy-
chological Well-being Scale; ERQ = Emotion Regulation Question-
naire; PSP = Parental Social Participation; PLI: Childhood Places 
You’ve Lived Interview; NAR = Negative Aspects of Relationships; 
more information about the predictors can be found on: https://​www.​
cmu.​edu/​common-​cold-​proje​ct/​measu​res-​by-​study/​index.​html

https://www.cmu.edu/common-cold-project/measures-by-study/index.html
https://www.cmu.edu/common-cold-project/measures-by-study/index.html
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Table 8   Regression coefficients 
derived by SPCovR from the 
PCS dataset

P̂
(Y)

1 2

Sneezing 0.056 0.513
Runny nose 0.059 0.454
Nasal congestion 0.057 0.496
Cough 0.085 0.548
Sore throat 0.025 0.445
Headache 0.028 0.288
Chills 0.019 0.139
Malaise 0.069 0.319
Chest congestion 0.051 0.426
Sinus pain 0.039 0.500
Earache 0.045 0.034
Muscle ache −0.018 0.318
Joint ache −0.012 0.044
Sweating 0.061 0.193
Fever 0.043 0.427
Poor appetite 0.084 0.405
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Appendix 12. Simulation study linear model

A simulation study where the data is generated from a linear model instead of a covari-
ate model is conducted in this section. The aim is to examine the performance of SMP-
CovR, SPCovR and sPLS under datasets not generated from a covariate model.

Design and procedure

The datasets were generated from a linear model, with 50 predictor variables and 10 
outcome variables. The true predictor variables Xtrue were drawn from the multivariate 
normal distribution with a zero vector for the mean and an identity matrix for the covar-
iance. The B (size 50 × 10 ) matrix consisting of true regression parameters was defined 
such that only the first seven outcome variables are linked with the first seven predictor 
variables. The remaining three outcomes were inactive, while the remaining 43 predic-
tors were redundant. The ( 7 × 7 ) upper left submatrix of the regression parameters is as 
the following: 

The remaining elements from the B matrix were defined as zero. The true outcome 
variables were generated by the matrix product: Ytrue = XtrueB.

As the final step of data generation, the residuals for the predictors and outcomes, 
E(X) and E(Y) , drawn from multivariate normal distribution with a zero vector for the 
mean and an identity matrix for the covariance, were added to obtain the observed data: 
X = Xtrue + E(X)

,Y = Ytrue + E(Y) . The residual matrices were scaled to control the level 
of VAF by the true matrices, according to the design factors given below.

Study setup

1.	 Number of observations each in the train and test set: [100], [25]
2.	 Proportion of variance in observed data X and Y explained by the true matrices Xtrue 

and Ytrue (VAF): [90%], [50%]

As the numbers of predictors and outcomes are fixed at J = 50 and K = 10 , when the num-
ber of observations I = 25 , the dataset is high-dimensional. Crossing the design factors and 
generating 20 datasets per condition, 2 × 2 × 20 = 80 datasets were produced. Three different 
analyses were administered to each of these datasets: SMPCovR, SPCovR and sPLS.
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Model selection

The procedure detailed in Sect. 2.3.3 is followed for SMPCovR. The number of covariates 
selected was two, which is aligned with the model used for data generation. From the regres-
sion parameters B , it can be observed that the there are two groups of correlated active out-
comes. The following ranges of parameters were used to conduct the two rounds of 5-fold CV 
with the 1SE rule.

SMPCovR tuning parameter ranges for the first round of CV

1.	 � : 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
2.	 �1 : 0 and equally distanced sequence of size 14 from 10−5 to 0.5 on the natural log scale
3.	 �2 : 0 and equally distanced sequence of size 14 from 10−5 to 0.5 on the natural log scale

SMPCovR tuning parameter ranges for the second round of CV

1.	 �1 : 0 and equally distanced sequence of size 14 from 10−5 to 0.5 on the natural log scale
2.	 �2 : 0 and equally distanced sequence of size 14 from 10−5 to 0.5 on the natural log scale

With regards to SPCovR, with the number of covariates fixed at two, the following ranges of 
parameters were used for 5-fold CV with the 1SE rule.

SPCovR tuning parameter ranges

•	 � : 0.1, 0.3, 0.5, 0.7, 0.9
•	 �1 : 0 and equally distanced sequence of size 9 from 10−5 to 0.5 on the natural log scale
•	 �1 : 0 and equally distanced sequence of size 9 from 10−5 to 0.5 on the natural log scale

Finally, with the number of covariates for sPLS fixed at three, the number of weights that link 
the predictors to covariates was chosen via 5-fold CV with the 1SE rule. The range of [1, 2, 3, 
5, 10, 20, 30, 40, 50] non-zero coefficients per covariate was considered.

After the model selection procedures, the two different types of out-of-sample R2 measures 
(6, 7) employed in the original simulation study in the main text were used again to assess the 
quality of prediction.

Results

Out‑of‑sample R2
out

 and R2
outactive

Unlike the findings in the original simulation study using the covariate model, the pre-
diction performances of the methods evaluated with R2

out
 and R2

outactive
 are in agreement. 

When the true matrices accounted for 90% of the variance in the observed data under 
low dimensionality, all three methods exhibited similar quality in prediction. However, 
when the VAF reduced to 50% or the dimensionality was high, SMPCovR demonstrated 
superior performance. It appears that when the data is generated from a linear model, 
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SMPCovR with outcome selection is better suited for prediction for both the active and 
the entire set of outcome variables, than SPCovR and sPLS. As the effect of overfitting 
is expected to be more pronounced under these settings of lower VAF and higher dimen-
sionality, this outperformance of SMPCovR could be attributed to its robustness against 
overfitting due to outcome selection, compared to the two other methods (Figs. 13, 14).

Fig. 13   Boxplots of the out of sample R2
out

 . Each panel corresponds to one of the 8 conditions
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