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ABSTRACT

Context. Slowly pulsating B (SPB) stars display multi-periodic variability in the gravito-inertial mode regime with indications of
non-linear resonances between modes. Several have undergone asteroseismic modeling in the past few years to infer their internal
properties, but only in a linear setting. These stars rotate fast, so that rotation is typically included in the modeling by means of the
traditional approximation of rotation (TAR).
Aims. We aim to extend the set of tools available for asteroseismology, by describing time-independent (stationary) resonant non-
linear coupling among three gravito-inertial modes within the TAR. Such coupling offers the opportunity to use mode amplitude
ratios in the asteroseismic modeling process, instead of only relying on frequencies of linear eigenmodes, as has been done so far.
Methods. Following observational detections, we derive expressions for the resonant stationary non-linear coupling between three
gravito-inertial modes in rotating stars. We assess selection rules and stability domains for stationary solutions. We also predict non-
linear frequencies and amplitude ratio observables that can be compared with their observed counterparts.
Results. The non-linear frequency shifts of stationary couplings are negligible compared to typical frequency errors derived from
observations. The theoretically predicted amplitude ratios of combination frequencies match with some of their observational coun-
terparts in the SPB targets. Other, unexplained observed ratios could be linked to other saturation mechanisms, to interactions between
different modes, or to different opacity gradients in the driving zone.
Conclusions. For the purpose of asteroseismic modeling, our non-linear mode coupling formalism can explain some of the stationary
amplitude ratios of observed resonant mode couplings in single SPB stars monitored during 4 years by the Kepler space telescope.
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1. Introduction

Slowly pulsating B (SPB) stars are mid-to-late-B variable stars
on the main sequence that display a variety of low-frequency
oscillations, and have masses ranging from ∼3 to ∼9 M�
(e.g., Waelkens 1991; De Cat & Aerts 2002; Pedersen et al. 2021;
Szewczuk et al. 2021). Much of their multi-periodic variabil-
ity is attributed to gravity modes excited by the κ mecha-
nism associated with the Fe opacity bump in their envelope
(Gautschy & Saio 1993; Dziembowski et al. 1993; Pamyatnykh
1999). Their rotation rates vary from ∼1% of critical to nearly
critical velocity. The Coriolis force is a significant restoring force
for most SPB oscillations, in addition to buoyancy (e.g., Lee
2012; Pedersen et al. 2021). We refer to such gravito-inertial
modes whenever we mention g modes in this work. The large
number of oscillations identified in space photometry of SPB
stars have made them the subject of many asteroseismic mod-
eling studies in the past few years (e.g., Degroote et al. 2010;
Szewczuk & Daszyńska-Daszkiewicz 2018; Walczak et al. 2019;

Wu & Li 2019; Wu et al. 2020; Szewczuk et al. 2021; Pedersen
et al. 2021; Szewczuk et al. 2022).

The broad general review of asteroseismology by Aerts
(2021, and references therein) makes it clear that stellar mod-
eling is currently mainly done in a linear framework. Signals
with frequencies approximately equal to linear combinations of
frequencies of other detected signals, termed combination fre-
quencies, are often detected in frequency lists generated by the
harmonic analyses of stellar variability commonly used in aster-
oseismology (Aerts et al. 2010). Some of these combination fre-
quencies can be explained by a non-linear response of the stellar
medium to the pulsation wave (see e.g., Bowman et al. 2016),
which is referred to as non-linear distortion by Degroote et al.
(2009). In this work, however, we focus on combination frequen-
cies that are explained by non-linear coupling among oscillation
modes (e.g., Buchler & Goupil 1984 and Van Hoolst 1994b).
The amplitudes of heat-driven non-radial oscillations in SPB
stars cannot be explained in the linear approximation. Observed
amplitudes are therefore currently not used in asteroseismic
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inference. Non-linear mode interactions that exchange energy
among (coupled) modes must be taken into account to describe
g mode amplitude limitation. Such interactions also change the
mode frequencies. Instead of resorting to resource-costly numer-
ical integration of the non-linear hydrodynamical equations that
govern the oscillation dynamics, we consider weakly non-linear
effects of the lowest order. We therefore consider isolated weak
non-linear mode coupling among three g modes, and followed
and extended the approach of Lee (2012), hereafter referred to as
L12. Our approach is guided by the detected properties of SPB
stars in Kepler observations, which are summarized in the sam-
ple studies by Pedersen et al. (2021) and Szewczuk et al. (2021).

Weak non-linear mode coupling among three modes has
been a topic of interest for stellar pulsation modes since
the 1970s, with several seminal papers written long before
space photometry was available (limiting ourselves to mode
coupling among non-radial pulsations, see e.g., Dziembowski
1982, 1993; Buchler & Regev 1983; Aikawa 1984; Moskalik
1985; Dziembowski & Krolikowska 1985; Dappen & Perdang
1985; Dziembowski et al. 1988; Van Hoolst & Smeyers 1993;
Buchler 1993; Takeuti & Buchler 1993; Van Hoolst 1994a,b,
1995, 1996; Goupil & Buchler 1994; Buchler et al. 1995, 1997;
Goupil et al. 1998; Wu & Goldreich 2001). Most of these for-
malisms focused on the description of mode coupling in non-
rotating stars. A notable exception is the formalism devel-
oped by Friedman and Schutz (Friedman & Schutz 1978a,b;
Schutz 1979), on which Schenk et al. (2001), hereafter referred
to as S01, based their treatment of non-linear three-mode cou-
pling in rotating stars. S01 included the effects of the Corio-
lis force perturbatively, but their framework is generic, allow-
ing for the derivation of formalisms that do not treat the Cori-
olis force as a perturbation. Several studies are based on the
S01 formalism, modeling non-linear tides in multiple-star sys-
tems (e.g., Fuller & Lai 2012; Burkart et al. 2012, 2013, 2014;
Fuller et al. 2013; O’Leary & Burkart 2014; Weinberg 2016;
Fuller 2017; Guo 2020; Yu et al. 2020, 2021a; Zanazzi & Wu
2021) and in star-exoplanet systems (Essick & Weinberg 2016;
Vick et al. 2019; Yu et al. 2021b, 2022), non-linear interac-
tions among modes in neutron stars (e.g., Morsink 2002;
Arras et al. 2003; Lai & Wu 2006; Weinberg & Quataert 2008;
Weinberg et al. 2013), tidal migration in the moon systems of
Jupiter and Saturn (Fuller et al. 2016), non-linear interactions
among mixed modes in red giant stars (Weinberg & Arras 2019;
Weinberg et al. 2021), or resonant mode coupling in δ Sct stars
(Mourabit & Weinberg 2023).

L12 used the S01 formalism as a basis for an extension that
described rapidly rotating stars in which the Coriolis force can-
not be treated as a perturbation. To do so, they adopted the so-
called traditional approximation for rotation (TAR), in which the
latitudinal component of the rotation vector in a spherical coordi-
nate system was neglected, assuming spherical symmetry. This
decoupled the radial and horizontal components of the pulsa-
tion equations (e.g., Longuet-Higgins 1968; Lee & Saio 1997;
Townsend 2003; Mathis 2013). For high-radial order g modes
it is justified to ignore the centrifugal force within the TAR,
because the dominant contribution to the mode energy occurs
deep inside the star, close to the convective core, where rotational
deformation is small and spherical symmetry is a good approxi-
mation (Mathis & Prat 2019; Henneco et al. 2021; Dhouib et al.
2021a,b). There is a marked difference in scale of the rota-
tion frequency Ω and the Brunt-Väisälä frequency N in those
deep near-core regions. The assumption that the Coriolis force is
weaker than the buoyancy force in the direction of stable entropy
or chemical stratification is therefore fulfilled near the core for

low-frequency (Poincaré) modes1. Their horizontal velocities
are also greater than the vertical velocities (see Mathis & Prat
2019), justifying the neglect of the latitudinal rotation vector
component within the TAR.

L12 used their quadratic non-linear mode coupling formal-
ism within the TAR (based on the S01 formalism) to provide a
numerical mode coupling example for a specific SPB star model
near the zero-age main sequence. The computed mode proper-
ties of that example were not compared to observed SPB mode
properties. In this work we extend and correct the L12 formal-
ism with the aim of creating a modeling framework that can be
used to model non-linear three-mode coupling of g modes in
some of the 38 SPB stars considered by Van Beeck et al. (2021),
hereafter referred to as V21. We specifically focus on deriv-
ing the conditions for which the amplitudes of modes in cou-
pled mode triads, and their combination phase, do not vary over
time. The mode parameters inferred by V21 allowed for the dis-
covery of many such potentially ‘locked’ mode couplings. We
therefore contrast the theoretically predicted observables com-
puted by our formalism for mode couplings obtained from mod-
els typical for the ensemble of SPB stars analyzed by V21 with
their detected observational counterparts. We first provide a rig-
orous overview of our theoretical oscillation model in Sect. 2,
followed by Sect. 3, which describes the non-linear theoretical
observables. In Sect. 4 we show the numerical results for res-
onant mode couplings typical for SPB stars, while Sect. 5 dis-
cusses the potential of our theoretical framework for future aster-
oseismic modeling. Finally, Sect. 6 outlines our conclusions and
prospects.

2. Theoretical oscillation model

2.1. Linear free oscillations within the TAR

The linearized momentum equation governing linear stellar
oscillations in uniformly rotating stars is expressed in a co-
rotating reference frame as (e.g., Frieman & Rotenberg 1960,
Lynden-Bell & Ostriker 1967 or S01)

ξ̈ + B(ξ̇) + C(ξ) = aext , (1)

where ξ denotes the Lagrangian displacement, the superscripted
dot indicates a partial time derivative, B(ξ̇) ≡ 2Ω × ξ̇ is the
Coriolis term, with Ω = Ω ez the (uniform) rotation vector and
ez the unit vector along the rotation axis, C(ξ) is the term that
describes forces not depending on the oscillation frequency, and
aext is any acceleration due to external forces. For the free oscil-
lations used in linear asteroseismology, aext = 0. The oper-
ators B and C are anti-Hermitian and Hermitian, respectively
(Lynden-Bell & Ostriker 1967). An equivalent tensor represen-
tation of the linearized momentum equation is described in
Appendix A and used in Sect. 2.3.

With time dependence Ansatz

ξ(x, t) = ξ(x) e−iωt , (2)

we can rewrite Eq. (1) for free oscillations as

−ω2ξ − iω B(ξ) + C(ξ) = 0 , (3)

1 The strength of the Coriolis force is determined by the Coriolis fre-
quency 2Ω. The TAR frequency hierarchies 2|Ω| � |N | and |Ωϕ| � |N|,
where Ωϕ is the real-valued frequency of pulsation mode ϕ in the co-
rotating reference frame, impose strong stratification in specific regions
of the stellar interior, through which the low-frequency waves described
within the TAR propagate (see e.g., Dhouib et al. 2021a).
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where ω is the (real- or complex-valued) angular frequency in
the co-rotating frame (e.g., Friedman & Schutz 1978a, S01 and
Prat et al. 2019). The Hermiticity of the operators iB and C allow
one to define a generic orthogonality relation valid for two dis-
tinct (ordinary) eigenmodes ξϕ and ξβ of Eq. (3) if ωβ , ω∗ϕ
and Ω is time-independent, where we use the superscript ‘*’ to
indicate a complex conjugated quantity,(
ωβ + ω∗ϕ

) 〈
ξϕ, ξβ

〉
+

〈
ξϕ, iB(ξβ)

〉
= 0 . (4)

In Eq. (4), the inner product of the Hilbert space H spanned by
the complex eigenvectors ξ and ξ′ of Eq. (3) is defined as〈
ξ, ξ′

〉
=

∫
ρ ξ∗ · ξ′dV . (5)

A proof of the orthogonality condition implied in Eq. (4) for
the two distinct modes ξϕ and ξβ is given in Appendix B. For a
mode ϕ with complex-valued ωϕ described by Eq. (3), the linear
heat-driven growth (damping) rate γϕ is defined as γϕ ≡ Im

[
ωϕ

]
.

Because of Ansatz (2), linear growth (damping) occurs when γϕ
is positive (negative).

We describe the coupling among non-degenerate modes
using their adiabatic eigenfunctions (in Sect. 2.3), for which the
generic orthogonality relation implied in Eq. (4) for the modes ϕ
and β can be written as (see Appendix B and S01)(
Ωϕ + Ωβ

) 〈
ξϕ, ξβ

〉
+

〈
ξϕ, iB

(
ξβ

)〉
= δ

ϕ
β bϕ , (6)

where δϕβ denotes a Kronecker delta, Re
[
ωϕ

]
= Ωϕ (and similar

for mode β), and the real-valued constant bϕ is given by

bϕ =
〈
ξϕ, iB

(
ξϕ

)〉
+ 2 Ωϕ

〈
ξϕ, ξϕ

〉
. (7)

The constant bϕ defined in Eq. (7) is related to the rotating-frame
mode energy εϕ at unit complex amplitude, if Ωϕ , 0 (S01):

εϕ = Ωϕ bϕ . (8)

Because we describe uniformly rotating non-magnetic stars
and use the Cowling approximation in which the Eulerian per-
turbation of the gravitational potential is set to zero,

C (ξ) =
∇δP
ρ
−
∇P
ρ2 δρ , (9)

with δP and δρ being the Eulerian perturbations of the pressure
and density around their equilibrium values P and ρ (e.g., P19).
The explicit dependence of C (ξ) on ξ is defined in, for example,
Lynden-Bell & Ostriker (1967).

We use the TAR, which ignores the latitudinal component
−Ω sin θ eθ of the rotation vector (e.g., Lee & Saio 1997). The
Lagrangian displacement of a g mode ϕ can then be expressed in
spherical coordinates (r, θ, φ) as (Prat et al. 2019)

ξϕ = [ξϕr (r) Hr(θ), ξ
ϕ
h (r) Hθ(θ), i ξϕh (r) Hφ(θ)] ei (mϕ φϕ −Ωϕ t) , (10)

where mϕ is the mode azimuthal order, φϕ is the mode phase,
ξ
ϕ
r (r) and ξϕh (r) are the radial and horizontal mode displacement

components, and Hr(θ), Hθ(θ) and Hφ(θ) are the real-valued
radial, latitudinal and azimuthal Hough functions of a mode ϕ
(see Appendix A of Prat et al. 2019 for their definitions). Fol-
lowing L12, we normalize radial Hough function Hr(θ) as

2 π
∫ 1

−1
|Hr (θ) |2 dµ = 1 , (11)

where µ = cos θ. The normalization of Hr(θ) also determines the
normalization of the latitudinal and azimuthal Hough functions
Hθ(θ) and Hφ(θ).

2.2. Non-linear oscillations within the TAR

Non-linear mode interactions add acceleration (i.e., forcing)
terms to the governing equation of motion, so that the higher-
order equation of motion becomes the following quadratic eigen-
function problem (see e.g., Frieman & Rotenberg 1960)

−ω2ξ − iω B (ξ) + C (ξ) = a[ξ] , (12)

under the Ansatz given by Eq. (2): ξ(x, t) = ξ(x) e−iωt. In
Eq. (12), the first term describes the acceleration. That accel-
eration is changed by the non-linear coupling term a[ξ], which
can be split up into contributions from pressure gradients (aP[ξ])
and gravity (aG[ξ]).

Because we limit ourselves to non-linear three-mode inter-
actions, it is sufficient to expand a[ξ] to second order (e.g., S01),

a[ξ] = a(2)[ξ, ξ′]+O
(
ξ3

)
= a(2)

P [ξ, ξ′]+ a(2)
G [ξ, ξ′]+O

(
ξ3

)
, (13)

where a(2)[ξ, ξ′], the second order pressure term a(2)
P [ξ, ξ′], and

the second order gravitational acceleration term a(2)
G [ξ, ξ′] are

symmetric bilinear functions of the Lagrangian displacements
associated with the interacting modes. The nth components of
a(2)

P [ξ, ξ′] and a(2)
G [ξ, ξ′] are expressed as (e.g., S01)

a(2)
G, n[ξ, ξ′] = −

1
2
ξk ξl ∇k ∇l ∇n Φ , (14a)

a(2)
P, n[ξ, ξ′] = −

1
ρ
∇ j

[
p (Γ1 − 1) Θ

j
n + p Ξ

j
n + Ψ δ

j
n

]
, (14b)

where we use the Cowling approximation and the Ein-
stein summation convention, ∇ϕ denotes the covariant deriva-
tive with respect to coordinate xϕ, the adiabatic exponent
Γ1 = (∂ ln p/∂ ln ρ)S with subscript S denoting adiabatic con-
ditions, and Φ is the gravitational potential. We also use the fol-
lowing definitions of the tensors

Θ
j
i =

(
∇i ξ

j
) (
∇k ξ

k
)

=
(
∇i ξ

j
)

(∇ · ξ) , (15a)

Ξ
j
i =

(
∇k ξ

j
) (
∇i ξ

k
)
, (15b)

and of the quantities

Ψ =
p
2

{
Θ

[
(Γ1 − 1)2 +

(
∂Γ1

∂ ln ρ

)
S

]
+ Ξ (Γ1 − 1)

}
, (16a)

Θ = δi
j Θ

j
i = (∇ · ξ)2 , (16b)

Ξ = δi
j Ξ

j
i =

(
∇k ξ

i
) (
∇i ξ

k
)
. (16c)

We provide additional information on the expressions for the
quantities in Eqs. (15) and (16) in Appendix C when discussing
the explicit terms of the mode coupling coefficient defined in
Eq. (22) of Sect. 2.3. Appendix C also contains corrections and
simplifications for some of the expressions in L12.

2.3. Coupled-mode equations

Eigenvalue Eq. (12) needs to be solved to retrieve the eigen-
functions ξ(x) and eigenfrequencies ω for interacting modes in
rotating stars. Each pulsation mode ϕ of the star is characterized
by a pair (ξϕ, ωϕ). The linear eigenvalue Eq. (3) is used to cal-
culate the linear mode eigenfunctions, which are subsequently
employed in the mode coupling computations.
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We follow the procedure of S01 to derive a set of equations
that describe the couplings among all eigenmodes, which we
refer to as the coupled-mode equations. This procedure solves
the phase space equivalent of the eigenvalue Eq. (12), defined in
Eq. (A.6), by employing the phase space mode decomposition
for a physically relevant real Lagrangrian displacement ξ (x, t)
of the set of coupled modes in a rotating star, which is given by
(S01)[
ξ(t)
ξ̇(t)

]
=

∑
ϕ

cϕ(t)
[

ξϕ (x)
−i Ωϕ ξϕ (x)

]
+ c∗ϕ(t)

[
ξ∗ϕ (x)

i Ωϕ ξ
∗
ϕ (x)

]
, (17)

under the assumption that mode ϕ is not degenerate and has
a real-valued frequency Ωϕ. This is justified because the lin-
ear mode eigenfrequencies associated with the (linear) adiabatic
eigenfunctions and used to compute the coefficient relevant for
mode coupling (see Eq. (17)) are real. The real-valuedness of the
eigenfrequencies further justifies the use of eigenmode orthogo-
nality relation (6). In principle, the expansion (17) should also
include modes with non-ordinary eigenvectors (i.e., modes with
Jordan chains of length greater than zero, as was explained
in e.g., Schutz 1979, Schutz 1980a,b and S01). Similar to the
assumption made for r-modes in S01, we assume that such
modes with non-ordinary eigenvectors are not important dynam-
ically for the saturation of g modes in SPB stars and therefore
do not include these modes in the sum in Eq. (17). A formalism
that includes these non-ordinary eigenvectors can for example be
found in Appendix A of S01.

The complex mode amplitudes cϕ(t) in expansion (17) and
their complex conjugates c∗ϕ(t) are given by (see Appendix D)

cϕ(t) =
1
bϕ

〈
ξϕ,Ωϕ ξ(t) + iξ̇(t) + iB (ξ(t))

〉
, (18a)

c∗ϕ(t) =
1
bϕ

〈
ξ∗ϕ,Ωϕ ξ(t) − iξ̇(t) − iB (ξ(t))

〉
, (18b)

for non-zero bϕ and Ωϕ , −Ωβ, where the subscript β refers to a
different non-degenerate mode in expansion (17). The rotating-
frame mode energy Eϕ for mode ϕwith rotating-frame frequency
Ωϕ and (complex) amplitude cϕ is (see Appendix K in S01)

Eϕ = εϕ |cϕ|2 = Ωϕ bϕ |cϕ|2 . (19)

We disregard non-linear coupling of g modes with toroidal
r modes (i.e., r − g mode coupling) in this work because r
modes have not been detected in the SPB stars analyzed in V21.
Instead we focus on inter-g mode coupling. For faster-rotating
SPB stars, such r − g mode couplings can become significant
(see e.g., L12), but only if their coupling initiation threshold is
similar to or smaller than that of the inter-g mode couplings. As
discussed by Buchler et al. (1995), stable (constant), periodic or
irregular time-dependent behavior of the oscillation amplitudes
(and frequencies) may be observed. In this work, we focus on the
stable (time-independent) amplitude and frequency solutions of
the amplitude equations (see Sect. 2.6) because the observations
of mode couplings indicate that this is the dominant observed
behavior in many of the SPB stars (see Sect. 2.7). We there-
fore do not discuss periodic modulation or irregular behavior of
amplitudes or frequencies2.

By substituting the phase space mode expansion (17) into
the phase space equivalent of the equation of motion, defined

2 Such periodic frequency and/or amplitude modulation (or even irreg-
ular behavior) can be simulated (numerically) using the amplitude equa-
tions or coupled-mode equations derived in this work.

in Eq. (A.1), and accounting for mode orthogonality, we derive
the coupled-mode equations in the quadratic approximation (see
Appendix A of S01 for the technical details),

ċϕ + i Ωϕ cϕ =
i

bϕ

(
κ
βγ
ϕ cβcγ + κ

βγ
ϕ c∗βcγ + κ

βγ
ϕ cβc∗γ + κ

βγ
ϕ c∗βc

∗
γ

)
, (20)

in which we employ the Einstein summation convention. If we
combine Eqs. (8) and (20) and assume non-zero Ωϕ, we get

ċϕ
i

+ Ωϕ cϕ = Ωϕ

(
η
βγ
ϕ cβcγ + η

βγ
ϕ c∗βcγ + η

βγ
ϕ cβc∗γ + η

βγ
ϕ c∗βc

∗
γ

)
. (21)

The implicit sums over indices β and γ in Eqs. (20) and (21) run
over all modes with ordinary eigenvectors. Coupling coefficient
κ
βγ
ϕ and energy-scaled coupling coefficient ηβγϕ involved in the

coupling of the three modes ϕ, β and γ are defined by

κ
βγ
ϕ = εϕ η

βγ
ϕ =

〈
ξϕ, a(2)[ξβ, ξγ]

〉
, (22)

which deviates from the definition in S01: ξϕ is used instead of its
complex conjugate. The (real-valued) total displacement is thus
expanded in terms of non-conjugated products of mode ampli-
tudes and eigenvectors, instead of their complex conjugated ana-
logues used in S01. The resulting expression (22) is equivalent,
and directly yields the specific coupling coefficient selection rules
derived in Sect. 2.4. A bar over a subscript or superscript of κβγϕ or
η
βγ
ϕ indicates that a complex conjugate of the corresponding mode

eigenfunction is used in the definition in Eq. (22). The expressions
for the coupling coefficients κβγϕ and ηβγϕ are symmetric under per-
mutation of indices, due to the presence of the symmetric bilinear
function a(2)[ξβ, ξγ]. We normalize the eigenfunctions ξϕ, ξβ and
ξγ such that εϕ = εβ = εγ = GM2/R, following L12. Additional
information on the explicit expressions used in Eq. (22) can be
found in Appendix C.

The coupled-mode Eqs. (20) and (21) thus describe the tem-
poral dynamics of the amplitudes of all (coupled) modes in a
coupling network. To study specific three-mode non-linear inter-
actions among g modes in SPB stars, we derive amplitude equa-
tions (AEs) in Sect. 2.6, based on the coupled-mode equations.
These AEs simplify the study of mode resonances.

2.4. Coupling coefficient selection rules

For the coupling coefficients defined in Eq. (22) to be non-zero,
selection rules need to be satisfied (see e.g., S01). Considering
the integration of coupling coefficient κβγϕ over longitude φ,

κ
βγ
ϕ ∝

∫ 2 π

0
exp

(
i
(
−Hϕ mϕ + Hβ mβ + Hγ mγ

)
φ
)

dφ . (23)

The same longitudinal dependence is obtained for ηβγϕ , which
yields the generic azimuthal selection rule

−Hϕ mϕ + Hβ mβ + Hγ mγ = 0 , (24)

in which we introduce the sign factor Hϕ that has the value −1 for
complex conjugated modes in the coupling coefficient expres-
sion (i.e., modes that have a bar over their index) and 1 other-
wise. Equation (24) for example leads to the azimuthal selection
rule mϕ = mβ + mγ for coupling coefficients κβγϕ and ηβγϕ .

The other selection rule takes into account the symmetry of
the modes across the stellar equator. Whether g mode ϕ is odd
or even is determined by (−1)|kϕ |. If mod

(
|kϕ| , 2

)
= 1, mode ϕ is
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φ

β γ

(i)

φ

β γ

(ii)

φ

β γ

(iii)

Fig. 1. Representations of isolated resonant three-mode coupling net-
works for modes ϕ, β and γ. They represent direct resonances (i), para-
metric resonances (ii), and driven resonances (iii). A linearly unstable
(i.e., excited) mode is pictured as an orange circle, whereas a linearly
stable (i.e., damped) mode is pictured as a blue square.

odd, if it is zero, the mode is even (e.g., Lee & Saio 1997). This
selection rule requires that two or no odd modes partake in the
mode coupling (see Appendix E), which can also be written as a
selection rule based on the mode ordering number k,

mod
(
|kϕ| + |kβ| + |kγ| , 2

)
= 0 , (25)

where, for a g mode ϕ, kϕ ≡ lϕ − |mϕ| (Lee & Saio 1997).
We refer to Eq. (25) as the meridional selection rule because
Van Reeth et al. (2022) called k the meridional degree.

2.5. Resonant coupling networks

The three potential scenarios for resonant coupling among three
modes, hereafter referred to as the isolated resonant three-mode
coupling networks, are pictured in Fig. 1. A direct resonant cou-
pling is an interaction between a linearly damped daughter mode
ϕ and the linearly driven parent modes β and γ, and is depicted as
scenario (i) in Fig. 1. In this scenario, γϕ < 0, and γβ, γγ > 0. A
parametric resonant coupling is an interaction between a linearly
driven parent mode ϕ and the linearly damped daughter modes
β and γ, and is depicted as scenario (ii) in Fig. 1. Hence, in this
case, γϕ > 0, and γβ, γγ < 0. We call the resonant interaction
between three linearly driven modes ϕ, β and γ a driven resonant
coupling, which is depicted as scenario (iii) in Fig. 1, for which
γϕ, γβ, γγ > 0.

In addition to these three isolated resonant coupling net-
works, non-isolated resonant coupling networks exist, in which
a daughter or parent mode is shared among different reso-
nantly coupled mode triads. O’Leary & Burkart (2014) called
this multiple-mode or multi-mode coupling (see also e.g., Guo
2021). The selection rules derived in Sect. 2.4 remain valid in
such networks, because coupling occurs at the same quadratic
order. Networks with granddaughter and great-granddaughter
modes have also been constructed. The reader is referred to
Kumar & Goodman (1996) and Weinberg et al. (2021) for addi-
tional information on such networks.

Higher-order coupling terms, such as those that appeared in
the cubic four-wave coupling networks developed to describe
four interacting modes in non-rotating stars (by for exam-
ple Van Hoolst & Smeyers 1993 and Van Hoolst 1994a) do not
adhere to the selection rules in Sect. 2.4. The four-wave selec-
tion rules can however be determined from similar arguments.
For example, the four-wave azimuthal selection rule was derived
in Weinberg (2016). They however used the complex conjugate
of mode ϕ in their definition of the mode coupling coefficient and
did not expand in pairs of complex conjugates (as in Eq. (17)).
This yielded a slightly different formulation of the azimuthal
selection rule than what would be obtained for a coupling coef-
ficient defined in a similar way as in Eq. (22).

A priori, it is not clear whether multi-mode or higher-order
coupling terms are necessary to explain the (stationary) ampli-
tudes and phases of the three-mode resonance candidate cou-
plings detected among the modes of SPB stars analyzed in
V21. The most parsimonious models for these identified can-
didate couplings would be isolated three-mode sum-frequency
coupling networks that produce stable stationary solutions, if
those solutions effectively describe observed (time-independent)
amplitudes, phases and frequencies. We limit ourselves in the
remainder of this work to describing such coupling networks.

2.6. Amplitude equations for Ω1 ' Ω2 + Ω3

Under the assumption that the linear driving or linear damping
rate γϕ of a mode ϕ fulfills |γϕ/Ωϕ| � 1 for the modes that
are weakly non-linearly coupled, we can derive the AEs. In this
section we use the coupled-mode Eqs. (20) and (21) valid for
quadratically non-linear oscillations in rotating stars to derive
the specific AEs for the sum-frequency resonant interaction
Ω1 ' Ω2 + Ω3 between three distinct modes. Similar AEs
were derived for the resonant harmonic interaction Ω1h ' Ω2h

(with subscript h denoting the harmonic nature of the reso-
nance) in Appendix B.2 of Van Beeck (2023). The AEs derived
in this Section also describe the temporal evolution of the
coupled mode’s properties of difference-frequency resonances
Ω1d = Ω2d −Ω3d , as we show in Appendix F.

Following Van Hoolst (1995), we apply the multiple time
scales perturbation method (e.g., Nayfeh 1973, 1981; Nayfeh
& Mook 1979) to compute the mode amplitudes due to non-
linear coupling at the quadratic level. We introduce time
variables

t0 = t, t1 = J t, . . . , (26)

where J is a small, dimensionless ordering parameter. The time
derivative in Eq. (20) becomes

∂

∂t
=

∂

∂t0
+ J

∂

∂t1
+ O(J2) . (27)

The multiple time scales method then searches for an approxi-
mate solution for the complex amplitudes cϕ of mode ϕ as

cϕ = J cϕ1 (t0, t1, . . .) + J2 cϕ2 (t0, t1, . . .) + O(J3) . (28)

Perturbation series (28) needs to be uniform: each of the higher-
order terms should be a small correction to lower-order terms.

Substituting expansions (27) and (28) into the coupled-mode
equations (20), subsequently dividing by the non-zero parameter
J and keeping terms up to first order in J, yields

∂cϕ1

∂t0
+ J

∂cϕ1

∂t1
+ J

∂cϕ2

∂t0
+ i Ωϕ

(
cϕ1 + Jcϕ2

)
= J

i
bϕ

(
κ
βγ
ϕ cβ1cγ1 + κ

βγ
ϕ c∗β1cγ1 + κ

βγ
ϕ cβ1c∗γ1 + κ

βγ
ϕ c∗β1c∗γ1

)
+ O(J2) .

(29)

We examine this equation order by order in J to determine the
complex amplitude variation of the eigenmode ϕ in the form of
AEs. The (linear) equation at order J0 is

∂cϕ1

∂t0
+ i Ωϕ cϕ1 ≡ Lϕ(cϕ1) = 0 , (30)
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in which we introduce the linear operator Lϕ as the mapping
Lϕ : C → C defined as Lϕ(c) =

(
∂
∂t0

+ i Ωϕ

)
[c] for a complex

amplitude c. The solution of Eq. (30) is

cϕ1 = aϕ (t1, . . .) e−i Ωϕ t0 , (31)

where aϕ is a complex amplitude factor that varies only on time
scales slower than the time scale t0 for each mode ϕ.

The equation at order J is

Lϕ(cϕ2) = −
∂cϕ1

∂t1
+

i
bϕ

(
κ
βγ
ϕ cβ1cγ1 + κ

βγ
ϕ c∗β1cγ1

+ κ
βγ
ϕ cβ1c∗γ1 + κ

βγ
ϕ c∗β1c∗γ1

)
.

(32)

Substituting the linear solution (31) into Eq. (32) yields

Lϕ(cϕ2) = −
∂aϕ
∂t1

e−i Ωϕ t0

+
i

bϕ

(
aβ aγ κ

βγ
ϕ e−i(Ωβ+Ωγ)t0 + a∗β aγ κ

βγ
ϕ e−i(−Ωβ+Ωγ)t0

+ aβ a∗γ κ
βγ
ϕ e−i(Ωβ−Ωγ)t0 + a∗β a∗γ κ

βγ
ϕ ei(Ωβ+Ωγ)t0

)
. (33)

Some of the terms in the solution of Eq. (33) increase linearly
in time. Such terms are called secular terms (e.g., Nayfeh 1973,
1981 and Nayfeh & Mook 1979) and must vanish to ensure we
obtain a uniformly valid perturbation series.

Setting the terms that generate the secular terms in the solu-
tion of Eq. (33) equal to zero yields the AEs for the mode
amplitudes and phases. These secular-term-generating terms
have a multiplying factor exp

(
−iΩϕt0

)
in Eq. (33), as shown in

Appendix B.1 of Van Beeck (2023). The first term on the right
side of Eq. (33) always generates a secular term. We obtain addi-
tional terms that generate secular terms by substituting the reso-
nance condition Ω1 ' Ω2 + Ω3, defined in terms of the detuning
parameters δω and ∆Ωl,

J δω = Ω1 −Ω2 −Ω3 ≡ ∆Ωl , (34)

in Eq. (33). The condition that ensures that the sum of these
secular-term-generating terms vanishes leads to the (extended
complex) AEs for the sum-frequency resonance Ω1 ' Ω2 + Ω3:

∂a
∂t1

= γ ◦ a + 2 i
(
η ◦ aM ◦ΩM ◦ e

)
, (35)

in which we introduce the linear growth or linear damping rates
γϕ for mode ϕ (e.g., Van Hoolst 1995) and use Eq. (22) to con-
vert κβγϕ into η

βγ
ϕ (and similar). In Eq. (35), we also introduce

the symbol ‘◦’, which denotes a Hadamard-Schur (i.e., element-
wise, Bhatia 2007; Bernstein 2009) product. We use the vectors

a =

a1
a2
a3

 , aM =

a2 a3
a1 a∗3
a1 a∗2

 , e =

 exp(i δω t1)
exp(−i δω t1)
exp(−i δω t1)

 , (36)

and

γ =

γ1
γ2
γ3

 , η =

η1
η∗1
η∗1

 ,ΩM =

Ω1
Ω2
Ω3

 , (37)

in Eq. (35). In Eq. (37), we define the isolated three-mode cou-
pling coefficient η1:

η23
1 = η32

1 =

(
η13

2

)∗
=

(
η31

2

)∗
=

(
η12

3

)∗
=

(
η21

3

)∗
≡ η1 , (38)

which respects the symmetry of coupling coefficient (22) under
permutation of its indices. For exact resonances (i.e., δω = 0),
the AEs reduce to a set of trivial equations. In such situa-
tions, efficient non-linear energy transfer is expected, and one
enters the regime of intermediate to strong non-linear coupling,
whereas the AEs are valid for weak coupling only.

By introducing real amplitudes Aϕ and phases φϕ as
aϕ = Aϕ exp(i φϕ) with ϕ ∈ ~3�, where ~u� denotes the set of
integers { x ∈ N0 | x ≤ u }, and separating the real and imaginary
parts of the extended complex AEs (35), we obtain

∂A
∂t1

= γ ◦ A + 2 |η1| sin (Υ) (AN ◦ΩM) , (39a)

A ◦
∂φ

∂t1
= 2 |η1| cos (Υ) (AP ◦ΩM) , (39b)

where η1 = |η1| e−i δ1 , and

A =

A1
A2
A3

 ,φ =

φ1
φ2
φ3

 , AN =

 A2 A3
−A1 A3
−A1 A2

 , AP =

A2 A3
A1 A3
A1 A2

 . (40)

In the AEs (39) we also introduce the generic phase coordinate

Υ ≡ −δω t1 + φ1 − φ2 − φ3 + δ1 , (41)

which contains the combination phase Φ = φ1−φ2−φ3. Because
the coupling coefficients (22) do not depend on time, we have

∂Υ

∂t1
= −δω + cot (Υ)

(
−γ� +

∂ ln A1

∂t1
+
∂ ln A2

∂t1
+
∂ ln A3

∂t1

)
, (42)

for non-zero resonant mode amplitudes, because of Eq. (39a)
and the definition γ� ≡ γ1 + γ2 + γ3. Equations (39a) and (42)
thus form an autonomous four-dimensional system equivalent to
the six-dimensional system in Eqs. (39a) and (39b), in which the
individual mode phases φ1, φ2 and φ3 do not explicitly appear.

Non-linear interactions lead to non-linear frequency shifts,
which can be derived from Eq. (39b) for the individual mode
phases. By integrating these equations, the first order solu-
tion (31) can be expressed as

c1 = A (t1, . . .)

exp
{

i
(
φ0 −ΩM t0 + 2

∫
(AP � A ◦ΩM) |η1| cos (Υ) dt1

)}
,

(43)

in which the symbol ‘�’ denotes a Hadamard-Schur (element-
wise) division, and where

φ0 =

(φ1)0
(φ2)0
(φ3)0

 , c1 =

c11
c21
c31

 . (44)

The third term in the exponential factor of Eq. (43) defines the
quadratic non-linear frequency shift multiplied with the elapsed
time. If the linear angular mode frequency in the co-rotating
frame – the second term in that factor – is added to the non-linear
frequency shift, we obtain a shifted frequency, hereafter referred
to as the non-linear frequency, in the same reference frame.
The expression for the (second-order) non-linear correction to
the complex amplitude, cϕ2, can be found in Appendix B.1 of
Van Beeck (2023). The harmonic resonance equivalents of the
non-linear frequency shifts and second-order non-linear correc-
tions to the complex amplitudes can be found in Appendix B.2
of that work.
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2.7. Stationary solutions of the amplitude equations

The candidate resonant three-mode couplings identified by V21
are time-independent, with the modes in a non-linear frequency
(and phase) lock (i.e., they are synchronized). We therefore
derive the time-independent or stationary solutions of the AEs
(i.e., the fixed points of Eqs. (39a) and (42)) in this section.

The trivial stationary solution As = 0, in which the super-
script ‘s’ denotes the stationarity of a quantity, is not oscilla-
tory, and therefore cannot explain the observed couplings. From
Eq. (39a), we obtain a oscillatory stationary solution,

γ ◦ As = −2 |η1| sin (Υs)
(
As

N ◦ΩM

)
, (45)

in which we define the stationary phase coordinate Υs as

Υs = −δω t1 + φs
1 − φ

s
2 − φ

s
3 + δ1 , (46)

with ∂Υs

∂t1
= 0. The stationary equivalent of Eq. (42) yields an

expression for the detuning parameter of stationary solutions,

δω = − cot (Υs) γ� , (47)

by setting ∂As

∂t1
= 0 and ∂Υs

∂t1
= 0. To derive this equation, we

assume that Υs , p π (p ∈ Z). If Υs = p π, we retrieve the trivial
solution, due to Eq. (45).

By considering the products of two equations of the three
in Eq. (45), and using Eq. (47), we write the squared stationary
amplitudes as

(As)◦2 =
Q

4 |η1|
2

[
1 + q2

]
, (48)

where the superscript ‘◦n’ indicates a Hadamard-Schur
(element-wise) nth power. In Eq. (48), we use the detuning-
damping ratio q and quality factor vector Q, which we define
as

Q =

 γ2 γ3/Ω2 Ω3
−γ1 γ3/Ω1 Ω3
−γ1 γ2/Ω1 Ω2

 =

 1/Q2 Q3
−1/Q1 Q3
−1/Q1 Q2

 , q ≡
δω

γ�
= − cot Υs , (49)

with quality factor Qϕ ≡ Ωϕ/γϕ for ϕ ∈ ~3�. The resonant sta-
tionary amplitudes are real if

ΩN >◦ 0 ∨ ΩN <◦ 0⇒ As ∈◦ R , (50)

for a driven resonance scenario, or if

ΩP >◦ 0 ∨ ΩP <◦ 0⇒ As ∈◦ R , (51)

for direct and parametric resonance scenarios. In Eqs. (50) and
(51), ΩN and ΩP are the mode frequency variants of the vectors
AN and AP defined in Eq. (40). The operators >◦ and ∈◦ are the
element-wise equivalents of the operators > and ∈. Equivalent
expressions describing stationary solutions for harmonic reso-
nances can be found in Appendix B.2 of Van Beeck (2023).

Three quantities determine the stationary mode amplitudes:
the non-linear interaction described by coupled-mode Eqs. (20)
and (21), the linear eigenmode properties given by Q, and the
detuning of the resonance measured by q. For decreasing val-
ues of the non-linear coupling coefficients |η1|, the efficiency for
non-linear energy transfer between modes is lower, hence, the
stationary amplitudes (48) become larger, because a larger mode
energy (and thus mode amplitude) is required to transfer enough
energy in order to have a significant non-linear effect leading
to amplitude saturation. Quality factor Qϕ expresses the ratio of
the mode ϕ’s e-folding damping or driving time (γ−1

ϕ ) relative to

its angular period (Ω−1
ϕ ). With increasing |Qϕ|, more mode peri-

ods are needed for the mode energy (normalized to GM2/R) to
damp or grow by a factor of e due to linear heat-driven damping
or driving. The stationary amplitude of a certain mode therefore
decreases if the other modes involved in the triad have larger val-
ues of |Qϕ|, because then either a linearly (heat-)driven mode ϕ
gains less energy per cycle or a linearly (heat-)damped mode ϕ
loses energy more slowly per cycle. For example, in the paramet-
ric resonance scenario, the stationary amplitude of the daughter
mode 2 or 3 is increased when the parent mode is driven faster
(by the κ mechanism) and when the other daughter mode 3 or
2 is damped faster. The stationary amplitude of the parent mode
1 is larger when it is coupled to daughter modes that are more
difficult to non-linearly excite (i.e., a larger parent mode energy
is required to have a measurable non-linear effect).

Increasing values of |q| lead to increasing values of the sta-
tionary amplitudes. Two factors affect the value of the detuning-
damping ratio q: the detuning δω and γ� (≡ γ1 + γ2 + γ3). For
larger detunings the stationary amplitudes increase, because the
increased detuning reduces the efficiency of the non-linear mode
coupling (similar to decreasing |η1|), requiring a larger ampli-
tude for a non-linear effect. For smaller values of |γ�|, that is, for
the case where the parent and daughter mode linear heat-driven
growth and damping rates almost balance out, there is very weak
overall linear excitation or damping, requiring a very close reso-
nance (i.e., small detuning) and large amplitudes to have a non-
linear effect.

The relative stationary energies of the modes in the triad are
related by the ratios of their quality factors, assuming condi-
tions (50) or (51) hold:(

As
2

As
1

)2

= −
Q2

Q1
,

(
As

3

As
1

)2

= −
Q3

Q1
,

(
As

3

As
2

)2

=
Q3

Q2
. (52)

The energy ratios (52) do not depend on the non-linear coupling
coefficients because of the symmetry of these coefficients, and
are determined by linear properties of the modes only. Therefore,
of two linearly damped modes, the one with the longest damping
time per cycle (largest |Qϕ|) reaches the largest stationary ampli-
tude through non-linear energy transfer from the linearly excited
mode, because it loses energy more slowly.

Non-linear stationary frequencies Ωnl,s for modes ϕ ∈ ~3�
are obtained from Eq. (43) in the form

Ωnl,s
ϕ = Ωϕ + δΩs

ϕ , (53)

with the non-linear stationary frequency shifts δΩs
ϕ given byδΩ

s
1

δΩs
2

δΩs
3

 = J q

−γ1
γ2
γ3

 = ∆Ωl

−γ1/γ�
γ2/γ�
γ3/γ�

 , (54)

to first order. For parametric and direct resonance scenarios, the
sign of the frequency shift is thus determined by the sign of
∆Ωl. The non-linear stationary frequencies Ω

nl,s
ϕ are frequency-

locked, meaning that they satisfy the resonance condition (34)
exactly:

Ω
nl,s
1 −Ω

nl,s
2 −Ω

nl,s
3 = 0 , (55)

which follows from Eq. (46) and ∂Υs

∂t1
= 0. Explicit expres-

sions for harmonic resonance frequency shifts can be found in
Appendix B.2 of Van Beeck (2023). As stated in Sect. 2.6, the
derived stationary quantities in this Section also describe the sta-
tionary properties of modes in difference-frequency resonances.
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2.8. Stability of the stationary amplitude equation solution

From a mathematical perspective, the system of amplitude equa-
tions defined by Eqs. (39a) and (42) is an autonomous dynam-
ical system, and its stationary solutions are fixed points of that
dynamical system. One of the fundamental results of dynamical
systems theory is the Hartman-Grobman or linearization theo-
rem, which states that if a fixed point is hyperbolic, a lineariza-
tion of the dynamical system can be used to trace the asymp-
totic behavior of dynamical system solutions near the fixed point
(Guckenheimer & Holmes 1983; Betounes 2010). The stability
of a hyperbolic fixed point can thus be determined from the
linearization of the system around that point. Two conditions
need to be fulfilled for a fixed point X of a dynamical system
∂X
∂t = f (X) to be hyperbolic: both the Jacobian and the real parts
of the eigenvalues of the Jacobian matrix of f (X) cannot be equal
to zero (Guckenheimer & Holmes 1983; Betounes 2010). Here-
after, we collectively refer to these two conditions as the hyper-
bolicity condition. The Jacobian matrix of a dynamical system
of amplitude equations depends on the values of the respective
non-linear coupling coefficients because the hyperbolicity con-
dition considers the geometry of the non-linear solution around
the fixed point (see Appendices B.1 and B.2 of Van Beeck 2023
for the expressions).

In the remainder of this section we assume that the hyper-
bolicity condition is fulfilled for the stationary solution, so that a
linearization can be used to guarantee the stability of that solu-
tion. Let us now examine the stability of the stationary solutions
for each of the three isolated resonant coupling scenarios dis-
cussed in Sect. 2.5. Physically, the stability of the (hyperbolic)
stationary solutions of the AEs is governed by the reaction of the
system (i.e., the pulsating star) to small disturbances away from
the stationary state (in this case, away from the stationary pulsa-
tion solution). Such disturbances can be damped or get amplified
over time. If they are damped, the stationary solution is stable.
The solution is unstable if they get amplified.

To derive the linearized dynamical system, we introduce
small perturbations of the stationary amplitudes (δAϕ for mode
ϕ) and phases (δφϕ for mode ϕ), so that the complex amplitudes
take the form (Van Hoolst 1995)

aϕ =
(
As
ϕ + δAϕ

)
exp

[
i
(
φs
ϕ + δφϕ

)]
, ∀ϕ ∈ ~3� . (56)

Substituting the perturbed complex amplitude factor (56) into the
complex-valued AEs (35), subsequently linearizing and separat-
ing the real-valued and complex-valued parts, yields the tensor
equation that describes the time evolution of the perturbations,

∂Z
∂t

= M Z . (57)

Here, M is the stability matrix, defined as

M ≡


γ1 −γ1 −γ1 q γ1
−γ2 γ2 −γ2 q γ2
−γ3 −γ3 γ3 q γ3
q γ�1 q γ�2 q γ�3 γ�

 , (58)

and Z is the perturbation tensor defined as

Z =
(
δA1/As

1 , δA2/As
2 , δA3/As

3 , δΥ
)T
, (59)

for which

δΥ = δφ1 − δφ2 − δφ3 , γ�ϕ ≡ γ� − 2 γϕ, ∀ϕ ∈ ~3� . (60)

We infer an analytical stability domain of the stationary solu-
tions of the AEs based on the Routh-Hurwitz stability criterion
(e.g., Hahn 1967; Cesari 1971; Kubicek & Marek 1983). Neces-
sary but not sufficient conditions for stability are that the Hurwitz
determinants Hu are positive (see Appendix B.4 in Van Beeck
2023):

H1 = w1 = −2 γ� > 0⇔ γ� < 0 , (61a)
H2 = w1 w2 − w3 > 0 , (61b)

H3 = w3 H2 − w2
1 w4 > 0 , (61c)

H4 = w4 H3 > 0 , (61d)

in which the coefficients wu (u ∈ ~4�0, with ~n�0 ≡ {0} ∪ ~n� =
{ x ∈ N | x ≤ u }) are the coefficients of the characteristic polyno-
mial pZ(λ) of the stability matrix (58),

pZ(λ) ≡
4∑

u=0

w4−u λ
u = w4+w3 λ+w2 λ

2+w1 λ
3+w0 λ

4 = 0 , (62)

In Eq. (62), λ denotes an eigenvalue of the tensor Eq. (57), and
the coefficients wu are

w0 = 1 , (63a)
w1 = − 2 γ� , (63b)

w2 = γ2
�

[
1 + q2

]
− 4 q2 [

γ1 γ2 + γ1 γ3 + γ2 γ3
]
, (63c)

w3 = 4 γ1 γ2 γ3

[
1 + 3 q2

]
, (63d)

w4 = − 4 γ� γ1 γ2 γ3

[
1 + q2

]
. (63e)

These are the same coefficients as the ones that were deter-
mined by Dziembowski (1982) in his formalism for quadratic
non-linear mode coupling of three distinct modes in non-rotating
stars. Because H3 > 0 due to the stability condition (61c), stabil-
ity condition (61d) becomes w4 > 0.

The necessary but not sufficient stability conditions in
Eq. (61) show that a stationary solution at the quadratic cou-
pling level is always unstable for the driven resonant coupling
scenario, because Eq. (61a) and γ >◦ 0 are contradictory. This
is a logical consequence of only considering modes that are lin-
early excited and can exchange energy between them, and not
including third-order couplings that can limit the amplitude. The
direct resonant three-mode coupling scenario also always yields
unstable stationary solutions for distinct modes 2 and 3, similar
to what was found by Dziembowski (1982), because Eqs. (61a)
and (61d) contradict each other if the necessary stability con-
dition (61c) is to be satisfied. Hence, driven and direct reso-
nance scenarios lead to time-variable amplitudes for their cou-
pled modes. Modes in such coupling scenarios can for example
lead to limit cycle behavior of the amplitudes (see e.g., Seydel
2009). For the parametric resonant three-mode coupling sce-
nario, Eq. (61d) is trivially fulfilled if Eqs. (61a) and (61c) are
fulfilled. The stability of the fixed points of harmonic resonance
analogues is discussed in Appendix B.2 of Van Beeck (2023).

In addition to Eq. (61), all wu also need to be positive to
obtain stable parametric stationary solutions (see e.g., Hahn
1967 and Appendix B.4 in Van Beeck 2023). Combining these
additional conditions with Eq. (61), the stability domain of a
parametric three-mode resonant coupling with real amplitudes
can be described by only three conditions: Eq. (61a), the hyper-
bolicity check, and the quartic condition

−γ3
1

γ�

[
d4 + d2 q2 + d0 q4

]
> 0 ⇔ d4 + d2 q2 + d0 q4 > 0 . (64)
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Fig. 2. Stability domains as a function of ϑ2 and ϑ3, indicated by the dark, shaded area, and evaluated using Eqs. (61a) and (64) for different values
of |q1|. Specifically, |q1| is set equal to 0.1 (left top panel), 1 (middle top panel), 10 (right top panel), 102 (left bottom panel), 103 (middle bottom
panel) and 104 (right bottom panel). The stability domain determined by the stability conditions defined in Dziembowski (1982) is larger and is
also indicated in these panels by the hatched areas. Unhatched white areas of the figure panels indicate unstable domains. Note the different axis
scales for the different panels, which indicates the importance of the value of |q1| in determining the stability of stationary solutions.

The factor −γ3
1/γ� in Eq. (64) is positive for parametric reso-

nances that fulfill Eq. (61a). The dimensionless quartic coeffi-
cients du (u = 0, 2, 4) in that equation are given by

d0 = − 18ϑ2ϑ3 − 3 (1 − ϑ2 − ϑ3)[
(1 − ϑ2 − ϑ3)2 + 4 (ϑ2 + ϑ3 − ϑ2ϑ3)

]
,

(65a)

d2 = − 12ϑ2ϑ3 − (1 − ϑ2 − ϑ3)[
2 + (ϑ2 − ϑ3)2 + (ϑ2 + ϑ3)2

]
,

(65b)

d4 = −2ϑ2ϑ3 + (1 − ϑ2 − ϑ3)3 , (65c)

where we define ϑ2,3 ≡ −γ2,3 / γ1, which are positive for para-
metric resonances. The physical meaning of these dimensionless
ratios is similar to that of the quality factor ratios discussed in
Sect. 2.7, but inverse: they compare the damping and/or driving
time scales.

The quartic stability condition (64) is symmetric in ϑ2 and
ϑ3, in accordance with the symmetry of the coupling coef-
ficient. Coefficients d2 and d4 are the same as in Eq. (6.14)
of Dziembowski (1982). Although the coefficient d0 differs
from the one given in that equation, likely due to an error in
Dziembowski (1982), the stability condition is derived from the
same characteristic polynomial coefficients defined in Eq. (63).
The coefficients du (u = 0, 2, 4) are a function of ϑ2 and ϑ3 only,
whereas q can be expanded as a function of ϑ2, ϑ3, and the ratio
of the linear frequency detuning to the parent’s linear driving rate

q1 ≡ δω/γ1. We therefore can explore the stability domain of the
(hyperbolic) stationary solutions by varying only three dimen-
sionless ratios of linear variables: q1 = δω/γ1, ϑ2 and ϑ3. The
dimensionless ratio q1 can be written as

q1 ≡ Q1

(
δω

Ω1

)
=

Q1 δω

2 π
P1 , (66)

where the cyclic co-rotating frame period P1 = 2 π /Ω1. It is
therefore a period-weighted combined measure of the driving
time scale of the linearly excited parent mode (Q1) and the
efficiency with which non-linear energy transfer occurs (δω).
Hence, when comparing values of q1 for triads with linearly
excited modes of similar period, one might expect that the triad
with larger |q1| has larger stationary mode amplitudes because
of decreased efficiency of non-linear energy transfer (larger δω)
and/or smaller stationary mode energy ratios (As

2, 3/A
s
1)2 (larger

Q1, when values of Q2, 3 are comparable).
Figure 2 displays the domains of stability of stationary solu-

tions in the three-dimensional phase space of the parameters q1,
ϑ2 and ϑ3, covering commonly encountered parameter values
when modeling mode interactions in SPB stars (see Sect. 4.3).
The necessary condition (61a) for stability of the fixed point,
which requires that ϑ2 + ϑ3 > 1, is clearly recognizable on the
left and middle panels in the top row of Fig. 2. Physically, this
expresses that daughter modes must be sufficiently damped com-
pared to the linear excitation of the parent mode for stability,
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otherwise, resonant energy transfer will increase all amplitudes
without bound.

The quartic stability condition (64) is more difficult to inter-
pret. Term (1−ϑ2−ϑ3) in that stability condition is always nega-
tive due to Eq. (61a) and can be interpreted as an effective total-
damping-to-linear-driving ratio γ�/γ1. If the absolute value of
the ratio is large, the overall damping per unit of driving is large
as well. Other terms are less straightforward to interpret. Hence,
we base our interpretation of this stability condition primarily on
the stability domains pictured in Fig. 2. The quartic stability con-
dition derived in this work is stricter than that of Dziembowski
(1982) (displayed as hatched areas in Fig. 2) due to the differ-
ence in value of the coefficient d0. Condition (64) can also be
expressed in terms of q1, ϑ2 and ϑ3. Hence, conclusions drawn
from the visualized stability domains in the chosen phase space
(shown in Fig. 2) can be related to the equivalent stability condi-
tion that is expressed in terms of these three variables.

For large values of ϑ2 and ϑ3 a regime of strong damping
(relative to the linear excitation of the parent mode) is reached. In
such strong damping regimes the fixed point solutions are unsta-
ble because the transfer of energy (per cycle) is not enough to
overcome linear damping. The domain of stability at the strong
damping end of the ϑ2 − ϑ3 plane moves towards larger values
of ϑ2 and ϑ3 for larger values of q1, as shown in the different
panels of Fig. 2. Conversely, the stability domain decreases con-
siderably in size for smaller values of q1. This can be explained
by an increase (decrease) in energy transfer efficiency and/or
an increase (decrease) in energy available for transfer, lead-
ing to faster (slower) rates of energy transfer and correspond-
ing smaller (larger) domains of stability, based on the physical
explanation of Eq. (66). Specifically, for faster (slower) rates of
energy transfer per cycle, the stationary solutions can endure
smaller (larger) perturbations around the stationary solutions
before energy transfer renders the fixed points unstable. The sta-
bility of the stationary solutions is thus primarily determined by
the speed of energy transfer.

2.9. The onset of parametric instability

In this section we derive the minimum amplitude conditions for
the onset of the parametric resonance instability for the non-
linear interaction among three distinct modes in a sum or differ-
ence frequency. If this instability does not occur for these three
distinct modes, the amplitudes of the modes in the triad can only
be limited to stable stationary values by higher-order non-linear
mode coupling terms, such as the cubic self-coupling terms
that were described in Van Hoolst (1996). Alternatively, limit
cycles characterized by non-stationary amplitudes may occur.
Similar conditions for the onset of parametric and direct reso-
nant instability derived for harmonic resonances can be found in
Appendix B.2 of Van Beeck (2023).

The initial growth of the daughter modes can be described
using the complex AEs (35) for one of the daughter modes and
its complex conjugate for the other daughter mode. If we then set
ak = S k exp(−i δω t1/2) (for k ∈ {2 , 3}, following Dziembowski
1982) the explicit time-dependence disappears. Further assum-
ing that the complex amplitude factor a1 stays constant, a plau-
sible assumption in the initial phase of energy transfer, yields

∂S 2

∂t1
=

(
γ2 + i

δω

2

)
S 2 + 2 i η∗ a1 S ∗3 Ω2 , (67a)

∂S ∗3
∂t1

=

(
γ3 − i

δω

2

)
S ∗3 − 2 i η a∗1 S 2 Ω3 . (67b)

Under the assumption that S k ∼ exp(σ t1) (for k ∈ {2, 3}),
Eq. (67) can be solved for the growth parameter σ, yielding

σ =
γ2 + γ3 ±

√
(γ3 − γ2 − i δω)2 + 16|η1|

2A2
1 Ω2 Ω3

2
, (68)

equivalent to expressions given by Vandakurov (1981) and
Dziembowski (1982). Parametric instability will occur if
Re [σ] > 0, because this ensures growth of the daughter mode
amplitudes A2 and A3. At the onset of parametric instability,
Re [σ] = 0. We therefore define the instability threshold ampli-
tude for the parent mode At as the value of A1 for Re [σ] = 0. The
growth parameter σ is then imaginary and we can set σ = p i,
with p determined by solving Eq. (68):

p =
δω

2
(γ3 − γ2)
(γ3 + γ2)

. (69)

Using this expression in the real part of the growth parame-
ter (68) yields the parametric instability threshold amplitude

At =
1

2 |η1|
√

Q2 Q3

√
1 +

(
δω

γ2 + γ3

)2

. (70)

Instability threshold amplitude (70) is equivalent to the ones
derived in Dziembowski (1982), Wu & Goldreich (2001) and
Arras et al. (2003).

Parametric resonant mode triad interactions require that the
parent mode amplitude A1 ≥ At, and As

1 is always larger than At.
In the limit of very small (non-zero) detuning δω, the threshold
amplitude is solely dependent on the coupling coefficient and the
quality factors. In that case, At increases with decreasing |η1| and
faster damping of the daughter modes (expressed by the quality
factors) because both terms limit the amplitude growth of the
daughter modes due to non-linear energy transfer, thus requiring
a larger parent mode energy for a visible non-linear effect. A
larger detuning increases the threshold amplitude because of the
less efficient energy transfer.

3. Theoretically predicted observables

An important observable in linear g-mode asteroseismic mod-
eling is a g-mode period spacing pattern (which are exten-
sively described in the literature; see e.g., Aerts et al. 2018;
Michielsen et al. 2021; Bowman & Michielsen 2021 for some
recent examples of how they can be used to probe internal mix-
ing). In this section we derive additional observables based on
the theoretical AE formalism described in Sect. 2 and outline
how to compare them to observed quantities.

An inherent assumption of our models is that the modes
are coherent. That assumption is justified because the detected
frequencies of variability in SPB stars have been observed
to be stable with a frequency precision of order 10−7 d−1,
based on long-term ground-based photometric monitoring
(De Cat & Aerts 2002). This is not necessarily the case for
other pulsators: δ Sct stars, for example, show frequency
and amplitude modulation in the majority of detected signals
(Bowman et al. 2016). Amplitude and frequency modulation
also occurs among g mode triplets in oscillating white dwarfs
(see e.g., the pioneering study of the oscillating DB white dwarf
star KIC08626021 by Zong et al. 2016b). Moreover, the ampli-
tudes of the oscillating hot B subdwarf star KIC10139564 reveal
that the modulation of its observed p modes is larger than that
of its g modes (Zong et al. 2016a). Whether this trend is generic
among oscillating stars remains to be verified.
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3.1. Amplitudes: model-generated luminosity fluctuations

We cannot compare the theoretical stationary amplitudes derived
in Sect. 2.7 with the surface luminosity amplitudes Ã determined
from observations. These theoretical stationary amplitudes must
first be converted to the corresponding observables, the theoreti-
cal luminosity fluctuations at the stellar surface, L.

In this section we follow the approach of Fuller (2017) to
compute a conversion factor oA used to convert a theoretical
amplitude into a theoretical luminosity fluctuation L caused by
an oscillation mode of a resonant triad. Analogous to Eq. (82) in
Fuller (2017), we estimate the disc-averaged luminosity fluctua-
tion for a single SPB star due to g mode ϕ as

∆Lϕ
L

=

(
∆Lϕ

L

)
mode

Hr(is; k) , (71)

within the TAR, where(
∆Lϕ

L

)
mode

= tk
∆Lϕ,R(R)

L(R)
− ek

ξϕ, r(R)
R

(72)

in which ∆Lϕ,R(R) is the Lagrangian surface luminosity pertur-
bation due to mode ϕ, ξϕ, r is the radial part of the adiabatic eigen-
function of that mode, is is the angle between the rotation axis
and the line of sight at time t = 0 s (also called the spin inclina-
tion angle, see e.g., Fuller & Lai 2012), and tk and ek are limb-
darkening coefficients given by the overlap integrals (in analogy
to e.g., Burkart et al. 2012)

tk =

∫ 1

0
µHr(µ; k) h(µ) dµ , (73a)

ek =

∫ 1

0

[
2 µ2 dHr(µ; k)

dµ
−

(
µ − µ3

) d2Hr(µ; k)
dµ2

]
h(µ) dµ , (73b)

where µ ≡ cos θ and h(µ) is a limb-darkening function. To
derive Eq. (71), we assume that the Lagrangian flux perturbation
of mode ϕ, which causes the luminosity perturbation, is equal
to the radiative flux perturbation (see e.g., Unno et al. 1989).
We use a linear limb-darkening function h(µ) = 1 + (3 µ/2) in
our computations (as has been customary for decades; see e.g.,
Osaki 1971 and Aerts et al. 1992, who set µ = 0.36 for B stars).
One can however easily account for other, more sophisticated
limb-darkening laws by changing the limb-darkening function.
Numerical evaluations of tk and ek are necessary, because no ana-
lytic closed forms of the classical Hough functions exist.

Equation (71) thus separates contributions to the disc-
averaged luminosity fluctuation (∆Lϕ / L) into two multiplicative
factors: a factor attributed to the properties of the mode ϕ under
consideration, (∆Lϕ / L)mode, and an angular factor that describes
the observer’s orientation in the rotating frame. The theoreti-
cal flux fluctuation of that mode at the surface, Lϕ, can then be
computed by multiplying the (complex) amplitude cϕ obtained
from solving the AEs with the factor (∆Lϕ / L). Its modulus |Lϕ|
can directly be compared with observed luminosity amplitudes
Ã. The amplitude conversion factor oA, ϕ for a mode ϕ is then
defined as

oA, ϕ =

∣∣∣∣∣∣
(
∆Lϕ

L

)
mode

∣∣∣∣∣∣ Hr(is; k) . (74)

We compute the expected theoretical threshold surface luminos-
ity fluctuations |Lt |, which is the minimum observed luminosity
fluctuation that a parent mode in a mode triads needs for (para-
metric) resonant mode coupling to occur, and the stationary sur-
face luminosity fluctuation |Ls

ϕ| of mode ϕ, as

|Lt | = oA,1 At , |L
s
ϕ| = oA, ϕ As

ϕ . (75)

The theoretical gmode stationary amplitudes As
ϕ and the theoret-

ical g mode (parametric) threshold amplitudes At in Eq. (75) are
computed by setting the bookkeeping parameter J = 1 (similar
to e.g., Buchler & Goupil 1984), so that δω = ∆Ωl.

The conversion factors (74) are sensitive to the choice of a
limb-darkening function (because this affects tk and ek), as well
as the normalization factors for the Hough functions and the
radial parts of the mode eigenfunctions defined in Eq. (11) and
Sect. 2.3, respectively. The stationary daughter-parent surface
luminosity ratios |Ls

2| / |L
s
1|, |L

s
3| / |L

s
1| minimize the influence of

the choice of limb-darkening function and normalization factors.
We determine these ratios as

|Ls
2|

|Ls
1|

=

(
oA, 2

oA, 1

) √
|Q2|

|Q1|
,
|Ls

3|

|Ls
1|

=

(
oA, 3

oA, 1

) √
|Q3|

|Q1|
. (76)

The daughter-parent surface luminosity fluctuation ratios (76)
are the most robust amplitude-based theoretically predicted
observables that can be used in resonant non-linear asteroseismic
modeling. To derive the expressions for these ratios, we assume a
parametric resonant mode triad (for a three-mode sum-frequency
coupling or its difference frequency analogue), and use the def-
inition of the quality factor Qϕ, in addition to Eq. (52). Station-
ary surface luminosity ratios can thus be computed in terms of
linear non-adiabatic parameters. The equivalent expression for
the daughter-parent surface luminosity fluctuation ratio of a har-
monic dyad is given in Appendix B.2 of Van Beeck (2023).

In this work, we only envision a rough comparison
between theoretical predictions and observables by limiting
ourselves to monochromatic predictions. As highlighted by
Aerts & Tkachenko (2023), future studies of measured ampli-
tude ratios from multi-color space photometry by combining
Gaia (Gaia Collaboration 2016), Kepler (Koch et al. 2010) or
PLATO (Rauer et al. 2014) data offer additional opportunities
to characterize stellar atmospheric properties. Concrete applica-
tions of our theory require integrations over particular passbands
instead of the monochromatic predictions for the daughter-
parent ratios considered here. Such integrations will not be con-
sidered in this work but will be considered in follow-up applica-
tion papers.

3.2. Frequencies and phases: frequency detuning and
combination phase for Ω1 ≈ Ω2 + Ω3

The inherent assumption made in linear asteroseismic inference
is that any non-linear frequency shifts (e.g., those determined
by Eq. (54)) are negligible, so that theoretical frequencies com-
puted within a linear formalism can directly be compared to their
observed counterparts. A non-linear formalism, such as the one
we derive in Sect. 2, allows one to verify that assumption.

We define the observed frequency detuning ∆Ω̃ as

∆Ω̃ = Ω̃1, i − Ω̃2, i − Ω̃3, i , (77)

where the observed frequencies of modes ϕ are defined as Ω̃ϕ, i

with subscript i indicating that observed frequencies are mea-
sured in the inertial frame. Because of the azimuthal selection
rule (24), ∆Ω̃ is also equal to its co-rotating frame equivalent
∆Ω̃c, that is, ∆Ω̃ = ∆Ω̃c ≡ Ω̃1 − Ω̃2 − Ω̃3. This equivalence,
along with Eq. (55) and the stationary equivalent of Eq. (77),
then determine that

∆Ω̃s = ∆Ω̃nl = 0.0 , (78)
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needs to be fulfilled for a isolated (resonantly locked) mode triad.
In identifying such couplings observationally, one should there-
fore search for combinations of observed modes with stationary
amplitudes, for which

|∆Ω̃s| + |σ∆Ω̃s | . 2 πRν , (79)

where σ∆Ω̃s is the propagated uncertainty of ∆Ω̃s, and Rν ≡ 1
T

denotes the Rayleigh limit, with T being the total time span of
the time series of the SPB star that needs to be modeled.

The observable that can directly be compared with observed
frequencies of modes in an inferred candidate resonance is

Ω
NL,s
ϕ, i ≡ Ωs

ϕ + mϕ Ω + δΩs
ϕ = Ωs

ϕ, i + δΩs
ϕ , (80)

which includes the quadratic stationary non-linear frequency
shift (54). By summing Lϕ = oA, ϕ Aϕ with its complex conju-
gate, we determine the individual stationary phase observables
(see Sect. 4.3.2 in Van Beeck 2023 for the explicit manipula-
tions)


φ̃s

1,s
φ̃s

2,s
φ̃s

3,s

 =
π

2
−


(
φs

1

)
0(

φs
2

)
0(

φs
3

)
0

 −
φL 1
φL 2
φL 3

 , (81)

where we use the stationary equivalent of Eq. (39b), as well as
Eqs. (34), (45), and (49). In Eq. (81), φLϕ is the phase of the com-
plex quantity

(
∆Lϕ / L

)
mode

defined in Eq. (72). The observed
individual mode phases (81) therefore are independent of time if
the modes are part of a locked mode triad.

In analogy with the definition of the stationary equivalent of
the theoretical generic phase coordinate Υ in Eq. (41), we define
the stationary combination phase observable Φ̃s

s as

Φ̃s
s = φ̃s

1,s − φ̃
s
2,s − φ̃

s
3,s = −

π

2
− (∆φs)0 − ∆φs

L , (82)

where the last equality holds because of Eq. (81), and in which
(∆φs)0 =

(
φs

1

)
0
−

(
φs

2

)
0
−

(
φs

3

)
0

and ∆φs
L = φL 1 − φL 2 − φL 3.

The coupling coefficient η1 is real-valued and therefore has no
contribution to Eq. (82). Stationary combination phase observ-
able (82) is to be compared with a relative phase computed from
the phases of observed candidate resonance signals.

4. Numerical results for SPB models

We simulate stationary resonant parametric three-g-mode cou-
pling processes by computing a grid of models representative
for the SPB oscillators. Numerical stellar evolution models are
generated by the stellar evolution code MESA (version 15140;
Paxton et al. 2011, 2013, 2015, 2018, 2019). Linear stellar oscil-
lation models are generated by the stellar oscillation code GYRE
(version 6.0.1; Townsend & Teitler 2013; Townsend et al. 2018;
Goldstein & Townsend 2020), and use the MESA models as
input. Numerical mode coupling models use both MESA and
GYRE models as input.

We discuss the MESA model grid setup in Sect. 4.1, the
GYRE model grid setup in Sect. 4.2, and display and discuss
the numerical results for triad ensembles in Sect. 4.3. The link
to our inlists for these codes, as well as the link to our mode
coupling code repository, can be found in Appendix G.

4.1. MESA model grid setup for SPB stars

We compute MESA stellar evolution models with the param-
eters given in Table 1. These parameters cover the ranges of
inferred initial mass (Mini) and core hydrogen mass fraction (Xc)
values for SPB stars given in Table 2 of Pedersen (2022). The
MESA models have the ‘standard’ initial chemical mixture of
nearby B-type stars derived by Nieva & Przybilla (2012) and
Przybilla et al. (2013), and an Eddington gray atmosphere. Fol-
lowing Pedersen et al. (2021), we adjust the initial hydrogen and
helium mass fractions Xini and Yini so that the ratio Xini

Yini
= X∗

Y∗
,

with X∗ and Y∗ equal to the Galactic standard values for B-
type stars in the solar neighborhood (Przybilla et al. 2013). We
use Opacity Project (OP) opacity tables (Seaton 2005) that were
computed by Moravveji et al. (2015) for this elemental mixture.
The full proton-proton chain and CNO cycle nuclear reaction
networks are used to describe core hydrogen fusion on the main
sequence. Beyond the zero age main sequence (ZAMS), we use
the Vink et al. (2001) hot wind scheme with a wind scaling fac-
tor fixed to a value of 0.3 (see Björklund et al. 2021).

Diffusive isotope mixing processes within the stellar interior
are assumed to be described by the simplified transport Eq. (1)
of Michielsen et al. (2021) and Pedersen et al. (2021). Mixing
processes in the radiative envelope are described by a diffu-
sive mixing profile for internal gravity wave mixing deduced
by Rogers & McElwaine (2017) and used by Pedersen et al.
(2018) in the context of asteroseismic modeling. This profile
scales the radiative envelope mixing level Denv with a factor
inversely proportional to the (local) mass density. To model core-
boundary mixing (CBM) processes, we employ an approach
similar to the diffusive exponential overshooting model with effi-
ciency parameters fCBM and f0 fixed to 0.02 and 0.005 (see e.g.,
Michielsen et al. 2019, 2021). The inner boundary of the over-
shooting zone (i.e., the convective core mass) is determined by
the Ledoux criterion for mixing length parameter αMLT = 2.0
within the Cox & Giuli (1968) formalism for mixing length the-
ory. In the implementation, we set the minimal level of diffusive
isotope mixing Denv,min equal to 100 cm2 s−1. If the mixing level
drops below that boundary at a certain location within the model,
diffusive mixing is halted locally.

Our baseline (fiducial) model is a near terminal age main
sequence (TAMS) model with Xc = 0.09, Mini = 4 M�, solar
initial metallicity (Zini = 0.014), and fCBM equal to 0.02. Models
∆Xc, 1 and ∆Xc, 2 have core hydrogen mass fractions Xc equal to
0.29 and 0.59, respectively, and are representative for a mid-MS
and near-ZAMS SPB star, because Xc is a proxy for the main
sequence age of the star (hydrogen is depleted in the core dur-
ing the main sequence). Model ∆Xc|Mini is representative of a
Mini = 6 M� mid-MS SPB star. The fixed values of the parame-
ters Denv,min, fCBM and Zini are representative of the median val-
ues of these parameters in Table 2 of Pedersen (2022).

To compute the non-linear quadratic mode coupling coeffi-
cients (22), we need the adiabatic derivative of Γ1 with respect
to the stellar density,

(
∂Γ1
∂ ln ρ

)
S

. We compute this quantity in the
MESA models with a custom function defined in Appendix C.2.

4.2. GYRE model grid setup for SPB stars

The most commonly observed gmodes in SPB stars are prograde
(k,m) = (0, 1) and (k,m) = (0, 2) modes (see e.g., Pedersen et al.
2021; Szewczuk et al. 2021). For each of the computed MESA
models, we therefore compute the GYRE linear adiabatic
and non-adiabatic eigenfrequencies and eigenfunctions of these
commonly detected g modes, within the Cowling approximation
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Table 1. Model parameters of the MESA model grid.

Model Mini (M�) Xc Zini fCBM log( Denv,min

cm2 s−1 )

Fiducial 4.0 0.09 0.014 0.02 2.00
∆Xc, 1 4.0 0.29 0.014 0.02 2.00
∆Xc, 2 4.0 0.59 0.014 0.02 2.00
∆Mini, 1 6.0 0.09 0.014 0.02 2.00
∆Xc|Mini 6.0 0.29 0.014 0.02 2.00
∆Mini, 2 8.0 0.09 0.014 0.02 2.00

Notes. Columns are initial mass Mini, core hydrogen mass fraction Xc,
initial metallicity Zini, exponential overshoot efficiency fCBM, and the
logarithm of the minimal radiative envelope mixing level Denv,min.

(Cowling 1941) and the TAR. We assume uniform rotation at
20% of the Roche critical rotation rate ΩRoche for most models,
except for the ∆Xc, 2 model, for which we consider rotation at
rates equal to 20% and (the excessively high) 60% of ΩRoche. The
positive (negative) linear driving (damping) rates of the modes
are estimated as the imaginary part of the non-adiabatic linear
eigenfrequencies computed by GYRE.

The radial orders of the g modes computed for the differ-
ent MESA stellar evolution models are listed in Table 2. These
are similar to those of Pedersen et al. (2021). We ensure that the
linear non-adiabatic GYRE computations – which use trial fre-
quencies based on the adiabatic GYRE computation results – do
not show evidence of missing non-adiabatic mode radial orders
(see e.g., Goldstein & Townsend 2020), so that there is a one-
to-one mapping between the adiabatic and non-adiabatic mode
radial orders. The ranges for the quality factors in Table 2 show
that the condition |γϕ/ωϕ| ≡ |1/Qϕ| � 1 mentioned in Sect. 2.6 is
fulfilled for all modes (i.e., all modes are on the slow manifold).

4.3. Search for isolated mode couplings: triad parameter
ensembles for SPB stars

Following the stability analysis in Sect. 2.8, only parametric res-
onance scenarios are able to produce stable stationary solutions
for resonances Ω1 ≈ Ω2 + Ω3 (or their difference frequency ana-
logues). We therefore restrict the GYRE computations of poten-
tial parent modes to those (k,m) = (0, 2) modes with linear
driving rates γ1 > 0, and restrict the computations of potential
daughter modes to those (k,m) = (0, 1) modes with linear damp-
ing rates γ2 < 0 and γ3 < 0. Gaps in the daughter mode radial
order ranges {n2,3} listed for some of the models in Table 2 indi-
cate the presence of linearly excited (k,m) = (0, 1) modes that
cannot partake in a parametric resonance. For the 6 M� near-
ZAMS and 8 M� mid-MS and near-ZAMS models with a rota-
tion rate of 20% of ΩRoche, we obtain no linearly excited potential
parent modes.

We compute mode coupling coefficients η1 for mode triads
whose stationary AE solutions satisfy the (linear) stability con-
ditions derived in Sect. 2.8. To guarantee non-linear stability of
the stationary solutions, these mode triads also need to fulfill
the hyperbolicity check. This hyperbolicity check can only be
done after performing the non-linear mode coupling computa-
tions, because the computed stationary Jacobian matrix contains
the coupling coefficient |η1| (see Eq. (B.39) in Van Beeck 2023).
The additional model validity constraints discussed in the next
subsection are implemented to ensure that the solutions are away
from the edge of the domains of applicability.

4.3.1. Model validity criteria

Buchler et al. (1997) state that resonant AEs are valid not only
near a resonance center, but also far from resonance, with
the solutions from resonant AEs slowly approaching the non-
resonant AE solutions when moving away from that resonance
center. This point however only holds under the assumption that
all modes participating in the modal coupling are linearly unsta-
ble, so that a stable multi-mode fixed point is reached with the
same modes for resonant and non-resonant AEs (Buchler et al.
1997). If that were not the case, the non-resonant solutions
would predict negligibly small amplitudes for linearly damped
modes. For the cubic couplings considered by Buchler et al.
(1997), stable stationary points might exist for the driven res-
onance scenarios required for this type of behavior. However,
for the quadratic non-linear couplings considered in this work,
stable multi-mode fixed points can only be found for parametric
or direct resonant scenarios (with the latter only yielding sta-
ble stationary solutions for harmonic resonances; see Sect. 2.8).
Linearly damped modes participate in such coupling scenarios,
invalidating the Buchler et al. (1997) assumption.

The resonant AEs derived in Sect. 2.6 are therefore valid only
near the resonance center, that is, if the absolute value of the lin-
ear triad frequency detuning ∆Ωl defined in Eq. (34), is small in
comparison to the absolute values of the individual co-rotating-
frame mode frequencies: |∆Ωl| � |Ωϕ| ∀ϕ ∈ ~3�. If it is not
small, there are no comparatively slow amplitude variations and
additional mode interactions need to be considered to describe
the dynamics. We therefore estimate the validity domain of the
AEs in terms of the parameter:

ΨAE ≡

∣∣∣∆Ωl
∣∣∣

|min (Ω1, Ω2, Ω3)|
, (83)

which compares
∣∣∣∆Ωl

∣∣∣ with the minimum absolute value of the
co-rotating-frame angular mode frequencies of the triad. We
require that mode triads considered for modeling have ΨAE ≤

0.1, so that
∣∣∣∆Ωl

∣∣∣ � |min (Ω1, Ω2, Ω3)|. Many mode triads sat-
isfy this model validity criterion, as is shown in Table 3.

It is furthermore important to consider the threshold surface
luminosity fluctuations |Lt | of all possible mode triads, because
these determine the onset of mode interaction. To obtain isolated
mode couplings, we determine the lowest and second-lowest |Lt |

for each of the possible mode triads in which a given parent
mode participates. Doing so allows us to label the individual
modes of those triads with the computed value of |Lt |, which
can be compared for each mode individually. Identified isolated
mode couplings must be (1) triads for which the lowest |Lt | labels
of all three modes (across all mode triads in which each mode
is involved) are the same; and (2) triads for which |Ls

1| of the
lowest-|Lt |mode triad is smaller than the second-lowest |Lt | asso-
ciated with the parent mode. If at least one of those conditions
is not fulfilled for a specific mode triad, the amplitude of at least
one of the members of that mode triad is set by parametric energy
transfer in a different mode triad. The AEs derived in Sect. 2.6
would then be invalid to describe the multi-mode coupling that
occurs among such mode triads. We collectively refer to these
two conditions as the isolation criterion, and call mode triads
that satisfy this criterion isolated mode triads.

Arras et al. (2003) have a different implicit ‘isolation crite-
rion’: they stated that if the resonance is sharp, it is plausible
that only the parent and two daughter modes are relevant for the
mode amplitude dynamics. For sharp resonances, one expects
|δω / (γ2 + γ3)| to be small. Figure 3 shows the empirical proba-
bility distribution of |δω / (γ2 + γ3)| for the 21 identified (stable,
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Table 2. Radial order ranges {nu} (u ∈ ~3�) of the (k,m) = (0, 2) parent and (k,m) = (0, 1) daughter modes computed with GYRE and based on
the MESA models listed in Table 1, angular rotation rates Ω expressed in percentages of the Roche critical rotation rate ΩRoche and in d−1, model
radius R, and the order of magnitude of the bounds for the ranges of ϑ2 and ϑ3 (denoted by ϑ2,3), q1 and the quality factors Qϕ (ϕ ∈ ~3�).

Model {n1}
{
n2,3

}
Ω/ΩRoche (%) dϑ2,3c dq1c dQϕc Ω (d−1) R (R�)

Fiducial ~70 , 50� ~120 , 70� ∪ ~38 , 10� 20 [102, 10−2] [106, 100] [107, 102] 0.9995 5.1874
∆Xc, 1 ~40 , 20� ~70 , 40� ∪ ~15 , 3� 20 [103, 10−4] [107, 101] [108, 102] 1.6006 3.7900
∆Xc, 2(a) ~20 , 10� ~47 , 17� ∪ ~10 , 3� 20 [104, 10−4] [107, 102] [108, 102] 2.8419 2.5848
∆Xc, 2(b) ~19 , 10� ~48 , 3� 60 [104, 10−4] [107, 101] [108, 102] 8.5256 2.5848
∆Mini, 1 ~55 , 33� ~120 , 45� ∪ ~30 , 5� 20 [102, 10−3] [106, 10−1] [107, 102] 0.8628 6.5483
∆Xc|Mini ~26 , 16� ~55 , 5� 20 [104, 10−3] [108, 100] [107, 102] 1.3904 4.7645
∆Mini, 2 ~39 , 30� ~85 , 5� 20 [103, 10−2] [106, 100] [106, 102] 0.7611 7.8322

Notes. We define the radial order ranges using ~u , h� ≡ { x ∈ N0 | − u ≤ x ≤ −h }, and we define the range of the dimensionless parameter a as
dac ≡

[
O(sup |a|) , O(inf |a|)

]
. Mode triads that consist of modes whose radial orders lie within the radial order ranges quoted in this table satisfy

the necessary conditions for parametric resonance: γ1 > 0 , γ2 < 0 and γ3 < 0. We consider the ∆Xc, 2 model at two rotation rates, labeled with the
subscripts (a) and (b). Gaps in the radial order ranges

{
n2,3

}
indicate the presence of linearly excited (k,m) = (0, 1) modes. Such linearly excited

modes cannot act as potential daughter modes in parametric resonances with the (k,m) = (0, 2) parent modes and are therefore not considered in
this work. Note that the κ mechanism excites a strongly different set of potential (k,m) = (0, 2) parent modes for each of the different models.
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Fig. 3. Empirical probability distributions of |δω / (γ2 + γ3)| for the 21
identified (stable and AE -valid) isolated mode triads (blue and dotted)
and their AE -valid and stable counterparts (yellow) that do not fulfill
the isolation criterion. We choose the bin width in a similar way to what
is done in Hogg (2008).

AE-valid) isolated mode triads, and their AE-valid and stable
counterparts that do not fulfill the isolation criterion. While it is
certainly true that |δω / (γ2 + γ3)| is small for the isolated mode
triads, there are non-isolated mode triads that have similarly low
values of |δω / (γ2 + γ3)|, which re-iterates the important role
threshold surface luminosity fluctuations play in identifying such
isolated mode triads.

Table 3 gives an overview of how restrictive the individual
criteria are, and shows the effect of solely enforcing the valid-
ity or stability criteria. Many stable mode triads are identified,
and fixed point stability is essentially defined by the hyperbol-
icity check. Both validity criteria are more restrictive than the
stability criteria. It does not seem obvious for a g mode to par-
ticipate in an isolated mode coupling scenario, as is reflected by
the small number of identified isolated mode triads in Table 3.
Moreover, strict enforcement of the TAR validity frequency hier-
archies listed in for example Dhouib et al. (2021a) would further
reduce the number of mode triads considered for asteroseismic

modeling. This would however restrict the quadratic mode cou-
plings identified for the 4 M� near-ZAMS models from being
used, contradicting observational evidence (e.g., V21). We there-
fore do not strictly enforce these frequency hierarchies.

4.3.2. Radial coupling contributions

For isolated mode triads that fulfill the stability and validity con-
ditions, we compute a radial profile of the coupling coefficient
η1(r) by integrating the overlap integrals in Eq. (22) up to an
internal radial coordinate r instead of the stellar model surface
radius R (i.e., r ≤ R and η1 ≡ η1(R)). The profile η1(r) then indi-
cates the zones in the stellar interior for which contributions to
the coupling coefficient are significant for these mode triads.

In the near-core regions the squared Brunt-Väisälä frequency
(N2) profile has a (local) maximum due to the presence of a
µ-gradient left behind by the receding convective core during
the main sequence. This maximum introduces a sharp transi-
tion in N2 which changes the eigenfunctions: their modal iner-
tia becomes more confined to the near-core region (Miglio et al.
2008; Michielsen et al. 2021), at the location of the (local) max-
imum. This can be rationalized by the increasing confinement
of modal inertia to the TAR-valid near-core mixing zone with
model age. The width of that maximum depends on the evolu-
tionary stage: more evolved SPB models have wider N2 max-
ima, and some modes become trapped in the near-core regions
(Moravveji et al. 2016; Michielsen et al. 2021). For these more
evolved models, the instability strip for (k,m) = (0, 2) parent g
modes also moves towards higher radial orders, further confin-
ing modal inertia to the oscillatory near-core regions. Both these
effects likely explain why the contributions to coupling coeffi-
cients are more concentrated in the near-core regions for more
evolved models.

Examples of such radial coupling coefficient profiles are
given in Figs. 4 and 5, which display the N2 profile along
with the coupling coefficient profile η1(r). The profile in Fig. 4
describes the coupling contributions for the mode triad charac-
terized by g mode radial orders (n1, n2, n3) = (−22, −15, −53)
in the mid-MS ∆Xc, 1 model in Table 4. The near-ZAMS example
displayed in Fig. 5 describes the coupling contributions for the
mode triad characterized by g mode radial orders (n1, n2, n3) =
(−14, −10, −26) in the ∆Xc, 2(a) model of Table 4. These figures
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Table 3. Overview of the number of mode triads that satisfy different model validity and stability criteria.

Model Total γ� < 0 Quartic Hyperbolic AE Is. Stab. Val. Stab. and Val.

Fiducial 68 040 61 040 59 491 40 517 398 6 40 517 1 1
∆Xc, 1 20 790 18 920 18 883 13 173 86 8 13 173 4 4
∆Xc, 2(a) 8580 8205 8192 5736 121 9 5736 3 2
∆Xc, 2(b) 10 810 10 008 9975 6940 285 12 6940 5 4
∆Mini, 1 120 819 111 568 111 124 75289 1906 15 75 289 6 2
∆Xc|Mini 14 586 13 691 13 565 9421 546 17 9421 5 3
∆Mini, 2 33 210 31 568 31 014 21 062 1235 14 21 062 5 5

Notes. The different model stability criteria are denoted by the columns ‘γ� < 0’, ‘Quartic’ and ‘Hyperbolic’, which specify the number of modes
that satisfy Eq. (61a), the quartic linear stability criterion (64) and the hyperbolicity check (see first paragraph of Sect. 2.8), respectively. How
many of the mode triads fulfill all model stability criteria is given in the column ‘Stab.’. Similarly, the different model validity criteria are denoted
by the columns ‘AE’ and ‘Is.’, which specify the number of modes that satisfy the AE validity criterion (ΨAE ≤ 0.1, with ΨAE defined by Eq. (83))
and the isolation criterion. The number of mode triads satisfying both validity criteria is given in the column ‘Val.’, whereas the number of mode
triads satisfying both the model stability and validity criteria is given in the column ‘Stab. and Val.’. The column ‘Total’ contains the total number
of mode triads considered for the different models listed in Table 2.
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Fig. 4. Coupling coefficient and squared Brunt-Väisälä frequency (N2)
profiles as a function of the fractional radius for the isolated mode triad
with g mode radial orders (n1, n2, n3) = (−22, −15, −53) in the mid-
MS ∆Xc, 1 model of Table 4.

confirm that contributions to the coupling coefficient of the mode
coupling in the mid-MS model are typically more confined to
the near-core region in comparison to those contributions in the
near-ZAMS model.

4.3.3. Properties of isolated g mode triads in SPB stars

Isolated mode triads can be identified for each model listed in
Table 2. Their characteristic mode and triad properties are listed
in Table 4, and their dimensionless model validity and stabil-
ity estimators, including the order of magnitude of the coupling
coefficient |η1|, are displayed in Table 5. It is clear from the
largest absolute values of the spin parameters that at least one
of the modes in the identified isolated mode triads is sub-inertial
(i.e., |sϕ| > 1), requiring the non-perturbative (TAR) description
of the Coriolis force.

The Doppler shift causes a logical trend to appear when
correlating the average values of Ωϕ with a change in the
rotation frequency (i.e., upon comparison of mode frequen-
cies for the models ∆Xc, 2(a) and ∆Xc, 2(b)): Ωϕ decreases for
increasing rotation rates. This trend is only weakly influenced
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Fig. 5. Same as Fig. 4, but for the isolated mode triad with gmode radial
orders (n1, n2, n3) = (−14, −26, −10) in the ∆Xc, 2(a) model of Table 4.

by the effect of the Coriolis force for these sectoral pro-
grade g or equatorial Kelvin waves, which is not the case
for non-sectoral modes (due to geostrophic balance; see e.g.,
Gill 1982; Townsend 2005; Daszyńska-Daszkiewicz et al. 2015;
Szewczuk & Daszyńska-Daszkiewicz 2017).

The co-rotating-frame mode frequencies also (on average)
decrease for higher-mass models, and decrease with model age.
This change with mass can be attributed to the more massive
SPB models having a larger model radius, which enlarges the
pulsation cavity, although it is to a degree counteracted by the
decrease in Ω.

Mode frequency in the co-rotating frame is instrumental for
determining linear, heat-driven mode excitation: it determines
the geometrically optimal driving region for a mode, which
needs to coincide with the Z bump for the mode to be linearly
excited in an SPB star. In general, higher radial order g modes3 –
which have lower frequencies and are therefore more susceptible
to rotational effects – are excited in more evolved models (on the
main sequence). The expected higher mode densities for more
evolved stars might explain why only one isolated mode triad

3 A g mode α is considered to have a higher radial order than g mode β
when nα < nβ (i.e., when the absolute value of its radial order is larger).
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Table 4. Linear co-rotating-frame frequencies Ωϕ, largest absolute spin parameters |sϕ| (of the triad modes), radial orders nϕ and linear driving or
linear damping rates γϕ of g modes ϕ in all identified isolated (g) mode triads with ordering numbers (k1, k2, k3) = (0, 0, 0) and azimuthal orders
(m1, m2, m3) = (2, 1, 1) for the models in Table 2 that yield stable and valid stationary solutions.

Model (n1, n2, n3) δω (d−1) γ� (10−3 d−1) (Ω1, Ω2, Ω3) (d−1) (γ1, γ2, γ3) (10−5 d−1) |s|max

Fiducial (−51, −38, −90) 0.00145 −0.32249 (3.23, 2.32, 0.91) (0.39, −0.30, −32.3) 2.20
∆Xc, 1 (−20, −13, −58) −0.00197 −2.0248 (6.92, 5.74, 1.18) (0.18, −0.16, −202.5) 2.71

(−21, −14, −54) −0.00528 −1.657 (6.60, 5.33, 1.28) (0.57, −0.17, −166.1) 2.51
(−22, −15, −53) 0.00370 −1.536 (6.29, 4.99, 1.30) (1.06, −0.19, −154.4) 2.46
(−39, −40, −40) 0.00303 −0.350 (3.53, 1.76, 1.76) (11.2, −23.1, −23.1) 1.81

∆Xc, 2(a) (−10, −7, −22) −0.01510 −1.025 (12.0, 9.16, 2.88) (0.06, −0.08, −102.4) 1.98
(−14, −10, −26) 0.03121 −3.252 (8.85, 6.41, 2.41) (4.19, −0.08, −329.3) 2.36

∆Xc, 2(b) (−10, −6, −36) −0.01614 −7.765 (11.26, 9.65, 1.63) (0.07, −0.05, −776.5) 10.5
(−12, −8, −23) −0.00844 −1.565 (9.62, 7.08, 2.54) (0.94, −0.12, −157.3) 6.71

(−17, −12, −30) −0.00723 −5.144 (6.80, 4.86, 1.95) (8.45, −0.08, −522.8) 8.74
(−18, −13, −31) 0.03334 −5.825 (6.42, 4.49, 1.89) (7.03, −0.19, −589.3) 9.02

∆Mini, 1 (−50, −48, −56) −0.00083 −0.507 (2.37, 1.29, 1.09) (15.5, −13.3, −52.9) 1.59
(−40, −30, −70) 0.00836 −1.429 (2.98, 2.12, 0.85) (6.65, −0.62, −148.9) 2.03

∆Xc|Mini (−16, −14, −22) 0.00130 −0.120 (6.19, 3.81, 2.38) (0.01, −0.56, −11.4) 1.17
(−17, −13, −29) 0.00830 −0.915 (5.88, 4.08, 1.79) (0.16, −0.57, −91.1) 1.56
(−23, −17, −41) 0.01453 −4.495 (4.37, 3.12, 1.23) (5.33, −1.15, −453.6) 2.26

∆Mini, 2 (−31, −23, −56) 0.00283 −2.018 (3.03, 2.18, 0.85) (2.30, −2.14, −202.0) 1.80
(−32, −24, −58) 0.00631 −2.176 (2.92, 2.10, 0.82) (2.43, −2.42, −217.6) 1.86
(−35, −26, −62) −0.00274 −2.915 (2.68, 1.93, 0.76) (7.54, −3.13, −295.9) 2.01
(−36, −27, −63) 0.00546 −2.734 (2.61, 1.86, 0.75) (2.02, −3.20, −272.2) 2.04
(−38, −28, −67) −0.00575 −2.724 (2.47, 1.78, 0.70) (0.24, −4.27, −268.3) 2.18

Notes. The effective triad damping γ� and the triad detuning δω are also listed. The mode triad detuning δω is equal to ∆Ωl because we set J = 1
in Eq. (34). We compute the largest absolute spin parameter as |s|max = max

(
|sϕ|

)
≡ max

(
|2 Ω/Ωϕ|

)
∀ϕ ∈ ~3�.

Table 5. Dimensionless quantities for the mode triads listed in Table 4: dimensionless AE validity parameter ΨAE, absolute detuning-damping ratio
|q| and absolute detuning-driving ratio |q1|, the driving-damping rate ratios ϑ2 and ϑ3, as well as the order of magnitude of the energy-normalized
coupling coefficient, O|η1 |.

Model (n1, n2, n3) ΨAE |q| |q1| ϑ2 ϑ3 O|η1 |

Fiducial (−51, −38, −90) 0.00160 4.51022 373.680 0.76947 83.0825 106

∆Xc, 1 (−20, −13, −58) 0.00167 0.97315 1122.39 0.92560 1153.43 103

(−21, −14, −54) 0.00414 3.18616 919.730 0.30289 289.361 104

(−22, −15, −53) 0.00284 2.41124 350.601 0.17994 146.223 104

(−39, −40, −40) 0.00172 8.64606 27.0505 2.06433 2.06433 104

∆Xc, 2(a) (−10, −7, −22) 0.00525 14.7345 23416.0 1.27865 1588.92 104

(−14, −10, −26) 0.01297 9.59642 744.512 0.01816 78.5641 104

∆Xc, 2(b) (−10, −6, −36) 0.00993 2.07856 24822.5 0.76510 11942.4 103

(−12, −8, −23) 0.00332 5.39600 897.596 0.13080 167.214 104

(−17, −12, −30) 0.00371 1.40528 85.5389 0.00907 61.8605 104

(−18, −13, −31) 0.01764 5.72364 474.296 0.02771 83.8384 104

∆Mini, 1 (−50, −48, −56) 0.00076 1.63256 5.34811 0.85748 3.41842 104

(−40, −30, −70) 0.00983 5.85327 125.797 0.09346 22.3982 106

∆Xc|Mini (−16, −14, −22) 0.00055 10.8770 8987.04 38.7770 788.467 104

(−17, −13, −29) 0.00464 9.06636 5197.85 3.58916 570.722 104

(−23, −17, −41) 0.01180 3.23295 272.498 0.21492 85.0729 105

∆Mini, 2 (−31, −23, −56) 0.00334 1.40262 122.926 0.92741 87.7126 106

(−32, −24, −58) 0.00772 2.89766 259.527 0.99670 89.5678 106

(−35, −26, −62) 0.00362 0.94161 36.4148 0.41545 39.2574 106

(−36, −27, −63) 0.00733 1.99803 270.435 1.58532 134.765 106

(−38, −28, −67) 0.00825 2.11147 2423.35 18.0122 1130.69 106

Notes. The mode triads are identified by their g mode radial orders nϕ.
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was identified for the fiducial model. The linear (vibrational)
stability sensitively depends on the opacity profile of any par-
ticular stellar model (e.g., Daszyńska-Daszkiewicz et al. 2017).
A change in opacity profile can therefore lead to the identifica-
tion of different isolated mode triads.

Stabilization of the (k,m) = (0, 1) g modes in more rapidly
rotating stars (e.g., Townsend 2005) can lead to opportunities for
non-linear excitation by a parametric resonance, as it enlarges
the pool of potential daughter modes with which combination
can be made. A physical explanation of the effect of rotation
within the TAR on mode excitation by the κ mechanism can be
found in Ushomirsky & Bildsten (1998) and Townsend (2005).
That increasing potential for mode combination with larger rota-
tion rate can be observed in the ‘Total’ column of Table 3, where
more combinations are considered for the more rapidly rotating
model ∆Xc, 2(b), if compared to the number of combinations con-
sidered for model ∆Xc, 2(a). The stabilizing effect for the parent
(k,m) = (0, 2) gmodes comparatively seems weaker (as was also
observed by Townsend 2005): only one of the parent modes is
stabilized, in comparison to seven of the daughter modes, when
we compare the ∆Xc, 2(a) and ∆Xc, 2(b) models. In this case, we
identify four isolated triads for model ∆Xc, 2(b), and two isolated
triads for the slower-rotating model ∆Xc, 2(a). However, the stabi-
lizing effect does not necessarily mean that we can identify more
isolated mode triads for rapid rotators, because those triads need
to fulfill the stability and validity criteria.

The range of |q1| for the identified isolated mode triads is[
104, 100

]
(using the notation of Table 2). This indicates that the

two rightmost panels on the top of Fig. 2, as well as the panels
on the bottom row of Fig. 2, describe the linear stability of the
isolated stationary solutions. These solutions’ resonant nature is
important, as is indicated by the values of |q| being of the order
of unity to ten, affecting the stationary amplitude (48).

We can identify only one isolated harmonic resonant triad
(for the ∆Xc, 1 model), which is a small number in comparison
to the 20 identified resonances of the combination type Ω1 ≈

Ω2 + Ω3. It therefore seems comparatively harder to satisfy all
stability and validity conditions for harmonic resonances, which
provides a reason for why only a few of such resonances are
identified in the observational data of V21.

We only consider combinations of a small number of modes
in this proof-of-concept study and do not study the dependence
of non-linear parameters – such as the coupling coefficient – on
stellar parameters in detail.

5. Impact on asteroseismic modeling

In this section, we discuss how the non-linear theoretically pre-
dicted observables defined in Sect. 3 can aid or complement cur-
rent frequency-based asteroseismic modeling of SPB stars. The
various non-linear observables of interest, or derived quantities
thereof, are listed in Table 6.

5.1. Oscillation frequency and combination phase
observables

We find that the non-linear frequency shifts of the isolated mode
triads are small in comparison to the (linear) inertial mode fre-
quencies, as is illustrated by the values in the column display-
ing values of |δΩs

ϕ,m /Ωϕ, i| in Table 6, which shows the largest
value of the frequency shift for any of the three modes in the
isolated triad, expressed in units of the inertial mode frequency.
These dimensionless frequency shifts are typically of order 10−3

to 10−4, and we find no clear correlations with any of the model
parameters (potentially due to the small number of modes con-
sidered).

Translated to units of d−1, this means that there are sev-
eral frequencies whose (non-linear) frequency shifts are of order
10−5 d−1 or smaller, rendering them of similar order as the typ-
ical errors for the frequencies derived from 4-year Kepler light
curves (e.g., Bowman & Michielsen 2021). The largest shifts are
obtained for the modes in the faster-rotating models, and are
of order 10−2 or 10−3 d−1, which is approximately two orders
of magnitude larger than typical uncertainties. In practice, the
resonant non-linear frequency shifts are hard to distill from fre-
quency lists deduced from prewhitening analyses similar to what
was done in V21. The non-resonant frequency shifts are even
smaller, justifying the approximation of using linear frequencies
in asteroseismic modeling.

We show the zero-point-corrected non-linear combination
phases Φ̃s

s,0 for all identified isolated mode triads in Table 6,
where Φ̃s

s,0 = Φ̃s
s + (∆φs)0. We find no specific trends for these

combination phases when correlated with other model parame-
ters (potentially due to the small number of modes considered).
In principle, such phases can be compared with observed rela-
tive phases, if the relative phase at the zero point is accounted
for. The latter is however dependent on the initial values of the
individual mode phases, φ0, which are unconstrained.

5.2. Amplitude ratio observables

The stationary surface luminosity fluctuation ratios |Ls
2| / |L

s
1| and

|Ls
3| / |L

s
1| offer the best constraints for asteroseismic modeling.

We find that most of these ratios are smaller than unity, indi-
cating that most of the stationary-state (or saturation) energies
of the linearly driven (k,m) = (0, 2) parent modes are larger
than those of the (k,m) = (0, 1) daughter modes that are linearly
damped and parametrically excited. Daughter modes have larger
stationary mode amplitude ratios |Ls

2| / |L
s
1| only for certain mode

triads in the 4 M� near-ZAMS models ∆Xc, 2(a) and ∆Xc, 2(b), as
well as the 6 M� near-TAMS models ∆Mini, 1. For these specific
mode triads, the other daughter mode’s amplitude is significantly
smaller than that of the parent mode.

The stationary amplitude ratios (76) depend on the ratios of
the mode quality factors that express the number of periods nec-
essary to linearly increase or decrease modal energy by a fac-
tor of e. Such ratios are inversely proportional to ϑ2 or ϑ3 and
proportional to the frequency ratio Ω2 /Ω1 or Ω3 /Ω1. We find
that the frequency ratios for these specific isolated mode triads
that have larger-amplitude daughter modes are not particularly
different from those in other identified isolated mode triads, as
can be rationalized from the co-rotating mode frequency values
in Table 4. The observed difference in amplitude ratio is thus is
mostly due to different values of ϑ2. The smaller ϑ2, the longer
the linear damping timescale of daughter mode 2 is, in compar-
ison to the linear driving timescale of parent mode 1. Based on
the listed values of ϑ2 in Table 5, this effect seems to become
important when ϑ2 . 0.13 ≡ ϑ2,b, that is, when the linear
damping rate of one of the daughter modes is less than 13% of
the linear driving rate of the parent mode. We also estimate the
value of ϑ2 at which this effect becomes important by perform-
ing a linear regression between the ϑ2 and |Ls

2| / |L
s
1| values of

four isolated mode triads in Table 5. Specifically, we construct
a regression model using the ϑ2 and |Ls

2| / |L
s
1| values obtained

from the two mode triads with parent-daughter amplitude ratios
greater than unity but approaching the unity limit the closest,
and the values of these quantities obtained from those mode
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Table 6. Maximal absolute non-linear frequency shifts as a fraction of the linear inertial-frame angular frequency |δΩs
ϕ,m /Ωϕ, i| (in parts-per-

thousand), zero-point-corrected non-linear combination phases Φ̃s
s,0, and expected stationary surface luminosity fluctuation ratios |Ls

2| / |L
s
1| and

|Ls
3| / |L

s
1| for the mode triads listed in Table 4.

Model (n1, n2, n3)
∣∣∣δΩs

ϕ,m/Ωϕ, i

∣∣∣ (ppt) Φ̃s
s,0 (rad) |Ls

2| / |L
s
1| |L

s
3| / |L

s
1|

Fiducial (−51, −38, −90) 0.764733 0.21819 0.55605 0.06168
∆Xc, 1 (−20, −13, −58) 0.708263 −0.79901 0.42858 0.03261

(−21, −14, −54) 1.839526 −0.30412 0.65585 0.06390
(−22, −15, −53) 1.283029 0.39313 0.91831 0.08677
(−39, −40, −40) 0.593527 0.11515 0.48298 0.48298

∆Xc, 2(a) (−10, −7, −22) 2.639689 −0.06776 0.32000 0.05700
(−14, −10, −26) 6.021050 0.10383 2.53183 0.14379

∆Xc, 2(b) (−10, −6, −36) 1.589962 −0.44842 0.32190 0.00750
(−12, −8, −23) 0.766883 −0.18324 0.84057 0.08189

(−17, −12, −30) 0.701324 −0.61847 3.08804 0.06054
(−18, −13, −31) 3.238349 0.17297 2.02044 0.04897

∆Mini, 1 (−50, −48, −56) 0.443377 −0.54958 0.79629 0.41179
(−40, −30, −70) 5.086921 0.16921 2.05217 0.20288

∆Xc|Mini (−16, −14, −22) 0.330309 0.09168 0.07627 0.05190
(−17, −13, −29) 2.600074 0.10985 0.29260 0.08237
(−23, −17, −41) 5.594778 0.29998 0.72069 0.08163

∆Mini, 2 (−31, −23, −56) 1.760714 0.61936 0.34623 0.07864
(−32, −24, −58) 3.997386 0.33231 0.48095 0.07250
(−35, −26, −62) 1.832881 −0.81546 0.61223 0.07525
(−36, −27, −63) 3.610779 0.46404 0.30289 0.04729
(−38, −28, −67) 3.885665 −0.44231 0.12459 0.01283

Notes. The mode triads are identified by their g mode radial orders nϕ. We define Φ̃s
s,0 as Φ̃s

s + (∆φs)0. The observables |Ls
2| / |L

s
1| and |Ls

3| / |L
s
1|, as

well as Φ̃s
s, are defined in Eqs. (76) and (82), respectively.

triads with parent-daughter amplitude ratios smaller than unity
that approach the unity limit the closest. The linear regression
yields a linear slope of −0.08±0.04 (ϑ2 per unit of |Ls

2| / |L
s
1|) and

an intercept 0.22 ± 0.06, when we assume normally distributed
residuals. This leads to an estimated boundary ϑ̂2,b = 0.14±0.07
that is consistent with the earlier defined boundary ϑ2,b.

In general, energy transfer occurs from the parent to the
daughter mode only if the latter’s energy is smaller than the for-
mer’s (e.g., Arras et al. 2003). However, if one of the daughter
modes participating in the mode triad is strongly damped (lin-
early), mode β, when the other daughter mode, mode α, is only
weakly damped (linearly), we find that daughter mode α can sat-
urate at larger energies than the parent mode. In such situations
the parent mode needs to transfer a lot of energy to the daughter
modes per cycle in order to overcome the strong linear damping
of daughter mode β and reach a stationary state.

Isolated parametric couplings in which both daughter modes
attain amplitudes larger than the parent mode are not observed
in our calculations. Of the 276 835 potential triads considered
in this work, only 32 non-AE valid triads have both daughter-
parent luminosity fluctuation energy ratios (76) greater than
unity, which all originate from the ∆Mini, 1 model. Of those 32
solutions, 26 satisfy q > Q1, the necessary but not sufficient con-
dition for both stationary daughter-parent rotating-frame mode
energy ratios (52) to be greater than unity, because of Eqs. (49)
and (78). The other 6 solutions are relatively close to satisfy-
ing that criterion (q and Q1 are of the same order of magnitude)
and likely obtain daughter-parent mode luminosity fluctuation
energy ratios (76) greater than unity because of the differing
ratios of amplitude conversion factors oA,ϕ. Given the typical val-
ues of Ωϕ, γϕ and q listed in Tables 4 and 5, as well as the quality

factor ranges listed in Table 2, we deem it unlikely to encounter
isolated solutions of this kind.

5.3. Comparison with observations of SPB stars

To assess the impact of mode amplitude ratios on period spacing
pattern modeling, we compare daughter-parent surface luminos-
ity fluctuation ratios predicted by our formalism with observed
equivalents derived for the ensemble of 38 SPB stars of V21.
We limit ourselves to comparison among theoretically predicted
amplitude ratios and observed equivalents of sum frequencies,
because these make up the majority of the isolated mode tri-
ads listed in Table 5. Our comparison is also valid for difference
frequencies, because the AEs and stationary solutions for these
difference frequencies are of the same form as those of sum fre-
quencies (see Appendix F).

V21 generated variability models for the light curves, here-
after referred to as (harmonic) light curve models, of 38 SPB
stars using five different harmonic analysis strategies. In this
work, we use the models generated by their strategy 3, which
uses the signal-to-noise ratios to determine the significance of
detected variability signals, because this resembles commonly
used strategies in literature (see Table 1 and the correspond-
ing discussion in Sect. 2.2 of V21 for additional details). They
assigned pseudo-classes to the different members of the ensem-
ble of analyzed SPB stars to denote the difficulties encountered
during the analysis process: high- fsv stars had light curves that
were described adequately by the harmonic light curve mod-
els; high mode density stars had many close-spaced frequen-
cies in their Fourier transforms or Lomb-Scargle periodograms;
and outbursting stars were found to have distinct variability
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Fig. 6. Observed daughter-parent amplitude ratios A′d/A
′
p of candidate resonances of SPB stars detected in models of light curves measured

by Kepler, compared to their theoretically predicted equivalent observables, the monochromatic stationary daughter-parent surface luminosity
perturbation ratios |Ld | / |Lp|, which are computed with the theoretical oscillation model described in Sect. 2. These quantities are shown as a
function of the minimal inertial-frame frequency νmin of the three signals in the considered candidate resonance, or, the minimal mode frequency
observable ΩNL, s

min, i / 2π among the three mode frequency observables of the considered triad, respectively. Left panel: A′d/A
′
p as a function of νmin.

The light curve models were generated using strategy 3 of V21, which uses the signal-to-noise ratio of the detected signals to determine their
significance. Colors indicate the pseudo-class defined in V21: high- fsv (‘hfsv’), high-mode-density (‘hmd’), or outbursting (‘outb’). Right panel:
|Ld | / |Lp| as a function of ΩNL, s

min, i/2π. Colors indicate whether all stability criteria are fulfilled (‘Stab.’), or if additionally the AE validity criterion
(‘Stab. + AE’) or all validity criteria (‘Stab. + Val.’; i.e., the isolated triads listed in Table 6) are fulfilled. We show alias signals in the frequency
range of 0 to 24.4512 d−1 as fainter orange-red (‘Stab.’) symbols, because we do not account for the splitting of the alias signals (which will affect
the amplitude ratios).

‘outbursts’ in their light curves, resulting in many close-spaced
and high-amplitude frequency groups (see V21). To select the
relevant observed signals for our comparison, we look for sum-
frequency resonance combinations of three signals that are part
of the light curve models and fulfill the resonance criterion
|ν1 − ν2 − ν3| ≤ Rν + σν, prop (with σν, prop the propagated uncer-
tainty of the observed frequency difference ν1−ν2−ν3 and ν1, ν2
and ν3 the observed frequencies). These combinations also need
to contain (i) at least one of the two highest-amplitude signals
in the light curve model, and (ii) lower-amplitude components
(i.e., not one of the two highest-amplitude signals) that are not
present in other considered combinations. The low-over-highest
frequency amplitude ratios of these combinations, A′d/A

′
p (i.e.,

two ratios per combination), are displayed in the left panel of
Fig. 6 as a function of the minimal frequency νmin of the three
modes in the combination, as measured within the inertial ref-
erence frame. Under the assumption that the non-linear para-
metric resonant coupling process dominates the energy transfer
among the considered modes, we hereafter refer to A′d/A

′
p as the

observed daughter-parent amplitude ratios; under that assump-
tion, νmin is the minimal daughter mode frequency. Because the
stationary combination phase observable Φ̃s

s defined in Eq. (82)
depends on the unconstrained initial zero points of the individ-
ual mode phases and because no trends are observed in the zero-
point-corrected non-linear combination phases Φ̃s

s,0 of isolated
mode triads listed in Table 6, we do not enforce conditions on the
relative phase of these observed combinations of signals, unlike
V21.

One compares the observed daughter-parent amplitude ratios
with the relevant computed daughter-parent (stationary) surface
luminosity fluctuation ratios |Ld | / |Lp| of triads found among the
(k,m) = (0, 1) daughter g modes and of the (k,m) = (0, 2) parent
g modes computed by GYRE for the models listed in Table 2

(shown in the right panel of Fig. 6). These mode triads have
small frequency detunings (34) and satisfy all stability criteria,
and we further distinguish between triads with modes that sat-
isfy (i) only the stability criteria, or (ii) the stability criteria and
the AE validity criterion, or (iii) all stability and validity crite-
ria (i.e., these are the isolated mode triads). The minimal mode
frequency observable Ω

NL, s
min, i (used as the x-axis variable in the

right panel of Fig. 6) is smaller than the non-linear frequency
shift (54) for some of the considered modes in mode triads with
linearly stable solutions (i.e., triads with modes that only sat-
isfy the stability criteria and none of the validity criteria). In that
case, we compute their alias frequencies in the frequency range
[24.4512, 0] d−1 (using the notation in Table 2; i.e., up to the
notional Kepler long-cadence Nyquist frequency; Chaplin et al.
2014). Such aliased signals would however have their amplitude
ratios affected by their splitting, which we do not account for in
this work. The predicted surface luminosity fluctuation ratios of
these alias frequencies are therefore shown on the right panel of
Fig. 6 as faint (orange-red) symbols.

The ensemble of stationary surface luminosity fluctuation
ratios of computed triads seems to be able to explain the low-
amplitude-ratio part of the ensemble of observed daughter-
parent amplitude ratios, as can be derived from the panels in
Fig. 6. Some SPB modeling targets, for example KIC008714886,
show promise for matching a part of their observed amplitude
ratios with their theoretically predicted equivalent. Other tar-
gets (notably the slow rotator KIC0010526994) have observed
daughter-parent amplitude ratios that are all much greater than
unity, which we do not have in the calculated ratios.

The absence of high theoretically predicted surface lumi-
nosity fluctuation ratios (52) might be caused by our choice
of opacity tables, because they determine the linear growth or
linear damping rates of the modes. For example, one of the
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analyzed SPB stars, KIC0010536147, is on the massive end of
the SPB instability region (according to the stellar parameters
determined in Pedersen 2022), where, according to our simula-
tions that account for the classical κ mechanism driving mecha-
nism, no (k,m) = (0, 2) parent modes are excited (see Table 2).
The required changes in opacity to reach the highest observed
amplitude ratios are, however, unlikely to be realistic. The mod-
ified opacities of Daszyńska-Daszkiewicz et al. (2017) used in
modeling the linear stability of the hybrid main-sequence early
B-type pulsator ν Eridani for example lead to normalized driving
rates that were only two to four times larger than the unmodi-
fied driving rates. Asteroseismic modeling of dedicated targets
is needed to further assess the effect of opacity on theoretical
surface luminosity fluctuation ratios.

Additionally, some of the observed modes might have dif-
ferent nonradial geometries (i.e., different values of m, k) than
the ones considered in the limited number of simulations car-
ried out for this work. For example, the period spacing pat-
terns considered by Pedersen et al. (2021) are made up of zonal
(k,m) = (1, 0) dipole g modes for 9 of their considered 26 SPB
stars, and one star, KIC008714886, has an identified retrograde
(k,m) = (0,−1) dipole g mode period spacing pattern (see Sup-
plementary Table 1 of Pedersen et al. 2021). When couplings
between g modes other than the ones considered in this work
have linear driving or linear damping rates, frequencies, as well
as amplitude conversion factors oA,ϕ of the same order as those
obtained for the g modes considered in this work, we expect
to obtain similar theoretically predicted luminosity fluctuation
ratios. We note, however, that for such different combinations
the parent mode can be a lower frequency mode. An example of
such a combination that satisfies the coupling coefficient selec-
tion rules is the triad that consists of a driven (k,m) = (0, 1)
parent mode α, a damped (k,m) = (0, 2) daughter mode β,
and a damped (k,m) = (0,−1) daughter mode γ. The damped
(k,m) = (0, 2) daughter mode β can have a lower frequency than
the parent mode α in the co-rotating frame, while having a higher
frequency in the inertial frame. Such a damped (k,m) = (0, 2)
mode β would therefore be labeled as the parent when following
the rules used to generate the observed daughter-parent ampli-
tude ratios shown in Fig. 6. For comparison with the theoret-
ically predicted daughter-parent surface luminosity fluctuation
ratios, the relevant observed amplitude ratios then need to either
be computed (as the ratio of the current amplitude ratios) or
inverted. In our example, we need to compute the amplitude ratio
of modes β and γ (A′γ/A

′
β = (A′γ/A

′
α)/(A′β/A

′
α)), and we need to

invert the currently computed amplitude ratio of modes α and β.
We also deem it likely that some of the high observed ampli-

tude ratios can be attributed to other amplitude saturation mech-
anisms, such as multi-mode coupling or higher-order couplings.
Correlation of the mean values of the 10 largest mode amplitudes
(determined from the light curve models) with the mean values
of the 10 largest identified amplitude ratios for each of the differ-
ent SPB stars considered by V21 for example yields a positive
Spearman correlation coefficient. This suggests that higher-order
couplings might be needed to explain the high amplitude ratios
of high-amplitude SPB pulsators.

6. Conclusions

We derive a theoretical oscillation modeling framework that
describes non-linear three-mode coupling among gravito-inertial
(g) modes of Slowly Pulsating B (SPB) stars within the Tradi-
tional Approximation for Rotation (TAR; e.g., Longuet-Higgins
1968; Lee & Saio 1997; Townsend 2003; Mathis 2013), extend-

ing and correcting terms in the formalism of L12 (see
Appendix C). This framework relates the g mode adiabatic
eigenfunctions to potential non-linear energy exchange between
the modes, by computing three-mode (energy-scaled) coupling
coefficients |η1| based on a phase space mode decomposition
inserted in the relevant coupled equations of motion. To describe
three-mode resonant couplings, we derive amplitude equations
(AEs) from the coupled equations of motion for a sum-frequency
resonance Ω1 ' Ω2 + Ω3, using the multiple time scales per-
turbation method (e.g., Nayfeh 1973, 1981; Nayfeh & Mook
1979). These coupling coefficients need to satisfy angular selec-
tion rules (24) and (25) if energy is to be exchanged among the
modes. The isolated stable stationary solutions of these AEs (i.e.,
their stable fixed points) then describe locked three-mode reso-
nant couplings among g modes in rapidly rotating g-mode pul-
sating stars, such as SPB stars.

We use this framework to compute examples of isolated
mode couplings in stellar structure and pulsation models that
represent SPB stars analyzed in V21. We limit ourselves to
computing couplings among g modes with ordering numbers
(k1, k2, k3) = (0, 0, 0) and azimuthal orders (m1, m2, m3) =
(2, 1, 1); the most frequently observed modes in SPB stars
(see e.g., Pedersen et al. 2021; Szewczuk et al. 2021; Pedersen
2022). The locked mode solutions have to fulfill multiple sta-
bility and validity criteria to describe physical three-mode cou-
pling scenarios in such stars. To ensure stability of the three-
mode stationary solution, it needs to be hyperbolic, the reso-
nance must be parametric, and the solution must fulfill the con-
dition in Eq. (61a) and the linear quartic stability criterion (64).
The validity of the solution is guaranteed if it fulfills the AE
validity condition ΨAE ≤ 0.1 (with ΨAE defined in Eq. (83)),
and the isolation criterion. The most restricting of all these con-
ditions is the isolation criterion, which ensures that no multi-
mode coupling scenarios take place. We find that the restriction
to sharp resonances as done by Arras et al. (2003) overestimates
the number of isolated mode triads.

By performing coupling computations up to a certain inner
radius, we map the regions that contribute significantly to the
mode coupling. Typically, we obtain strong contributions to
the resonant coupling among the three g modes in the near-
core zones of the SPB models, where N2 peaks and modes can
become (partially) trapped (Miglio et al. 2008; Michielsen et al.
2021). For more evolved models, this N2 maximum is wider and
the κ mechanism typically excites higher radial order modes,
which are increasingly confined to the near-core zones. Con-
versely, for less evolved models, significant contributions to |η1|

can be found outside of the near-core zones.
Linear heat-driven vibrational instability defines which

modes are available for the non-linear (parametric) couplings we
study in this work. The individual mode frequencies depend on a
variety of factors, including rotation rate, evolutionary stage, and
mass, among others. These frequencies are important, because
they define the optimal linear driving regions of the correspond-
ing modes. The linear driving of g modes in SPB stars, however,
is ultimately reliant upon the opacity profiles inside the Fe bump.
Opacity tables used during stellar modeling define the opacity
gradients in the driving zones, and therefore influence (i) the
number of possible mode triads that can be formed for a spe-
cific model, but also (ii) the linear driving and linear damping
rates themselves. These linear driving and linear damping rates
affect the non-linear observables, such as the computed station-
ary mode luminosity fluctuations and their ratios.

For the few models considered in this work, we find no obvi-
ous correlations for changes in the coupling coefficients (22)
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with changes in model parameters. It is not clear whether such
trends can be detected if the number of models and the number
of considered modes is increased while varying model parame-
ters such as the opacity tables. Because the absolute values of the
detuning-damping ratio, |q|, are larger than unity, it is clear how-
ever that the resonant nature of the coupling strongly determines
the stationary state mode amplitudes (48).

The non-linear frequency shifts (54) for isolated triads are
small enough to neglect when compared with the typical errors
for the frequencies derived from 4-year Kepler light curves, and
the combination phases (82) contain an unconstrained initial
mode phase parameter. The best constraints for asteroseismic
modeling are therefore obtained from the predicted luminosity
fluctuation ratios (76) of coupled modes. Most of these ratios
indicate that the (k, m) = (0, 2) parent g modes considered in
this work have higher apparent mode amplitudes than their cou-
pled (k, m) = (0, 1) daughter g modes. We obtain disparate lin-
ear daughter mode damping rates for each of the isolated mode
triads. If one of the linearly damped daughter modes in the iso-
lated mode triad is weakly damped (linearly; at a rate .13%
that of the parent linear driving rate), we find that that daugh-
ter mode can saturate at a higher amplitude than its coupled
parent mode. We deem it unlikely that isolated solutions exist
in which both daughter-parent amplitude ratios are greater than
unity, because of the typical values for the quality factors and
detuning-damping ratios associated with g modes in SPB star
models.

The monochromatic stationary luminosity fluctuation ratios
are consistent with some of the lowest amplitude ratios A′d/A

′
p

observed in the Kepler space photometric time series of some of
the target SPB stars (see Sect. 5.3). Even the lowest order model
of resonant non-linear mode coupling developed in this work can
thus aid future asteroseismic modeling of rapidly rotating SPB
stars based on g modes, because it offers additional constraints
on some of the observed combination frequencies based on sta-
tionary amplitude ratios of specific, resonantly coupled modes.
This can in principle also serve as an additional source of mode
identification. The logical next step in understanding non-linear
amplitude saturation is to apply this framework to the model-
ing of some of the SPB stars analyzed in V21 by integrating our
monochromatic predictions over the Kepler passband.

It should be investigated whether larger resonantly coupled
networks of modes or higher-order and r − g mode coupling
can saturate some of the unexplained observed candidate cou-
plings in SPB stars. Higher-order coupling will definitely already
include self-saturation effects that are neglected in the current
formalism (see e.g., Van Hoolst et al. 1998 for an example of a
study that included these effects for radial modes while neglect-
ing rotation, and Gastine & Dintrans 2008a,b for direct numeri-
cal simulations of the κ mechanism and non-linear saturation for
radial modes in Cepheids). Mode triads containing g modes not
considered in this work can also explain the presence of some of
the highest observed amplitude ratios obtained in this work.

Other authors, such as Lee (2001) and Aprilia & Saio (2011),
used a mode expansion formalism that did not invoke the TAR
and accounted for linear mode couplings to describe the lin-
ear eigenmodes. They found that their formalism linearly stabi-
lizes some of the g modes that were excited when the TAR was
assumed (i.e., constituting a systematical error). That method,
which truncates the series expansion at some manageable expan-
sion order, is computationally more intensive, and might not be
accurate (Dziembowski et al. 2007). Perhaps the hybrid expan-
sion method discussed in Chapter 7 of Goupil et al. (2013)
that describes linear mode coupling using expansions of modes

whose angular eigenfunctions are described by Hough func-
tions is a good compromise that softens the computational load
with increasing expansion order, compared to the original expan-
sion formalism. Because we find that the non-linear saturation
is crucially dependent on the linear excitation properties, in-
depth investigations of the linear vibrational instability of g
modes in SPB stars using the latest improvements in opacity
computations are crucial for future non-linear excitation stud-
ies (e.g., Daszyńska-Daszkiewicz et al. 2017). Such investiga-
tions will allow us to estimate the systematical error we make
in the theoretical predictions of surface luminosity fluctuation
ratios due to opacity.
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Dziembowski, W. A., Daszyńska-Daszkiewicz, J., & Pamyatnykh, A. A. 2007,

MNRAS, 374, 248
Essick, R., & Weinberg, N. N. 2016, ApJ, 816, 18
Frieman, E., & Rotenberg, M. 1960, Rev. Mod. Phys., 32, 898
Friedman, J. L., & Schutz, B. F. 1978a, ApJ, 221, 937
Friedman, J. L., & Schutz, B. F. 1978b, ApJ, 222, 281
Fuller, J. 2017, MNRAS, 472, 1538
Fuller, J., & Lai, D. 2012, MNRAS, 420, 3126
Fuller, J., Derekas, A., Borkovits, T., et al. 2013, MNRAS, 429, 2425
Fuller, J., Luan, J., & Quataert, E. 2016, MNRAS, 458, 3867
Gaia Collaboration (Prusti, T., et al.) 2016, A&A, 595, A1
Gastine, T., & Dintrans, B. 2008a, A&A, 484, 29
Gastine, T., & Dintrans, B. 2008b, A&A, 490, 743
Gautschy, A., & Saio, H. 1993, MNRAS, 262, 213
Gill, A. 1982, Atmosphere-Ocean Dynamics (New York: Academic Press)
Goldstein, J., & Townsend, R. H. D. 2020, ApJ, 899, 116
Goupil, M.-J., & Buchler, J. R. 1994, A&A, 291, 481
Goupil, M. J., Dziembowski, W. A., & Fontaine, G. 1998, Baltic Astron., 7, 21
Goupil, M., Belkacem, K., Neiner, C., Lignières, F., & Green, J. J. 2013,

Studying Stellar Rotation and Convection: Theoretical Background and
Seismic Diagnostics, 865

Guckenheimer, J., & Holmes, P. 1983, Nonlinear Oscillations, Dynamical
Systems, and Bifurcations of Vector Fields (New York, NY: Springer)

Guo, Z. 2020, ApJ, 896, 161
Guo, Z. 2021, Front. Astron. Space Sci., 8, 67
Hahn, W. 1967, Stability of Motion., Die Grundlehren der mathematischen

Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der
Anwendungsgebiete: 138 (Berlin Heidelberg: Springer)

Harris, C. R., Millman, K. J., van der Walt, S. J., et al. 2020, Nature, 585, 357
Henneco, J., Van Reeth, T., Prat, V., et al. 2021, A&A, 648, A97
Hogg, D. W. 2008, arXiv e-prints [arXiv:0807.4820]
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
Koch, D. G., Borucki, W. J., Basri, G., et al. 2010, ApJ, 713, L79
Kubicek, M., & Marek, M. 1983, Computational Methods in Bifurcation Theory

and Dissipative Structures (Berlin, Heidelberg: Springer)
Kumar, P., & Goodman, J. 1996, ApJ, 466, 946
Lai, D., & Wu, Y. 2006, Phys. Rev. D, 74, 024007
Lee, U. 2001, ApJ, 557, 311
Lee, U. 2012, MNRAS, 420, 2387
Lee, U. 2022, MNRAS, 513, 2522
Lee, U., & Saio, H. 1997, ApJ, 491, 839
Longuet-Higgins, M. S. 1968, Philos. Trans. R. Soc. London Ser. A, 262, 511
Lynden-Bell, D., & Ostriker, J. P. 1967, MNRAS, 136, 293
Mathis, S. 2013, in Transport Processes in Stellar Interiors, eds. M. Goupil, K.

Belkacem, C. Neiner, F. Lignières, & J. J. Green, 865, 23
Mathis, S., & Prat, V. 2019, A&A, 631, A26
McKinney, W. 2010, in Proceedings of the 9th Python in Science Conference,

eds. S. van der Walt, & J. Millman, 56
Michielsen, M., Pedersen, M. G., Augustson, K. C., Mathis, S., & Aerts, C. 2019,

A&A, 628, A76
Michielsen, M., Aerts, C., & Bowman, D. M. 2021, A&A, 650, A175
Miglio, A., Montalbán, J., Noels, A., & Eggenberger, P. 2008, MNRAS, 386,

1487
Moravveji, E., Aerts, C., Pápics, P. I., Triana, S. A., & Vandoren, B. 2015, A&A,

580, A27
Moravveji, E., Townsend, R. H. D., Aerts, C., & Mathis, S. 2016, ApJ, 823,

130
Morsink, S. M. 2002, ApJ, 571, 435
Moskalik, P. 1985, Acta Astron., 35, 229
Mourabit, M., & Weinberg, N. N. 2023, ApJ, 950, 6
Nayfeh, A. H. 1973, Perturbation Methods (New York: Wiley)

Nayfeh, A. H. 1981, Introduction to Perturbation Techniques (New York: Wiley)
Nayfeh, A. H., & Mook, D. T. 1979, Nonlinear Oscillations (Wiley)
Newville, M., Otten, R., Nelson, A., et al. 2020, https://doi.org/10.5281/
zenodo.3814709

Nieva, M. F., & Przybilla, N. 2012, A&A, 539, A143
O’Leary, R. M., & Burkart, J. 2014, MNRAS, 440, 3036
Osaki, Y. 1971, PASJ, 23, 485
Pamyatnykh, A. A. 1999, Acta Astron., 49, 119
Paxton, B., Bildsten, L., Dotter, A., et al. 2011, ApJS, 192, 3
Paxton, B., Cantiello, M., Arras, P., et al. 2013, ApJS, 208, 4
Paxton, B., Marchant, P., Schwab, J., et al. 2015, ApJS, 220, 15
Paxton, B., Schwab, J., Bauer, E. B., et al. 2018, ApJS, 234, 34
Paxton, B., Smolec, R., Schwab, J., et al. 2019, ApJS, 243, 10
Pedersen, M. G. 2022, ApJ, 930, 94
Pedersen, M. G., Aerts, C., Pápics, P. I., & Rogers, T. M. 2018, A&A, 614, A128
Pedersen, M. G., Aerts, C., Pápics, P. I., et al. 2021, Nat. Astron., 5, 715
Prat, V., Mathis, S., Buysschaert, B., et al. 2019, A&A, 627, A64
Przybilla, N., Nieva, M. F., Irrgang, A., & Butler, K. 2013, EAS Publ. Ser., 63,

13
Rauer, H., Catala, C., Aerts, C., et al. 2014, Exp. Astron., 38, 249
Rogers, T. M., & McElwaine, J. N. 2017, ApJ, 848, L1
Schenk, A. K., Arras, P., Flanagan, É. É., Teukolsky, S. A., & Wasserman, I.

2001, Phys. Rev. D, 65, 024001
Schutz, B. F. 1979, ApJ, 232, 874
Schutz, B. F. 1980a, MNRAS, 190, 21
Schutz, B. F. 1980b, MNRAS, 190, 7
Seaton, M. J. 2005, MNRAS, 362, L1
Seydel, R. 2009, Practical Bifurcation and Stability Analysis (New York:

Springer-Verlag)
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Appendix A: Phase-space representation of the
oscillation model within the TAR

Equation (1) can be written as a dynamical system in phase space
that satisfies (following S01)

ζ̇ = T · ζ + F , (A.1)

in which the non-Hermitian operator T is defined as

T =

 −
1
2

B 1

−C +
1
4

B2 −
1
2

B

 , (A.2)

where ζ and F are defined as

ζ (x, t) ≡
[
ξ (x, t)
π (x, t)

]
, F =

[
0

aext

]
, (A.3)

with x the position vector, t the time coordinate, and

π = ξ̇ +
1
2

B (ξ) . (A.4)

By making a time dependence Ansatz similar to Eq. (2),

ζ (x, t) = ζ (x) e−iωt , (A.5)

the equations of motion for free linear oscillations yield the
eigenvalue problem

[T + iω] · ζ (x) = 0 . (A.6)

Because T is non-Hermitian, one should distinguish between
its right and left eigenvectors. The right eigenvectors ζϕ of oper-
ator T are the solutions of[
T + iωϕ

]
· ζϕ (x) = 0 . (A.7)

These right eigenvectors defined by Eq. (A.7) are the eigenvec-
tors of non-conjugated eigenmodes satisfying Eq. (1). We refer
the reader to S01 for details on the left eigenvector problem.

Appendix B: Proof of the orthogonality condition

We give an explicit proof of Eq. (4) that employs the rotating-
frame symplectic product W

(
ξϕ, ξβ

)
, which was defined by

Friedman & Schutz (1978a) as

W
(
ξϕ, ξβ

)
=

〈
ξϕ, ξ̇β +

1
2

B(ξβ)
〉
−

〈
ξ̇ϕ +

1
2

B(ξϕ), ξβ

〉
, (B.1)

where the definition of the inner product in Eq. (5) was used.
Because of the time dependence Ansatz (2), Eq. (B.1) becomes

iW
(
ξϕ, ξβ

)
=

(
ωβ + ω∗ϕ

) 〈
ξϕ, ξβ

〉
+

〈
ξϕ, iB(ξβ)

〉
, (B.2)

after multiplication with i, and using the anti-Hermiticity of
B. The symplectic product W is a conserved quantity (e.g.,
Friedman & Schutz 1978b), hence, we have that

∂W
(
ξϕ, ξβ

)
∂t

= 0 = i
(
ω∗ϕ − ωβ

)
W

(
ξϕ, ξβ

)
, (B.3)

because of Ansatz (2) and the assumed time-independence of Ω.
For ωβ , ω∗ϕ, we obtain from Eq. (B.3) that iW

(
ξϕ, ξβ

)
= 0,

which proves that in that case Eq. (4) holds. For modes with real
eigenfrequencies Ωβ , Ωϕ, Eqs. (B.2) and (B.3) imply that(
Ωβ + Ωϕ

) 〈
ξϕ, ξβ

〉
+

〈
ξϕ, iB(ξβ)

〉
= 0 , (B.4)

which is equal to Eq. (6) for ϕ , β. In the case of complex
conjugate degeneracy (i.e., ωβ = ω∗ϕ), or, in the case of degener-
acy for real-valued eigenfrequencies (i.e., Ωβ = Ωϕ), Eqs. (B.3)
and (B.4) yield no orthogonality conditions. We do not consider
degenerate modes in this work, and instead refer the reader to
S01 for information on the degenerate eigenvalue problem.

For the mode ξϕ, we obtain from Eq. (B.1) that

W
(
ξϕ, ξϕ

)
= −i

(
ωϕ + ω∗ϕ

) 〈
ξϕ, ξϕ

〉
+

〈
ξϕ, B(ξϕ)

〉
. (B.5)

Because of the conserved nature of W
(
ξϕ, ξϕ

)
and the assumed

time-independence ofΩ, we write the time derivative of the sym-
plectic product (B.5) as

∂W
(
ξϕ, ξϕ

)
∂t

= i
(
ω∗ϕ − ωϕ

)
W

(
ξϕ, ξϕ

)
= 0 , (B.6)

indicating that ω∗ϕ = ωϕ (i.e., ωϕ is real) or iW
(
ξϕ, ξϕ

)
= 0.

For real eigenfrequencies Ωϕ, Eq. (B.6) is always fulfilled. This
proves Eq. (6) for ϕ = β, because Eq. (B.5) multiplied by i is
equal to the real-valued constant bϕ defined in Eq. (7) for a real
eigenfrequency Ωϕ. For complex non-degenerate eigenfrequen-
cies ωϕ, Eq. (B.6) is fulfilled only if bϕ = 0, because ωϕ , ω∗ϕ.

An entirely equivalent proof can be constructed using left
contractions of Eq. (3) and its complex conjugate. Lee (2022)
provided an example of such a proof, relying on a different time
dependence Ansatz. Their derived Eq. (11) is similar to Eq. (6),
and is valid for non-degenerate real-valued eigenfrequencies.
The lack of an orthogonality relation for the non-adiabatic
complex-valued eigenfunctions of oscillations in rotating stars
(with associated complex-valued eigenfrequencies) that does not
involve Jordan chain modes (see Appendix A of Schenk et al.
2001) motivates the use of adiabatic real-valued eigenfunctions
(with associated real-valued eigenfrequencies) in the computa-
tions for the mode coupling coefficient (22).

Appendix C: Expressions for the explicit terms of
the three-mode coupling coefficients

We base ourselves on explicit expressions derived by L12 for
the terms that make up the three-mode coupling coefficients
κABC defined in their Eq. (26), and correct some of these expres-
sions before using them to compute the coupling coefficient κβγϕ
defined in Eq. (22). Additionally, we show how we compute the
adiabatic derivative of the adiabatic exponent Γ1,

(
∂Γ1
∂ ln ρ

)
S

, which

appears in one of the terms of κβγϕ .

C.1. Information on the explicit terms of κβγϕ

Equations (14), (15) and (16) contain covariant derivatives of the
displacements ξ and the gravitational potential Φ, which are used
to compute the non-linear coupling term in the Cowling approx-
imation. These covariant derivatives are computed in spherical
coordinates using Eqs. (B6) to (B16) in appendix B of L12, in
which we replace the Hough functions defined in L12, Θ̃, Θ̃θ

and Θ̃φ, by their equivalents Hr(θ) eiφϕ , Hθ(θ) eiφϕ and Hφ(θ) eiφϕ
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defined for a mode ϕ in this work. We further note that equation
(B12) of L12 should read

∇r ξ
φ =

1
r sin θ

∂ξφ

∂r
=

i
r
∂

∂r

(
r

z2

c1 ω̄2

)
Hφ

sin θ
, (C.1)

in which z2 denotes the dimensionless horizontal displacement
vector of a mode in the Cowling approximation, ω̄ is the dimen-
sionless mode frequency of that mode, and c1 is a dimensionless
ratio; all defined in L12.

Following S01 and L12, the terms in the coupling coeffi-
cient integral can be split up in four different integrals κβγ (u)

ϕ

(u ∈ ~4�), similar to the definitions of κ(u)
ABC in Eqs. (B1) to

(B5) of L12, or their equivalents η(u)
1 ≡ κ

βγ (u)
ϕ / εϕ. Equations

(B2) and (B5) of L12 describe how to compute κ(1)
ABC and κ(4)

ABC ,
and are employed in this work to compute the coupling integrals
κ
βγ (1)
ϕ and η(1)

1 , and κβγ (4)
ϕ and η(4)

1 , respectively. We note that in
Eq. (B3) of L12 for κ(2)

ABC , the derivative ∂Γ1
∂ ln ρ should be replaced

by its adiabatic equivalent,
(
∂Γ1
∂ ln ρ

)
S

, before using that equation to

compute the coupling integrals κβγ (2)
ϕ and η(2)

1 . We compute this
adiabatic derivative as described in Appendix C.2. Each of the
integrands of the coupling integrals κβγ (u)

ϕ or η(u)
1 consists of a

factor composed only of quantities derived from the stellar equi-
librium structure, multiplied with some expression that either
involves covariant derivatives of the eigenfunctions, or covariant
derivatives of the gravitational potential Φ and the eigenfunc-
tions themselves (for κβγ (4)

ϕ and η(4)
1 ). The explicit expressions

of these latter factors of the integrands are constructed from the
expressions in Eqs. (B17) to (B22) of L12. We note that the last
four terms of Eq. (B19) in L12 need to be multiplied with a fac-
tor 2 before using them to compute the coupling integrals κβγ (3)

ϕ

and η(3)
1 , and that the first two terms of their Eq. (B19) can be

simplified, because

S
(
∂(r z1)
∂r

(
z1 −

z2

c1 ω̄2

)
∂

∂r

(
r

z2

c1 ω̄2

)
: Hr

[
HθHθ − HφHφ

])
+

S
(
∂(r z1)
∂r

z1
∂

∂r

(
r

z2

c1 ω̄2

)
: Hr

[
δHrHθ −

m Hr Hφ

sin θ

] )
−

S
(
∂(r z1)
∂r

z1
∂

∂r

(
r

z2

c1 ω̄2

)
: Hr

[
HθHθ − HφHφ

])
=

S
(
∂(r z1)
∂r

z1
∂

∂r

(
r

z2

c1 ω̄2

)
: Hr

[
δHrHθ −

m Hr Hφ

sin θ

] )
−

S
(
∂(r z1)
∂r

z2

c1 ω̄2

∂

∂r

(
r

z2

c1 ω̄2

)
: Hr

[
HθHθ − HφHφ

])
,

(C.2)

in which we separated the factors containing the azimuthal angle
φ, and where δHr replaces δΘ̃, which was defined together with
the symmetrical operator S in L12.

Finally, as noted by for example L12, the coupling coefficient
integrals over the spherical star can be transformed into products
of integrals over the radial part of the integrand with integrals
over the angular part of the integrand. The selection rules dis-
cussed in Sect. 2.4 originate from the integral over the angular
part of the integrand of these coupling integrals (see appendix E
for the explicit dependence of the selection rules on the Hough
functions).

C.2. A computation-friendly form of
(
∂Γ1
∂ ln ρ

)
S

In this section, we show that the adiabatic derivative
(
∂Γ1
∂ ln ρ

)
S

,
which should be used in Eq. (B3) of L12, can be written as a
function of non-adiabatic derivatives that are computed in stellar
evolution codes such as MESA (Paxton et al. 2011, 2013, 2015,
2018, 2019). First, let us write a two-dimensional Jacobian as

∂(u, v)
∂(x, y)

≡

∣∣∣∣∣∣∣∣
(
∂u
∂x

)
y

(
∂u
∂y

)
x(

∂v
∂x

)
y

(
∂v
∂y

)
x

∣∣∣∣∣∣∣∣ . (C.3)

Using Eq. (C.3), the expression for
(
∂Γ1
∂ ln ρ

)
S

becomes(
∂Γ1

∂ ln ρ

)
S

= ρ

∣∣∣∣∣∣
(
∂Γ1
∂ρ

)
S

(
∂Γ1
∂S

)
ρ

0 1

∣∣∣∣∣∣ = ρ
∂(Γ1, S )
∂(ρ, S )

. (C.4)

If we then multiply Eq. (C.4) with a Jacobian equal to 1, we can
write(
∂Γ1

∂ ln ρ

)
S

= ρ
∂(Γ1, S )
∂(ρ, S )

∂(ρ, T )
∂(ρ, T )

= ρ

∂(Γ1, S )
∂(ρ,T )
∂(ρ, S )
∂(ρ,T )

, (C.5)

which after using the definition of the Jacobian in Eq. (C.3)
becomes(
∂Γ1

∂ ln ρ

)
S

= ρ


(
∂Γ1

∂ρ

)
T
−


(
∂S
∂ρ

)
T(

∂S
∂T

)
ρ


(
∂Γ1

∂T

)
ρ

 , (C.6)

whose right hand side only contains thermodynamic quantities
that are computed in stellar evolution codes such as MESA.

An adiabatic second-order derivative of adiabatic exponent
Γ1 with respect to mass density ρ appears in coupling coefficients
that describe four-mode interactions (or higher-order derivatives
when higher-order coupling terms are considered). Higher-order
derivatives of the thermodynamic quantities used in Eq. (C.6) are
not readily computed in stellar evolution codes such as MESA,
but would be necessary to obtain an analytical expression for
the adiabatic higher-order derivatives of Γ1. Such higher-order
derivatives can alternatively be estimated from numerical deriva-
tives of Eq. (C.6) when using the output of current state-of-the-
art stellar evolution codes.

Appendix D: Defining cϕ(t) and c∗ϕ(t)

We prove the validity of the expressions (18) for cϕ(t) and c∗ϕ(t)
by making use of the orthogonality relations among the modes.
First, let us derive the complex orthogonality relations contain-
ing complex conjugate modes using the approach in Appendix B.
For W

(
ξ∗ϕ, ξβ

)
, W

(
ξϕ, ξ

∗
β

)
and W

(
ξ∗ϕ, ξ

∗
β

)
we obtain from the def-

inition of the symplectic product in Eq. (B.1) that

W
(
ξ∗ϕ, ξβ

)
= − i

(
ωβ − ωϕ

) 〈
ξ∗ϕ, ξβ

〉
+

〈
ξ∗ϕ, B(ξβ)

〉
, (D.1a)

W
(
ξϕ, ξ

∗
β

)
= − i

(
ω∗ϕ − ω

∗
β

) 〈
ξϕ, ξ

∗
β

〉
+

〈
ξϕ, B(ξ∗β)

〉
, (D.1b)

W
(
ξ∗ϕ, ξ

∗
β

)
= i

(
ωϕ + ω∗β

) 〈
ξ∗ϕ, ξ

∗
β

〉
+

〈
ξ∗ϕ, B(ξ∗β)

〉
. (D.1c)

The orthogonality relation derived from Eq. (D.1a) becomes(
ωβ − ωϕ

) 〈
ξ∗ϕ, ξβ

〉
+

〈
ξ∗ϕ, iB(ξβ)

〉
= 0 , (D.2)

when ωϕ , −ωβ, which has a real-valued equivalent(
Ωβ −Ωϕ

) 〈
ξ∗ϕ, ξβ

〉
+

〈
ξ∗ϕ, iB(ξβ)

〉
= 0 . (D.3)
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Orthogonality relation (D.3) is valid if Ωϕ , −Ωβ. Similarly, we
obtain for Eq. (D.1b) that(
ω∗ϕ − ω

∗
β

) 〈
ξϕ, ξ

∗
β

〉
+

〈
ξϕ, iB(ξ∗β)

〉
= 0 , (D.4)

when ω∗ϕ , −ω
∗
β. The real-valued equivalent of Eq. (D.4) is(

Ωϕ −Ωβ

) 〈
ξϕ, ξ

∗
β

〉
+

〈
ξϕ, iB(ξ∗β)

〉
= 0 , (D.5)

when Ωϕ , −Ωβ. Finally, we have that(
ω∗β + ωϕ

) 〈
ξ∗ϕ, ξ

∗
β

〉
−

〈
ξ∗ϕ, iB(ξ∗β)

〉
= 0 , (D.6)

for Eq. (D.1c) and ωϕ , ω∗β. Its real-valued equivalent(
Ωβ + Ωϕ

) 〈
ξ∗ϕ, ξ

∗
β

〉
−

〈
ξ∗ϕ, iB(ξ∗β)

〉
= δ

ϕ
β b∗ϕ = δ

ϕ
β bϕ , (D.7)

is the complex conjugate of Eq. (6), and is valid for non-
degenerate eigenfrequencies (i.e., Ωϕ , Ωβ). The second equal-
ity in Eq. (D.7) is valid because bβ is a real number for the adia-
batic eigenfunctions used in this work.

Multiplying the term Ωβ ξ (x, t)+ i ξ̇ (x, t)+ iB (ξ (x, t)) with
ξ∗β and integrating over the stellar mass yields〈
ξβ, Ωβ ξ (x, t) + i ξ̇ (x, t) + iB (ξ (x, t))

〉
≡ P . (D.8)

By virtue of the phase space mode expansion (17), we write the
quantity P as

P =
∑
ϕ

(
Ωβ + Ωϕ

)
cϕ (t)

〈
ξβ (x) , ξϕ (x)

〉
+

(
Ωβ −Ωϕ

)
c∗ϕ (t)

〈
ξβ (x) , ξ∗ϕ (x)

〉
+ cϕ (t)

〈
ξβ (x) , iB

(
ξϕ (x)

)〉
+ c∗ϕ (t)

〈
ξβ (x) , iB

(
ξ∗ϕ (x)

)〉
.

(D.9)

If we then substitute the orthogonality relation (6) and a rela-
beled version of orthogonality relation (D.5) in Eq. (D.9), we
get for non-degenerate modes ϕ and β that

P = cβ (t) bβ , (D.10)

assuming Ωϕ , −Ωβ, and using the Kronecker delta in Eq. (6).
Equation (D.10) thus proves Eq. (18a) for non-degenerate modes
ϕ and β that have Ωβ , −Ωϕ, and a non-zero bβ.

Similarly, if we multiply Ωβ ξ (x, t) − i ξ̇ (x, t) − iB (ξ (x, t))
with ξβ and integrate over the stellar mass, we obtain〈
ξ∗β, Ωβ ξ (x, t) − i ξ̇ (x, t) − iB (ξ (x, t))

〉
≡ Q , (D.11)

which, by virtue of the phase space mode expansion (17) can be
written as

Q =
∑
ϕ

(
Ωβ −Ωϕ

)
cϕ (t)

〈
ξ∗β (x) , ξϕ (x)

〉
+

(
Ωβ + Ωϕ

)
c∗ϕ (t)

〈
ξ∗β (x) , ξ∗ϕ (x)

〉
− cϕ (t)

〈
ξ∗β (x) , iB

(
ξϕ (x)

)〉
− c∗ϕ (t)

〈
ξ∗β (x) , iB

(
ξ∗ϕ (x)

)〉
.

(D.12)

The following relations〈
ξ∗β (x) , ξϕ (x)

〉
=

〈
ξ∗ϕ (x) , ξβ (x)

〉
, (D.13a)〈

ξ∗β (x) , iB
(
ξϕ (x)

)〉
= −

〈
ξ∗ϕ (x) , iB

(
ξβ (x)

)〉
, (D.13b)

are valid because of the definition of the inner product and the
anti-Hermiticity of the B operator. Substituting Eq. (D.13) in
orthogonality relation (D.3) yields(
Ωβ −Ωϕ

) 〈
ξ∗β, ξϕ

〉
−

〈
ξ∗β, iB(ξϕ)

〉
= 0 . (D.14)

By substituting the orthogonality relations (D.7) and (D.14) in
Eq. (D.12), we obtain for Ωβ , −Ωϕ that

Q = c∗β (t) bβ , (D.15)

where we use the Kronecker delta in Eq. (D.7). This proves
Eq. (18b) for non-zero bβ and Ωβ , −Ωϕ.

Appendix E: Deriving the meridional selection rule

We derive the meridional selection rule mentioned in Sect. 2.4
based on the fact that a rotating star is invariant under the map
f : (r, θ, φ) → (r, π − θ, φ), in analogy to what was done in S01
for their coupling coefficient. This invariance implies that modes
are either even or odd under the pullback operator f∗ (e.g., S01)

f∗ξ = ξr̂(r, π− θ, φ) er̂ − ξ
θ̂(r, π− θ, φ) eθ̂ + ξφ̂(r, π− θ, φ) eφ̂ . (E.1)

We then have

f∗ξϕ = Zϕ ξϕ , (E.2)

with Zϕ (called the z-parity in S01) equal to 1 if mode ϕ is
an even mode and −1 if it is an odd mode. The radial Hough
function Hr (θ), the latitudinal Hough function Hθ (θ), and the
azimuthal Hough function Hφ (θ) defined in Prat et al. (2019) are
real-valued. Based on Eq. (10) we then have that

f∗ξ∗ϕ = Zϕ ξ
∗
ϕ . (E.3)

By applying the pullback operator f∗ on the coupling coef-
ficient, and taking into account the commutation of f with geo-
metrical operations such as the computation of covariant deriva-
tives (e.g., S01), we can write

f∗κ
βγ
ϕ = κ

(
f∗ξ∗ϕ, f∗ξβ, f∗ξγ

)
= ZϕZβZγ κ

(
ξ∗ϕ, ξβ, ξγ

)
. (E.4)

Because κβγϕ is a number and therefore invariant under f∗, it fol-
lows that(
1 −ZϕZβZγ

)
κ
βγ
ϕ = 0 , (E.5)

resulting in the meridional or z-parity selection rule (S01)

iodd = mod (0 , 2) , (E.6)

where iodd denotes the number of odd modes. Hence, for three-
mode coupling, the z-parity selection rule or meridional selec-
tion rule implies that two or zero odd modes need to be involved
in the coupling, as mentioned in Sect. 2.4, where this is cast into
a condition on the sum of the ordering numbers of the interacting
modes.
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Appendix F: Equivalence of the amplitude
equations for Ω1d ≈ Ω2d − Ω3d

In this section, we show the equivalence of the AEs determined
in Sect. 2.6 for the sum-frequencies Ω1 ≈ Ω2 + Ω3 with those
derived for difference-frequencies Ω1d ≈ Ω2d − Ω3d using the
same methods employed in Sect. 2.6. This equivalence indicates
that the stationary properties of resonant isolated sum-frequency
triads that we derive in the main body of this paper are the same
as those properties that one would derive for the (relabeled) dif-
ference frequencies for quadratic non-linear mode couplings.

To prove this equivalence, we first derive the difference-
frequency AEs using the same procedure as in Sect. 2.6. Here,
we define the resonance condition Ω1d ≈ Ω2d − Ω3d in terms of
the difference-frequency detuning parameter δωd:

J δωd = Ω1d ≈ Ω2d −Ω3d . (F.1)

In Eq. (F.1), the subscript d refers to the fact that we are con-
sidering a difference-frequency resonance. If we then set the
secular-term-generating terms in Eq. (33) equal to zero, use the
difference-frequency resonance condition (F.1), and introduce
the linear growth or linear damping rates (similar to what was
done in Sect. 2.6), we obtain the extended complex AEs for the
difference-frequency resonance Ω1d ≈ Ω2d −Ω3d :

∂ad

∂t1
= γd ◦ ad + 2 i

(
ηd ◦ aMd ◦ΩMd ◦ ed

)
. (F.2)

In the extended complex AEs (F.2), we use the vectors

ad =

a1d

a2d

a3d

 , aMd =

a2d a∗3d

a1d a3d

a∗1d
a2d

 , ed =

 exp(i δωd t1)
exp(−i δωd t1)
exp(i δωd t1)

 , (F.3)

and

γd =

γ1d

γ2d

γ3d

 , ηd =

η
∗
1d

η1d

η∗1d

 ,ΩMd =

Ω1d

Ω2d

Ω3d

 , (F.4)

in which we use the (difference-frequency) coupling coefficient
η1d that is defined as:

η1d3d
2d

= η3d1d
2d

=

(
η2d3d

1d

)∗
=

(
η3d2d

1d

)∗
=

(
η2d1d

3d

)∗
=

(
η1d2d

3d

)∗
≡ η1d .

(F.5)

By introducing real amplitudes Aϕd and phases φϕd as in
Sect. 2.6, aϕd = Aϕd exp

(
i φϕd

)
(with ϕ ∈ ~3�), we obtain the

(real-valued) AEs for difference frequencies,

∂Ad

∂t1
= γd ◦ Ad + 2 |η1d | sin (Υd)

(
ANd ◦ΩMd

)
, (F.6a)

Ad ◦
∂φd

∂t1
= 2 |η1d | cos (Υd)

(
APd ◦ΩMd

)
, (F.6b)

where

η1d = |η1d | e
−i δ1d , Ad =

A1d

A2d

A3d

 , φd =

φ1d

φ2d

φ3d

 , (F.7)

as well as

ANd =

 A2d A3d

−A1d A3d

A1d A2d

 , APd =

A2d A3d

A1d A3d

A1d A2d

 . (F.8)

In Eq. (F.6), we define the generic (frequency-difference) phase
coordinate Υd as

Υd ≡ −δωd t1 + φ1d − φ2d + φ3d − δ1d , (F.9)

which contains the combination phase Φd = φ1d − φ2d + φ3d for
difference frequencies. The time-dependence of Υd is described
by

∂Υd

∂t1
= −δωd +cot (Υd)

(
−γ�d +

∂ ln A1d

∂t1
+
∂ ln A2d

∂t1
+
∂ ln A3d

∂t1

)
,

(F.10)

because the coupling coefficient η1d does not depend on time.
In Eq. (F.10), γ�d = γ1d + γ2d + γ3d . The equation for the time
dependence of Υd is of the exact same form as Eq. (42), which
describes the time dependence of Υ. This suggests that the phase
coordinates Υ and Υd are connected by some direct relation.

Finally, we prove the equivalence of the AEs derived in
Sect. 2.6 and the AEs derived in this Appendix using a rela-
beling operation. The difference frequency Ω1d ≈ Ω2d − Ω3d

can be written as a sum frequency Ω2d ≈ Ω1d + Ω3d . Swapping
labels in the definition of the coupling coefficient η1d defined in
Eq. (F.5) to describe the coupling among modes in this sum-
frequency analogue (dropping the subscript d in the process),
leads to the equivalence of its expression with that of the sum-
frequency coupling coefficient η1 defined in Eq. (22). Perform-
ing the same relabeling operation for the frequency-difference
phase coordinate Υd defined in Eq. (F.9), we obtain that it is
equal to −Υ. Substituting this relation between Υd and Υ in
the difference-frequency AEs (F.6) converts them into the sum-
frequency AEs (39a). The temporal dependence of the individ-
ual mode phases is therefore the same as those described by the
AEs (39b). Hence, the AEs (39) and (42) describe the temporal
evolution of sum and difference frequencies, and the properties
of the modes in these resonances are derived in the main body of
this article.

Appendix G: Materials available online

The MESA and GYRE inlists used to generate our models,
as well as the final model data products themselves can be
accessed using the MESA market place, https://cococubed.
com/mesa_market/inlists.html , which contains a link to
a Zenodo repository. This repository4 contains the respective
inlists and additional information on the modeling process.

We developed a Python code that computes the station-
ary mode amplitude ratios using the formalism described in
this work. This code generates the figures included in this
work. You may download the latest version of the code
from the GitHub repository at https://github.com/JVB11/
AESolver. The online documentation may be found at https:
//jvb11.github.io/AESolver/, and contains examples on
how to manipulate different parts of the code. The inlists for this
Python code that generate the coupling models discussed in this
work, as well as the final data products generated by this code,
can be accessed using the same Zenodo repository that stores the
MESA and GYRE inlists.

4 The repository can directly be accessed using the following link:
https://doi.org/10.5281/zenodo.10814654.
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