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1.  INTRODUCTION

The term “Steady-State Visually Evoked Potentials” 
(SSVEPs) refers to the rhythmic activity observed over 
occipital cortical areas in response to periodic visual 
stimulations, referred to as either repetitive visual stimuli 
(RVS) or more commonly as flickers (Regan, 1966; 
Vialatte et al., 2010). It is posited that SSVEP responses 

either reflect the series of discrete neural responses in the 

primary visual areas (V1, V2, and V3) induced by changes 

in stimulus features or that SSVEP originates from the 

entrainment of neuronal populations’ firing rate to the 

rhythm of the external sensory stimulation (Cohen & 

Gulbinaite, 2017). SSVEP responses have been widely 

used for fundamental research in the field of cognitive 
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neuroscience (Norcia et  al., 2015). In these frequency-
tagging paradigms, flickers serve as experimental probes 
to explore functional links between oscillatory brain activ-
ity and mechanisms underlying cognitive functions such 
as attention (Gulbinaite et al., 2017, 2019; Morgan et al., 
1996; Zhou et al., 2021), face processing and integration 
of visual features (Boremanse et al., 2013, 2014), working 
memory (Ellis et al., 2006; Gulbinaite et al., 2014; Peterson 
et al., 2014; Silberstein et al., 2000, 2001), processing of 
low-level visual features (Campbell & Maffei, 1970), 
semantic processing (Wang et al., 2021), as well as an 
index of mental states such as vigilance (Silberstein et al., 
1990) and fatigue (Makri et al., 2015; Mun et al., 2012). In 
parallel, the rapid onset of the sustained responses and 
the high discriminability following a single stimulation 
established SSVEPs as a ubiquitous paradigm for the 
development of reactive Brain-Computer Interfaces (BCI) 
(Chevallier et al., 2021; Zerafa et al., 2018). The associa-
tion of flickers of varying frequencies/phases to interac-
tive elements embedded within a general user interface 
enables to output commands based on the classification 
of SSVEP responses (Kalunga et  al., 2016; Nakanishi, 
Wang, et al., 2018; Tresols et al., 2022). The robustness 
of the SSVEP responses and the possibility to evoke 
responses over a wide range of frequencies (Herrmann, 
2001; Ladouce et  al., 2021) allow for fast and reliable 
decoding of users’ intention over a large number of 
classes under the form of flickering interactive elements 
associated with input commands (Chen et  al., 2015; 
Nakanishi, Wang, et al., 2018).

While SSVEP paradigms offer a wide range of applica-
tions, prolonged exposure to flickering stimuli adversely 
impacts user experience due to their visual intrusiveness 
and distracting nature (Duszyk et  al., 2014; Ladouce 
et al., 2021; Wu & Lakany, 2013; Zemon & Gordon, 2006). 
Indeed, the presence of high contrast and luminance 
intensity flickering elements within a visual environment 
yields strong bottom-up influences that capture visual 
attention at the expense of task-directed (top-down) 
visual exploration strategies (Kinchla & Wolfe, 1979). Fur-
thermore, the intensity of visual stimulation is typically 
heightened (in terms of luminosity, contrast, size, and 
closeness to the retina) to enhance neural responses 
(Ladouce, Darmet, et  al., 2022; Reitelbach & Oyibo, 
2024). These practices have been linked to various incon-
veniences, ranging from minor visual discomfort (Volosyak 
et al., 2011) and lasting eye strain (Zhu et al., 2010) to 
induced mental fatigue (Makri et al., 2015) and possible 
episodes of drowsiness (Cao et al., 2014; Ortner et al., 
2011; Patterson Gentile & Aguirre, 2020). In more severe 
instances, the exposure to intense intermittent light stim-
ulation poses a risk of triggering epileptic seizures, par-
ticularly among individuals who are sensitive to light 

(Fisher et al., 2005). These issues have significant conse-
quences for the safety and user experience of SSVEP-
based applications, constraining the user base and 
imposing limitations on the intensity and duration of 
exposure to flickering stimuli.

One of the proposed solutions to address these chal-
lenges is to increase flicker frequency. In SSVEP para-
digms, flicker frequencies typically fall within the 4-20 Hz 
range (Reitelbach & Oyibo, 2024), primarily owing to his-
torical limitations related to the limited refresh rates of 
standard monitors (Nakanishi et al., 2014). Photic stimuli 
oscillating between 15 and 25 Hz have, however, found 
to be the most strongly associated with photosensitive 
epileptic seizures (Fisher et al., 2005). Increasing flicker 
frequencies over 30 Hz, therefore, may be a solution to 
address SSVEP safety issues. While previous studies 
using LEDs have demonstrated that SSVEP responses 
can be elicited over frequencies up to 90 Hz (Herrmann, 
2001; Pastor et  al., 2003), their signal-to-noise ratios 
(SNRs) decrease drastically over 30  Hz (Chen, Wang, 
et  al., 2019; Murillo López et  al., 2021). Although the 
reduction in SNR limits the application of high-frequency 
flickers within the frame of BCI (Ladouce et  al., 2021), 
flickers were reportedly less intrusive (Hoffmann et  al., 
2009) and deemed more visually comfortable (Ladouce, 
Darmet, et  al., 2022) as a function of frequency. These 
findings are in line with the critical flicker-fusion frequency 
threshold (around 67  Hz) over which intermittent light 
stimulation stops being perceived as flickering but rather 
as a continuous light (Eisen-Enosh et al., 2017). Leverag-
ing the feasibility of eliciting neural responses to stimuli 
whose intermittence is imperceptible, the Rapid Invisible 
Frequency Tagging (RIFT) approach was proposed 
(Drijvers et  al., 2021; Pan et  al., 2021; Zhigalov et  al., 
2019). While showing promise for the investigation of 
cognitive processes (Brickwedde et  al., 2022; Minarik 
et al., 2023; Seijdel et al., 2023), this approach necessi-
tates the use of projectors with high refresh rates 
(1440 Hz) to present stimuli. The differentiation of neural 
responses induced by such high-frequency flickers has 
primarily been achieved using magnetoencephalography 
(MEG), with only one study employing a high-density 
64-channel EEG (Arora et al., 2024). Both prerequisites, 
employing a high refresh rate stimulator for stimulus pre-
sentation and utilizing a high-density neuroimaging sys-
tem for capturing neural responses, impose substantial 
technical constraints. These limitations restrict the wide-
spread implementation of the RIFT approach across 
computerized experimental paradigms typically dis-
played on regular desktop monitors but also to naturalis-
tic settings that aim for greater ecological validity.

An alternative approach that offers a more readily 
implementable solution to mitigate the intrusive nature of 
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flickers involves reducing the contrast and intensity of 
stimuli by lowering their amplitude modulation depth 
(Mouli & Palaniappan, 2016). Stimulus amplitude modula-
tion depth refers to the contrast difference between the 
two antagonist states of a flicker. By decreasing the lumi-
nosity of the brightest state of the flicker, which in turn 
diminishes the amplitude modulation depth, also leads to 
a reduction in the overall mean luminance intensity of the 
flickering stimulation. Some studies have demonstrated 
the feasibility of this method by inducing SSVEP 
responses using imperceptible flickers with LEDs, where 
the amplitude modulation depth was reduced below the 
perceptual visibility threshold (Lingelbach et  al., 2021; 
Tsoneva et al., 2023). While these latter offer interesting 
insights about the use of such low amplitude depth VEPs, 
they lack temporal information regarding the signal-to-
noise measures over the occipital in response to such 
stimuli. Furthermore, the reliance on LEDs in these exper-
iments limits their applicability for designing cognitive 
paradigms with more complex stimuli. To address this 
issue, some recent studies aiming to design visually com-
fortable flickers for SSVEP-based BCI applications have 
shown that SSVEP responses can be reliably elicited by 
flickers of substantially attenuated intensity presented on 
a smaller display (desktop monitor) (Cabrera-Castillos 
et al., 2023; Ladouce et al., 2021; Ladouce, Darmet, et al., 
2022). A 60% reduction in maximal amplitude modulation 
depth was identified as the optimal compromise between 
user comfort (which improves as contrast decreases) and 
BCI system performance. Furthermore, higher classifica-
tion performance has been achieved using low-contrast 
flickers than high-frequency flickers (Ladouce, Darmet, 
et al., 2022; Xu et al., 2023). Despite a significant reduc-
tion in intensity, the flickers utilized in the aforementioned 
studies remained visible. It is, therefore, crucial to dimin-
ish the strength of these influences for the effective appli-
cation of frequency-tagging paradigms in experimental 
paradigms aimed at investigating attention. For instance, 
can temporal dynamics of SSVEP response elicited by 
subliminal flickers be captured over the course of experi-
mental tasks? Furthermore, does this measurement 
exhibit sufficient sensitivity to effectively capture moment-
to-moment changes in SSVEP response associated with 
attention fluctuations? The characterization of the modu-
lation of SSVEP response induced by subliminal flicker 
modulation over time is critical for evaluating its signifi-
cance within the context of frequency-tagging paradigms, 
where this modulation holds crucial information. As such, 
the validity of imperceptible flickers within the frame of a 
frequency-tagging paradigm, which implies the superpo-
sition of flickers onto experimental tasks, remains to be 
examined.

The present study aims to build upon our previous 
research (Ladouce, Mustile, et  al., 2022), which uses 
amplitude depth reduction to improve the design of flick-
ers for SSVEP-based BCI applications. We take this 
approach a step further by exploring whether periliminal 
and subliminal flickers can elicit SSVEP responses that 
reflect the time course of attentional processes. The nov-
elty of this work lies in the systematic characterization of 
SSVEP responses elicited by stimuli flickering near and 
below perceptual thresholds while reporting on user expe-
rience and classification performance associated with 
such very low-intensity stimuli. To achieve this objective, 
we designed a simple attentional task in which partici-
pants were instructed to detect and respond to the 
appearance of a cued red-circle target stimulus on either 
the left or right side of the screen. Throughout the task, 
two flickers were simultaneously presented on the left and 
right sides of the screen, flickering at frequencies of 13 
and 15 Hz, respectively. The amplitude modulation depth 
of both flickers was manipulated across three experimen-
tal conditions: 70% of maximal amplitude modulation 
depth serving as a control condition, the perceptual visibil-
ity threshold or periliminal condition, and below the per-
ceptual visibility threshold or subliminal condition. 
Additionally, we aim to assess whether this reduction in 
flicker intensity mitigates visual fatigue and distraction. 
The implementation of frequency tags is typically achieved 
by turning areas of interest in the experimental environ-
ment into flickers of distinct frequencies. In the present 
study, flickers were placed in the background of the spa-
tial areas that are relevant to the detection task, the left 
and right sides of the screen where the target red circles 
appear. The primary aim of this study is, therefore, to eval-
uate the validity of periliminal and subliminal flickers to 
elicit reliable SSVEP responses while improving user 
experience. Alongside the characterization of SSVEP 
responses SNR and temporal features, subjective assess-
ment measures of visual comfort, distraction, and fatigue 
induced by the flickers were compared across conditions. 
Finally, we discuss the classification performance achieved 
using SSVEP responses elicited by the proposed perilimi-
nal and subliminal flickers, considering their implications 
for the development of SSVEP-based Brain-Computer 
Interfaces (BCI) and cognitive neuroscience frequency-
tagging approaches applicable to naturalistic contexts.

2.  METHODS

2.1.  Participants

Twenty-four participants (mean age = 25 years, SD = 3.5, 
22 right-handed, 16 males) took part in this study. The 
sample size was determined based on previous work 
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using a frequency-tagging approach to study spatial 
attention (Gulbinaite et al., 2014, 2017). The entire dura-
tion of the study including participant briefing, preparation 
for EEG data collection, and completing the experiment 
(breaks between experimental blocks included) did not 
exceed 90  minutes. The participants received a 10€ 
voucher compensation for their participation. All partici-
pants had a normal or corrected-to-normal vision. Written 
informed consent was obtained from all participants 
before the experiment. Exclusion criteria such as a history 
of epileptic seizures, visually induced migraines, and gen-
eral photosensitivity were screened. The study was 
approved by the ethics committee of the University of 
Toulouse (CER approval number 2020-334) and was car-
ried out in accordance with the declaration of Helsinki.

2.2.  Paradigm

The experimental paradigm consisted of a simple target 
detection task in the visual modality. The participants 
were instructed to respond as promptly and accurately 
as possible to the presentation of a target visual stimulus 
presented on either side of an LCD monitor screen (26.3 
inches, 1920  x  1080 pixels, maximal luminance of  
400 cd/m2, 120  Hz refresh rate). The participants were 
comfortably seated in an experimental room with the light 
shut off while facing a monitor positioned 50 centimeters 
in front of their eyes. Each trial comprised three distinct 
phases as illustrated at the top of Figure 1. Initially, a fix-
ation cross was displayed at the center of the screen, 
prompting participants to focus their gaze on it. After 3 
seconds, a cue, under the form of a right or left arrow, 
replaced the fixation cross, prompting the participants to 
shift their attention to the corresponding side of the 
screen. Three seconds after the cue, a red circle would 
appear on that side, prompting participants to swiftly 
respond using the keyboard’s left or right arrow keys. The 
participants were instructed to keep fixating on the side 
of the screen where the target was for the remaining of 
the target phase of the trial (3 seconds after target onset). 
The trial was concluded by the brief presentation of per-
formance feedback displayed at the center of the screen 
indicating whether the response was correct or not and 
the reaction time for the last trial. Throughout the three 
phases of each trial (fixation, cueing, target), the left and 
right sides of the screen (partitioned into three equally 
sized panels) were flickering at frequencies of 13 and 
15 Hz, respectively (Ladouce, Darmet, et al., 2022; Murillo 
López et al., 2021). The participants completed a block of 
30 trials per condition for a total of 90 trials for the whole 
experiment (lasting about 15 minutes). The participants 
had the opportunity to take breaks between experimental 
blocks. The target location (left or right) was randomly 

alternating within blocks. The condition order was coun-
terbalanced across participants.

2.3.  Repeated visual stimuli

The periodically repeating visual stimuli (RVS), referred to 
here as flickers, were presented throughout the succes-
sive phases of the trials. Both flickers had a width of  
640 pixels and a height of 1080 pixels and were placed 
on the leftmost and rightmost parts of the screen. Each 
flicker was assigned a distinct frequency, effectively act-
ing as frequency-tagging probes, that allows not only the 
extraction of SSVEP responses to the flicker juxtaposed 
to the attended visual space but also to characterize the 
SSVEP response elicited to the task-irrelevant contralat-
eral side. Assigning specific frequencies to the flickers 
that appear on the screen’s sides could have a significant 
impact on the strength of SSVEP (Steady-State Visually 
Evoked Potential) responses due to various factors. In 
the EEG power spectrum, it is common to observe lower 
energy at higher frequencies, following a 1/f power law 
curve. Previous work investigating the variation of SSVEP 
response SNR across the frequency spectrum revealed 
that flickering rates between 10 and 20 Hz elicited SSVEP 
responses with a notably high-signal-to-noise ratio (SNR) 
(Ladouce et al., 2021; Ladouce, Darmet, et al., 2022). To 
avoid the confounds related to endogenous oscillations 
within the alpha frequency range (8-12 Hz), we selected 
flicker frequencies of 13 and 15 Hz. Since the analysis 
focused on the characterization of the spectral response 
at the fundamental stimulation frequencies, the flickers 
waveforms were square shaped to maximize SSVEP 
response amplitude (Chen, Wang, et al., 2019; Teng et al., 
2011). The flickers were presented on top of a gray back-
ground (value of 130 on the gray scale) whose luminance 
was of 124 cd/m2 (measured using a digital light meter 
from Extech Instruments). The maximal amplitude depth 
was defined as the gray scale range between this gray 
background color (OFF phase, see Fig. 1B) to the bright-
est white (ON phase: value of 255 on the gray scale, see 
Fig.  1B). Therefore, reduction in amplitude modulation 
depth was achieved through a reduction of the contrast 
between the gray scale values of the ON and OFF phases. 
For instance, the control flickers with an amplitude mod-
ulation depth of 70% would alternate between 130 and 
130 + (255 − 130) × 0.7 = 217 on the gray scale.

2.4.  Definition of perceptual visibility threshold

The contrast between the two alternating states of the 
flickers used in the periliminal and subliminal conditions 
was defined based on individual perceptual visibility thresh-
olds. The perceptual visibility threshold was established 
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through a two-phase protocol in which a series of blocks 
containing four trials (both the 13 and 15 Hz flickers and 2 
static stimuli of 400 x 400 pixels) were presented in a suc-
cessive random order for 1 second (with 1 second of inter-
stimulus interval) in the center of the screen. The participants 
were instructed to press a key whenever they detected a 
flickering stimuli. The initial descending staircase started at 
5% of the maximal amplitude modulation depth and grad-
ually decreased in steps of -0.1% until the participants 
could not reliably tell whether the flicker was present or not 
(more than two errors were committed over the last block). 
This first descending phase was followed by an ascending 
staircase with a step increase of + 0.02% to further refine 
the definition of the perceptual visibility threshold. This 
ascending phase was concluded once the participant 
identified the two flickers correctly within a block. The 

amplitude modulation depth of the periliminal flickers was 
based on the perceptual visibility threshold, whereas the 
amplitude modulation depth of subliminal flickers was set 
to one increment step (0.02% of maximal contrast) below 
this threshold.

2.5.  EEG data acquisition and processing

EEG data were recorded from 32 active (Ag/AgCl) elec-
trodes fitted in an elastic cap according to the 10−20 
international system and connected to a LiveAmp ampli-
fier (Brain Products, Munich, Germany). The ground elec-
trode was placed at the Fpz electrode location with all 
electrodes referenced to FCz electrode. The electrode 
impedance was brought below 15 kΩ prior to the record-
ing through the use of conductive gel. The data were 

Fig. 1.  (A) Schematic representation of a trial course. The monitor screen (26.3 inches, 1920 x 1080 resolution, 400 cd/m2,  
120 Hz refresh rate) was divided into three areas of equal sizes: left, central, and right. Flickers were presented on the 
left and right areas at 13 and 15 Hz, respectively, and for the whole duration of a trial (approximately 9 seconds). Trials 
began with the presentation of a fixation cross in the central area to which participants were instructed to fixate for 3 
seconds. The second phase of the trial consisted of the presentation of a directional cue pointing toward either the left 
or the right areas. During this second phase, lasting for 3 seconds, the participants were instructed to shift their gaze to 
the corresponding area. In the final phase, a salient visual target (red circle) appeared in the middle of the cued area. The 
participants needed to respond to the apparition of the target stimulus as fast as possible with a congruent key press 
(either left or right arrow). Three seconds after the target stimulus onset, both flickers disappeared and the red circle was 
replaced by a short (0.5 second) feedback regarding the participant’s response time. The end of the trial is followed by  
an intertrial interval period where nothing is displayed on the screen except for the gray background for 3 seconds.  
(B) Illustration of the Repeated Visual Stimuli (flickers) design. The flickers waveforms were square shaped and, therefore, 
consisted of the periodic alternation between two “on” and “off” states. The flickers amplitude modulation depth was 
manipulated across conditions (detailed in the Repeated visual stimuli section). The control condition used 70% of the 
maximal contrast, whereas values for periliminal and subliminal conditions were defined on a single-subject basis using 
a contrast perceptual threshold staircase protocol. (C) The horizontal violin plot represents the distribution of perceptual 
thresholds (amplitude modulation depth below which participants could not detect flickers presented on the screen) 
across participants.
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acquired at a rate of 500 Hz with an online digital band-
pass filter ranging from 0.1 to 250  Hz. At the onset of 
every stimulus presentation, an event trigger was gener-
ated by the stimulus presentation program (Python code 
available1) and synchronized to the EEG data stream 
through Lab Streaming Layer (LSL, Kothe et  al., 2024) 
data synchronization system.

The raw continuous EEG data underwent an offline, 
bandpass filtering (zero phase, acausal, filter order: 1651, 
-6dB) between 1 and 40 Hz (cutoff frequencies at 0.5 and 
40.5 Hz). Electrodes presenting poor signal quality (e.g., 
due to disconnections or impedance changes throughout 
the recording) were identified using a statistical approach. 
As a result, channels whose average power spectral 
activity was deviating from more than three standard 
deviations around the median of all channels’ power 
spectra were spherically interpolated based on signals 
recorded from neighboring channels. A maximum of two 
channels were interpolated as a result of this approach, 
which concerned only a few datasets. Indeed in most 
datasets, no channel was identified as exhibiting an 
abnormal level of noise (mean = 0.37, SD = 0.64, min = 0, 
max = 2). The data were then re-referenced to the aver-
age of all channels. An infomax Independent Component 
Analysis (ICA, Makeig et al., 1995) was then performed 
on the continuous data. The number of Independent 
Components (ICs) to compute was adjusted to match 
data rank deficiency stemming from the interpolation and 
average referencing applied during earlier preprocessing 
stages (Delorme & Makeig, 2023). Artifactual ICs were 
then identified based on classification confidence scores 
provided by the IClabel algorithm (Pion-Tonachini et al., 
2019). ICs whose classification confidence scores were 
above 70% for the ocular, muscular, heart rate, line 
noise, electrode, and other classes were discarded. As 
a result of this pruning, a mean of 13.4 (SD = 2.45) ICs 
were discarded resulting in an average of 18.6 (58%) 
remaining components per dataset. This artifactual ICs 
pruning strategy is relatively conservative with respect 
to the guidelines regarding the ratio of bad ICs pro-
posed in Klug & Gramann (2021). Continuous EEG data 
were then epoched around event timestamps (0 to 
9 seconds epochs with the fixation phase onset as time 0, 
see Figure 1).

2.6.  Measures

2.6.1.  User experience assessment

The participants filled out a series of questions regarding 
their subjective experience after going through every 

block of each experimental condition (control, periliminal, 
and subliminal flicker intensity whose order was counter-
balanced across participants). The participants were sur-
veyed regarding how visually straining and mentally tiring 
the last experimental block was but also how distracting 
were the flickers for the performance of the target detec-
tion task using a series of 11-point visual analog scales. 
The three items were formulated as follows: On a scale 
from 0 to 10, please rate the following statements: “I 
experienced visual discomfort/eye strain during the task” 
(0: experience of high discomfort/eye strain - 10: absence 
of discomfort/eye strain), “I found the task mentally tiring” 
(0: mentally tiring, 10: not mentally tiring), “The flickers 
were distracting me from performing the main task”  
(0: flickers were highly distracting - 10: flickers were not 
distracting).

2.6.2.  Behavioral analyses

The accuracy and speed of participants’ responses to 
the presentation of target stimuli were derived from left 
and right key presses recorded during data collection. 
More precisely, the timing and class type (left or right) of 
the first key press following target onset were extracted 
and interpreted accordingly to their corresponding exper-
imental event. As such, a response was recorded as cor-
rect if the keystroke following the target onset was 
congruent with the target location. Conversely, the 
response was considered incorrect if the keystroke was 
incongruent with the target location or in the absence of 
a response within the 3 seconds following the apparition 
of the target.

2.6.3.  SSVEP responses analyses

This study first characterized the magnitude of the SSVEP 
elicited for each frequency for each condition using 
Rhythmic Entrainment Source Separation (RESS, Cohen 
& Gulbinaite, 2017). This comparison was performed on 
signal-to-noise ratio (SNR) measures computed at RESS 
component level as recommended by Cohen and 
Gulbinaite (2017). First, channel-to-channel covariance 
matrices from narrow-band filtered data at stimulation 
frequencies (using a gaussian-shape filter of full-width 
half maximum (FWHM) = 1 Hz) and neighboring frequen-
cies (R matrices) (distance  =  1  Hz, neighbor filters 
FWHM = 1 Hz) were computed on the time period corre-
sponding to the cue and target phases of the epoched 
data (ranging from 0 to 6000  milliseconds after cue 
onset). A generalized eigen decomposition was com-
puted between the frequency stimulation and the aver-
age of neighboring frequencies covariance matrices. The 
eigenvector with the largest eigenvalue was selected as 1  https://github​.com​/sladouce​/periliminal​-SSVEP

https://github.com/sladouce/periliminal-SSVEP
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the main RESS component. The latter component was 
then back projected (essentially acting as a spatial filter) 
to the time series EEG data to maximize the SNR of 
SSVEP responses. Since the RESS acts as a spatial filter 
that maximizes SNR at stimulation frequency, an addi-
tional normalization step is advised to counteract its 
overfitting, as demonstrated in Cohen and Gulbinaite 
(2017). Here, this normalization was achieved by com-
puting a second RESS component centered on the non-
target stimulation frequency (e.g., 15 Hz for a left target 
trial) for the same time period. For each single trial, the 
projection of the nontarget RESS component on the time 
series signal was, therefore, subtracted from the target 
RESS component EEG signal. This normalization, there-
fore, allows to characterize the amplitude of the attention 
modulation effect through the difference of SSVEP 
responses to the attended frequency-tagged area and 
the SSVEP response to the nonattended area.

2.7.  Statistical analyses

A series of repeated measures analysis of variance 
(ANOVA) were used to investigate the effects of several 
factors such as flickers intensity (control, periliminal, sub-
liminal), trial phase (fixation, cue, target), and flicker fre-
quency (13  Hz left, 15  Hz right) on subjective user 
experience measures, task performance measures, and 
spatiotemporal features extracted from EEG signals. 
Holm corrections for multiple comparisons were applied 
to all post hoc paired-sample t-tests carried out to inves-
tigate main effects of and interactions between factors 
included in the repeated measures ANOVAs.

2.8.  Threshold between baseline activity  
and frequency-tagged SSVEP responses

The horizontal lines superposed to the top plots included 
in Figure  3 represent the cutoff point between mean 
baseline activity recorded at the SSVEP frequency during 
the initial fixation phase (0 to 3 seconds after trial onset) 
and the SSVEP response recorded during the following 
cue and target phases (3 to 9 seconds after trial onset) of 
all trials. This threshold was computed for each condition 
separately using a decision tree classifier trained on 
single-trial data for both the fixation-baseline and follow-
ing phases of the trials obtained from all participants. The 
parameters used to initiate the training of the decision 
tree classifier were that a maximum of two features would 
be considered and that the decision tree would have a 
maximal depth of two nodes. The computed thresholds 
provide a graphical representation of the minimal SSVEP 
amplitude (computed using the RESS method) required 
to distinguish between phases of the trials during which 

visual attention was directed toward a frequency-tagged 
area or not.

2.9.  Classification of spatial attention

In the present experimental paradigm, the frequency-
tagged areas of interest, where task-related objects were 
displayed, were the left and right parts of the screen. We 
investigated the potential to estimate the spatial atten-
tion’s location (whether directed right or left) at the individ-
ual trial level during the cueing phase across three 
conditions of amplitude depth modulation. This binary 
classification of spatial area attended (left versus right 
side, frequency tagged at 13 and 15 Hz, respectively) was 
performed on a single-trial basis for each type of RVS 
amplitude separately. The data recorded during the cueing 
phase (when participants oriented their attention toward 
the cued side of the screen) were subjected to both RESS 
filters (13 and 15 Hz). This phase of the trial was selected 
as it marked the period over which a shift of spatial atten-
tion from the central fixation point to one of the frequency-
tagged areas occurred. The amplitude of the RESS 
component for both filters was extracted and used to train 
a Linear Discriminant Analysis (LDA) classifier imple-
mented using scikit-learn (version 1.3.2) Python libraries. 
The performance was evaluated in terms of accuracy 
using a stratified fivefold cross-validation approach. The 
average accuracy across the five folds was computed and 
reported for each subject and flicker intensity condition.

The assumption that chance level accuracy within the 
frame of a binary classification problem equals 50% only 
holds in theory and concerns datasets with an infinite 
number of samples. In the present study, as in most neu-
rophysiological recordings, the number of samples 
recorded within each dataset is limited. Substantial vari-
ance in classification accuracy has been observed among 
small datasets (Combrisson & Jerbi, 2015). Therefore, the 
statistical significance thresholds of classification perfor-
mance above chance level need to be adjusted. Here, the 
statistical significance threshold was determined to a null 
distribution of classification accuracies computed 
through random permutations of class labels (Combrisson 
& Jerbi, 2015). For each dataset, the original (unper-
muted) classification accuracy was interpreted with 
respect to the distribution of classification performances 
obtained from the permutation of class labels of the same 
dataset repeated 200 times. The tails of the permutation 
distribution provide statistical significance boundaries for 
a given rate of false positives. As such, if the original clas-
sification accuracy is above the 95 or 99 percentiles 
(respectively, 68 and 72% accuracy) of the empirical dis-
tribution, then the classification performance is signifi-
cant with α = .05 and α = .01, respectively.



8

S. Ladouce and F. Dehais	 Imaging Neuroscience, Volume 2, 2024

3.  RESULTS

3.1.  User experience

A repeated measures ANOVA with flicker intensity as a 
factor was carried out on subjective assessments of 
visual comfort, distractibility, and mental fatigue induced 
across flicker intensity conditions. The modulation of 
flickers intensity had a main effect [F(2,46)  =  112.488, 
p < .001, ηp

2 = .830] on the reported visual comfort. More 
pointedly, the control condition was reported as signifi-
cantly less comfortable visually than both the periliminal 
[t(1,23)  =  12.383, p  <  .001, d  =  2.528] and subliminal 
[t(1,23) = 13.522, p < .001, d = 2.76] conditions, as can be 
observed in Figure  2. No significant difference was 
observed between subliminal and periliminal flickers in 
terms of visual comfort [t(1,23)  =  1.139, p  =  .261, 
d = .232]. The intensity of the background flickers had a 
main effect [F(2,46) = 214.35, p < .001, ηp

2 = .903] on how 
distracting they seemed to the participants. More pre-
cisely, the high-amplitude flickers were deemed as more 
distracting than both the periliminal [t(1,23)  =  17.415, 
p  <  .001, d  =  3.555] and subliminal [t(1,23)  =  18.406, 
p < .001, d = 3.757] flickers, as apparent from Figure 2. 
No significant difference was found between subliminal 
and periliminal flickers in terms of distraction [t(1,23) = 
0.991, p = .327, d = .202]. Similarly flickers intensity had 
a main effect [F(2,46) = 137.78, p < .001, ηp

2 = .857] on 
how mentally tired the participants felt. The control con-
dition induced more fatigue than both the periliminal 
[t(1,23) = 13.384, p < .001, d = 2.732] and the subliminal 
[t(1,23)  =  15.196, p  <  .001, d  =  3.102] conditions, as 
reflected by Figure 2.

3.2.  Behavioral performance

Task performance was assessed in terms of accuracy and 
reaction time. The task consisted of the detection of a tar-
get stimulus and was purposefully designed to be easy. 
Indeed information regarding the target stimulus position 
was provided in the form of cues for an extended period 
of time preceding target stimulus onset. This priming was 
always congruent (i.e., true, as opposed to incongruent/
incorrect cues commonly used in Posner paradigms, for 
example) and, therefore, high accuracy and low reaction 
time were expected. The response accuracy reached 
100% in all conditions. While response accuracy was 
subject to a ceiling effect, reaction time may provide a 
better metric to evaluate task performance as a proxy of 
participants’ attention. A factorial repeated measures 
ANOVA with flickers intensity (control, threshold, sublimi-
nal) and target stimuli location (left, right) as factors were 
performed on reaction times.

The analysis did not reveal a main effect of flickers 
intensity [F(2,46) = 3.132, p = .053, ηp

2 = .120] nor stimu-
lus location [F(1,23) = 2.488, p = .128, ηp

2 = .098] on the 
average reaction time. No interaction between the two 
factors was found to affect the responsiveness of the 
participants to the onset of target stimuli [F(2,46) = 0.888, 
p = .418, ηp

2  = .037].

3.3.  SSVEP analyses

A 3 x 3 x 2 repeated measures ANOVA with flickers inten-
sity (control, at the perceptual visibility threshold, below 
perceptual visibility threshold), trial phase (fixation cross, 
cue, target), and target stimuli location (left, right) were 

Fig. 2.  Distribution envelopes of user experience ratings related to visual comfort, mental tiredness, and flicker 
distraction across flicker intensity conditions (control in dark gray, periliminal in light gray, and subliminal in dotted lines). 
Subjective assessments were collected using 11-point analog scales. The boxplots within each distribution envelope 
illustrate the quartiles and central mean of the data.
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conducted on signal-to-noise measures computed using 
the RESS method. The flickers intensity had a main effect 
on the SSVEP response SNR [F(2,46) = 11.312, p < .001, 
ηp
2 =  .330]. The SSVEP response SNR was also mainly 

affected by the trial phase [F(2,46) = 29.109, p <  .001, 
ηp
2 = .559]. There was a main effect of stimulus frequen

cy [F(1,23) = 9.018, p <  .01, ηp
2   =  .282] on the SSVEP 

response SNR. Moreover, interactions between flickers 
intensity and trial phase [F(4,92)  =  8.831, p  <  .001, 
ηp
2 =  .277] and between trial phase and stimulation fre-

quency [F(2,46) = 6.572, p < .01, ηp
2 = .222] were found to 

affect SSVEP SNR. There was no effect of the interaction 
between stimulation frequency and flicker intensity on 
SSVEP response SNR [F(2,46) = .533, p > .05, ηp

2 = .023]. 
The three-way interaction did not have a main effect on 
SSVEP response amplitude [F(4,92)  =  .931, p  >  .05, 
ηp
2 = .039]. Post hoc analyses revealed that measures of 

SSVEP SNR were significantly higher in the control con-

dition than in both the periliminal [p < .05, d = .587] and 
subliminal [p < .001, d = .963] conditions. No significant 
difference in terms of the overall SSVEP SNR was found 
between the subliminal and periliminal conditions [p = 
.072, d = .376]. The SSVEP response was significantly 
lower during the fixation phase than during both the cue-
ing [p < .001, d = 1.385] and response [p < .001, d = 1.310] 
phases. No significant difference in terms of SSVEP 
response amplitude was found between the cueing and 
the response phases [p = .716, d = .075]. Figure 3 reflects 
the significant differences across trial phases for each 
flicker intensity condition. Post hoc analyses also 
revealed that the SSVEP response SNR was significantly 
higher when participants attended to the right field (15 Hz 
flicker) than to the left field (13 Hz flicker) during the cue 
[p < .05, d = .152] and target [p < .01, d = .196], phases 
while there was no difference during the fixation phase 
[p = 1, d = .007].

Fig. 3.  Top: Time course of the mean Steady-States Visually Evoked Potentials (SSVEPs) signal-to-noise (SNR) 
attentional responses (target - nontarget) to the left 13 Hz (in blue) and right 15 Hz (in red) frequency-tagged areas 
extracted from EEG signals epoched around experimental events using the RESS spatial filtering method. A discrimination 
threshold between baseline activity recorded at the SSVEP frequency during the initial fixation phase (3 seconds preceding 
cue onset at time 0) and the SSVEP response recorded during the following stages of the trials (0 to 3 seconds for the 
cue, 3 to 6 seconds for the target) was computed for each condition separately using a decision tree classifier trained on 
data recorded from all participants (see the Methods section for more information). The inserted spectrograms present 
the mean RESS SNR to both stimuli locations recorded throughout the trial, with distinct peaks at stimulation frequencies 
(f) and first harmonics (2f). Bottom: The grand average topographical distribution of the main RESS component response 
to both stimulation frequencies (blue frame: 13 Hz left, and red frame: 15 Hz right) across the different phases of the trials 
(fixation, cue, and target).
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Table 1.  LDA classification accuracy (%).

Control Periliminal Subliminal

Subject 1 96.7** 100** 66.7
Subject 2 96.7** 86.7** 50
Subject 3 100** 96.7** 60
Subject 4 93.3** 86.7** 73.3**
Subject 5 100** 96.7** 66.7
Subject 6 90** 96.7** 66.7
Subject 7 100** 90** 76.7**
Subject 8 96.7** 73.3** 63.3
Subject 9 93.3** 96.7** 60
Subject 10 86.7** 80** 50
Subject 11 90** 76.7** 50
Subject 12 96.7** 63.3 36.7
Subject 13 93.3** 90** 66.7
Subject 14 83.3** 76.7** 63.3
Subject 15 100** 90** 66.7
Subject 16 90** 70* 36.7
Subject 17 93.3** 83.3** 53.3
Subject 18 100** 76.7** 56.7
Subject 19 100** 63.3 56.7
Subject 20 86.7** 60 53.3
Subject 21 90** 83.3** 70*
Subject 22 83.3** 60 50
Subject 23 93.3** 63.3 43.3
Subject 24 96.7** 86.7** 56.7

Mean accuracy 93.7% 81.1% 58%
±SD 5.3 12.8 10.6

Classification performance of attended stimulus (left and right 
areas of the screen containing a 13 and 15 Hz frequency-tagging 
flicker, respectively) using a Linear Discriminant Analysis classifier 
based on RESS single-trial filters (centered around either the target 
or the nontarget stimulation frequency) features extracted from 
the EEG data recorded during the cueing phase of the trials. The 
classification accuracies above statistical significance boundaries 
for chance level classification are flagged (*α = .05, **α = .01).

Further analyses were conducted to investigate the 
relationships between SSVEP SNR recorded prior to the 
presentation of the target stimuli and reaction time. Nei-
ther the SSVEP response recorded during the cueing 
phase of the trials (control: r(23) = -.137, ns; periliminal: 
r(23) = .22, ns; subliminal: r(23) = .29, ns) nor during the 
target identification phase (control: r(23) = -.222, ns; per-
iliminal: r(23) = .101, ns; subliminal: r(23) = .29, ns) was 
found to be significantly correlated with reaction time. 
These results do not provide evidence supporting a direct 
relationship between reaction time and the SSVEP 
response recorded prior to or during the target identifica-
tion phase of the trials.

3.4.  Spatial attention classification

The classification accuracy of the attended area (left versus 
right) during the cueing phase of the trials is reported for 
each subject and flicker intensity condition in Table 1. The 
classification performance that reached statistical signifi-

cance thresholds of classification accuracy above chance 
level (see Methods section) is flagged with asterisks.

4.  DISCUSSION

This study aimed to assess the validity of minimally intru-
sive (periliminal) and imperceptible (subliminal) flickering 
light stimulation as an approach to enhance frequency-
tagging implementations. The present study builds upon 
previous research that had demonstrated the feasibility 
of recording SSVEP responses with imperceptible flick-
ers (Lingelbach et al., 2021; Tsoneva et al., 2023). In the 
present study, the contrast and intensity of flickering 
visual stimulation were reduced down to the perceptual 
visibility threshold, reducing their intrusiveness. These 
minimally intrusive flickers were integrated into a simple 
target detection task, where frequency-tagging flickers 
were positioned in the background of the left (13 Hz) and 
right (15 Hz) areas to mark spatial attention. Participants 
were instructed to press a button upon detecting a target, 
whose position was cued preemptively either on the left 
or right side. The amplitude modulation depth of the flick-
ers varied across three conditions: subliminal and peril-
iminal, both individually defined using a perceptual 
visibility threshold protocol, and a control condition with 
flickers at 70% of maximal amplitude modulation depth.

A main contribution of the present work is the demon-
stration that temporal dynamics of spatial attention can 
be captured through SSVEP responses elicited by peril-
iminal flickers. Moreover, the SSVEP responses elicited 
by the periliminal and subliminal flickers can be measured 
using portable techniques such as surface EEG. This 
aspect holds significance for field studies that can use 
mobile EEG in combination with the periliminal frequency-
tagging approach implemented into augmented reality 
and immersive virtual reality environments to probe spa-
tial attention during naturalistic behaviors (Ladouce et al., 
2017). As previously mentioned, the high-frequency 
imperceptible flickers of the RIFT approach inspired the 
proposed low-contrast flickers approach, which aims to 
be a less hardware-dependent alternative. Indeed, com-
pared with the RIFT approach (Zhigalov et al., 2019) con-
sisting of presenting flickers whose frequency is above 
the flicker-fusion threshold, the implementation of the 
proposed periliminal frequency-tagging approach 
requires neither high-performance computers nor high 
refresh rate display (screen or projector). It is, however, 
important to note that our low-contrast approach did not 
elicit robust SSVEP responses with imperceptible (sub-
liminal) flickers, which contrasts with the sufficiently 
robust SSVEP responses elicited by high-frequency 
imperceptible RIFT flickers. Although perceptible, perilim-
inal flickers appeared to be a minimally intrusive solution 
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to effectively elicit robust SSVEP responses while sub-
stantially improving user experience. While the validity of 
the RIFT approach has been established across a range 
of research protocols, the applicability of the proposed 
low-contrast approach to more complex paradigms has 
yet to be assessed. However, the two approaches offer a 
variety of solutions for cognitive neuroscience research-
ers to implement minimally intrusive frequency-tagging 
paradigms, with hardware dependencies and frequency 
selection tailored to their research needs.

The present results highlight that the SSVEP responses 
could effectively be elicited by periliminal and subliminal 
light stimuli presented in the background of a spatial 
attention task. More importantly, the course of spatial 
attention could be tracked using frequency-tagging 
probes elicited by the control and periliminal amplitude 
modulation depth conditions, but not by the subliminal 
frequency tags. The amplitude of the SSVEP response 
elicited by periliminal flickers during the fixation phase 
during which participants attended the central area of the 
screen which had no flicker in the background was statis-
tically lower than in the following phases of the trials, 
where participants attended a frequency-tagged area. 
This result demonstrates that it is possible to distinguish 
whether the individuals were looking at an area contain-
ing a frequency-tagging probe or not. This discriminabil-
ity is particularly useful as the ability to decode the 
“off-state” during which users do not intend to input a 
command or interact with the interface is a challenge in 
the design of reactive BCI applications. The characteris-
tic temporal dynamics of SSVEP responses were found 
across all conditions, albeit less prominently in the sub-
liminal flicker condition. The appearance of cues and the 
ensuing shift of gaze toward one side of the screen were 
reflected by the onset of SSVEP responses. It should be 
noted that the SSVEP SNR reached the discrimination 
threshold from baseline activity in about 500 milliseconds 
for both the control and periliminal conditions, but not for 
the subliminal condition. Previous SSVEP-based BCI 
studies have reported high classification performance 
using EEG time series data as short as 500 milliseconds 
(Nakanishi, Wang, et al., 2018). In such BCI-oriented pro-
tocols, target flickers are typically cued over a time period 
preceding their presentation. Consequently, participants 
fixate on the flicker at the beginning of the stimulation, 
and the extracted EEG features do not need to account 
for either the reaction time to cueing or the subsequent 
time taken by participants to shift their gaze to the cued 
area. These differences may, therefore, contribute to the 
delay in SSVEP response latency as presently observed 
across conditions within the frame of a spatial attention 
paradigm. Following this initial monotonic ramp up, the 
amplitude of the SSVEP responses remained stable over 

the cueing phase and decreased rapidly after the appari-
tion of the target. These temporal dynamics were 
observed across all amplitude modulation depth condi-
tions, albeit somewhat less pronounced in the subliminal 
condition compared with both the control and periliminal 
conditions. The amplitude of SSVEP responses elicited 
by both left and right flickers was found to be significantly 
attenuated in both periliminal and subliminal conditions 
compared with the control condition. Moreover, the 15 Hz 
flicker presented on the right side of the screen elicited 
larger SSVEP responses during phases of the trials where 
participants fixated on the frequency-tagged area (cueing 
and target response periods). While lateralization and 
eccentricity effects on SSVEP topography (contralateral 
spatialization, Cohen and Gulbinaite (2017)) and ampli-
tude (reduction as a function of eccentricity increase, 
Chen, Maye, et  al. (2019)) have been reported, these 
effects concerned flickers that are not directly gazed at 
but rather covertly attended. In the present study, partic-
ipants directed their attention to the cued area, and, con-
sequently, their gaze was, therefore, directly fixated on 
one of the flicker areas. Thus, a more plausible explana-
tion for the higher SSVEP response elicited by the flicker 
presented on the right area may be due to the difference 
in flicker frequency between the left and right flickers. 
Indeed, several studies have systematically character-
ized SSVEP responses over ranges of frequencies, high-
lighting that frequencies of 14 and 16 Hz elicited SSVEP 
response with notably higher SNR than 12  Hz flickers 
(Ladouce et  al., 2021; Ladouce, Darmet, et  al., 2022; 
Murillo López et  al., 2021). Moreover, several studies 
reported a local maximum SSVEP response at 15 Hz, at 
which flickers elicited stronger SSVEP responses than 
at neighboring frequencies (Jukiewicz and Cysewska- 
Sobusiak, 2016; Tsoneva et  al., 2023). Drawing upon 
these findings, it is plausible to extrapolate that the 
flicker presented at 15 Hz frequency in the present study 
prompted a more robust entrainment of neural activity in 
the visual cortex, possibly related to a resonance of  
this frequency with oscillations implicated in attentional 
processing networks (Ding et al., 2006).

The proximity of the flickers frequencies (13 and 15 Hz) 
to the alpha frequency band (ranging from 8 to 12  Hz) 
raises questions regarding whether these exogenous 
stimulations would contaminate the recording of endoge-
nous alpha activity (Keitel et al., 2014). This concern is of 
particular importance considering the implications of 
alpha oscillations in attention and visual processes 
(Ergenoglu et al., 2004; Hanslmayr et al., 2011). Notably, it 
has been demonstrated that visual task performance can 
be altered by the entrainment of alpha oscillations through 
10 and 10.6  Hz flickers stimulation (Graaf et  al., 2013; 
Gulbinaite et al., 2017). It can be noted that the previous 
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visual task performance effect of 10 Hz stimulation was 
not found with 15 Hz stimulation (Gulbinaite et al., 2017). 
The inclusion of a condition without flickering would have 
allowed us to investigate the interaction between endog-
enous alpha oscillations and the SSVEP responses 
evoked by the presentation of flickers. In a study aimed 
at differentiating between endogenous alpha oscillations 
and stimulus-driven responses during a spatial attention 
task, researchers found that an increase in the typical 
stimulus-driven SSVEP response was accompanied by a 
retinotopic suppression of endogenous alpha oscillations 
(Keitel et  al., 2019). These studies highlight the impor-
tance of considering the interplay between endogenous 
brain rhythmic activity and stimulus-driven oscillatory 
entrainment when designing a frequency-tagging para-
digm. While the present experimental design did not 
allow us to investigate this question with precision, analy-
ses contrasting alpha power across phases of the trial, 
experimental conditions, and at both flicker frequencies 
were conducted (see the Supplementary Material). These 
analyses reveal that a suppression of alpha activity 
occurred when participants switched their gaze from the 
central fixation cross to attend one of the frequency-
tagged areas, which is in line with previous findings 
(Clements et al., 2023; Keitel et al., 2019). Moreover, alpha 
power was not affected by neither the flicker frequency 
nor intensity, suggesting that alpha power was not directly 
affected by exogenous/stimulus-driven SSVEP.

The analysis of subjective assessments confirmed the 
hypothesis that periliminal and subliminal flickers were 
perceived as more visually comfortable, less mentally tir-
ing, and less distracting than flickers with a 70% ampli-
tude modulation depth. As highlighted in the introduction, 
enhancing the user experience in SSVEP-based para-
digms motivated the current research. The application of 
the periliminal frequency-tagging approach could 
address issues related to visual comfort and fatigue 
induced by the presence of flickers. Moreover, both per-
iliminal and subliminal flickers were reported to be less 
distracting during the target detection task compared 
with control flickers with standard amplitude modulation 
depth. The reduced bottom-up influences exerted by 
subliminal and periliminal flickers offer a substantial 
advantage to circumvent spatial attention biases related 
to the presence of frequency-tagging probes. Finally, 
while subliminal flickers elicited SSVEP responses that 
could only be observed by averaging over trials, perilimi-
nal flickers elicited sufficiently distinctive SSVEP 
responses to achieve relatively high classification perfor-
mance. These findings highlight the potential of perilimi-
nal flickers for the ready implementation of minimally 
intrusive and reliable frequency-tagging and SSVEP-
based BCI.

Lastly, the classification of single-trial SSVEP 
responses aiming at distinguishing whether spatial atten-
tion was directed toward the left or the right field yielded 
good results in both the control and periliminal condi-
tions. These results extend findings reported in previous 
studies showing that decreasing flickers luminance con-
trasts to 30% of the maximal amplitude modulation depth 
was an effective strategy to enhance user experience 
while maintaining reliability and responsiveness of 
SSVEP-based BCI (Ladouce et  al., 2021; Ladouce, 
Darmet, et al., 2022). Indeed, the classification accuracy 
for the two-class problem reached 93.7% and 81.1% for 
the control and periliminal conditions, respectively. This 
classification performance surpasses the 60% classifica-
tion accuracy achieved using high-frequency (using 56 
and 60  Hz flickers) flickers displayed with high-refresh 
rate projectors to elicit SSVEP responses recorded using 
MEG (Brickwedde et al., 2022). The improved user expe-
rience, coupled with the high classification performance 
achieved by periliminal flickers, has the potential to 
enhance initial engagement and user retention in future 
SSVEP-based applications. Furthermore, these findings 
hold potential significance for the design of passive BCI 
applications which aim to implicitly assist individuals by 
monitoring their mental states and adjust human-machine 
interactions accordingly to overcome cognitive limita-
tions (Ewing et al., 2016; Zander et al., 2010). By embed-
ding periliminal flickers into regions of interest in a 
working environment, it would be possible to extract neu-
ral markers of attention from time series EEG data which 
provide temporal information about spatial attention pro-
cesses related to specific experimental events. This infor-
mation can be leveraged by a passive BCI system to 
perform moment-to-moment monitoring of an individu-
al’s cognitive state, assess cognitive fatigue and mental 
workload, and trigger targeted interventions in a timely 
and effective manner (Dehais et al., 2022). In the present 
study, a Linear Discriminant Analysis classifier was 
employed as a straightforward classification method to 
explore the discriminability of single-trial SSVEP 
responses elicited by minimally intrusive stimuli. A sys-
tematic evaluation of feature extraction methods, classi-
fiers (Canonical Correlation Analysis, TRCA), and 
parameters such as temporal window range, channels 
selection, and training sample size (Nakanishi et al., 2015; 
Nakanishi, Wang, & Jung, 2018) would provide further 
insight into the validity of periliminal or even subliminal 
flickers within the context of BCI applications.

A limitation of the present study lies in the simplicity of 
the visual target detection task. Indeed, the target stimuli 
were particularly salient, their position on the screen was 
fixed, and participants’ responses were primed by pre-
ceding cues that were always congruent. As such, the 
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perfect performance (100% correct response rate) 
observed across all participants and conditions was not 
surprising with little variance in the reaction times. While 
incorporating a classic Posner paradigm with incongru-
ent trials (i.e., cues orienting attention to the side of the 
screen opposite to the target) would have heightened 
task complexity, its implementation would have required 
a larger number of trials. Consequently, this extension 
would substantially prolong the data collection duration, 
contrary to the primary goal of the present study, which 
aimed to assess the feasibility of capturing spatial atten-
tion through frequency tagging. Further work is, there-
fore, required to investigate the relationships between 
SSVEP responses elicited by periliminal flickers and task 
performance using more complex paradigms. Further-
more, a task-switching protocol in which participants 
would have to continuously reorient their attention toward 
distinct frequency-tagged objects would be more condu-
cive to exploit temporal dynamics of sequential sampling 
of visual information (Jia et al., 2017). Jointly, the tempo-
ral dynamics of the SSVEP responses corresponding to 
the frequency-tagged objects would provide insight into 
the spatiotemporal aspects of attention. This approach 
may be particularly suited to investigate spatial attention 
in naturalistic settings where individuals continuously 
attend and freely interact with the environment.

Another issue of the present study lies in the contrast 
perceptual threshold definition protocol. During this pro-
tocol, the participants focus solely on the center of the 
screen to determine whether a 400 x 400 pixels square 
was flickering or not. This context arguably provides a 
different visual experience than during the spatial atten-
tion task. Indeed, during the task, participants were not 
attempting to detect a flicker but were rather attending to 
a cued location to detect the presence of a highly salient 
target as quick as possible. Thus, in the context of a con-
current visual detection task, the lateral flickers, although 
larger in size, may have been less perceptible than during 
the threshold definition protocol. While the present study 
used the gold standard staircase approach for perceptual 
threshold definition used in psychophysics studies, future 
work should define the perceptual threshold of flickers as 
they effectively are implemented in frequency-tagging 
paradigms.

Another pending question concerns whether other 
cognitive processes can be effectively frequency tagged 
using periliminal (or even subliminal) flickers. The system-
atic investigation of subliminal SSVEP response over a 
wide range of frequencies carried by Tsoneva et al. (2023) 
suggests that both lower and higher frequencies may be 
used in imperceptible frequency tagging to tag-specific 
neural networks. Future frequency-tagging studies are, 
however, needed to provide empirical evidence support-

ing the validity of this approach at frequencies that are 
not within the range of frequencies at which SSVEP 
responses are maximal (12 to 20  Hz, see Ladouce, 
Darmet, et al., 2022; Murillo López et al., 2021; Tsoneva 
et  al., 2023). Another issue pertains to the ecological 
validity of the target detection task performed by the par-
ticipants which may be considered rather artificial and 
transient with regard to its pacing. Indeed, both the per-
ceptual experience and the behavior of the participants 
were constrained by the pace of the trials and their repe-
tition. While this highly controlled design allows the char-
acterization of SSVEP measures relative to distinct 
phases of the trials, these experimental constraints may 
introduce artificial dynamics in the neural data. More 
pointedly, phase-locked transient neural responses such 
as ERP may just be a by-product of time-fixed stimuli 
presented at regular intervals. Future research could 
assess the adoption of a frequency-tagging approach 
within the context of a continuous sustained attention 
task, for example. The sustainability of the SSVEP 
response elicited by imperceptible flickers over time 
would need to be assessed considering the impact 
fatigue and habituation would likely have on SSVEP 
response, which has not been characterized over long 
recordings. Applied to the context of continuous tasks 
and naturalistic contexts, SSVEP measures have the 
potential to serve as imperceptible probes of attention 
fluctuations. Indeed, this minimally intrusive frequency-
tagging approach is an ideal candidate for the character-
ization of attention throughout longer tasks or routines 
(e.g., driving, industrial process quality control, visual 
monitoring) requiring sustained attention. In the context 
of such continuous tasks, the fluctuations of the SSVEP 
response may be indicative of attentional lapses. Future 
work should examine the link between fluctuations in 
SSVEP measures over the course of continuous tasks 
and task performance. In turn, this knowledge may be 
leveraged to inform the design of future passive BCI sys-
tems previously mentioned.

It is also important to consider that the success of 
eliciting SSVEP responses using light stimulation of 
extremely low contrast and intensity may be, at least 
partly, related to the surface covered by the flickers. 
Indeed, it can be argued that the flickers implemented in 
the present study, but also in previous studies reporting 
SSVEP responses elicited by imperceptible flickers 
(Lingelbach et al., 2021; Tsoneva et al., 2023), were rather 
large. Indeed previous research has shown that flicker 
size is positively correlated with SSVEP response ampli-
tude (Duszyk et al., 2014; Ng et al., 2012). This relation-
ship may be explained by the wider range of 
photosensitive receptors spread over the retina that are 
stimulated by a stimulus whose projection onto the retina 
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will occupy a larger visual field due to either its size 
(Busch et al., 2004; Dow et al., 1981) or its proximity (Wu 
& Lakany, 2013). In a general sense, the greater the 
amount of light captured by the photoreceptor cells in 
the retina, the more the information is transmitted to the 
visual cortical areas, which consequently leads to a 
larger amplitude of visually evoked responses. While the 
presentation of large imperceptible flickers may be a 
solution within the frame of applications that do not 
require the presence of numerous distinct frequency 
tags, it may limit the number of commands that can be 
effectively fitted within the environment upon which a 
BCI operates. Moreover, the effect of flicker size and its 
distance from the retina on the definition of flicker per-
ceptual visibility threshold along with their impact on 
general user experience need to be investigated to 
inform the design of frequency-tagging applications in 
virtual reality environments. Eventually, future studies 
comparing the proposed low-contrast approach with the 
state-of-the-art RIFT approach using high-frequency 
flickers, in terms of both visual comfort and SNR, would 
provide valuable insights that could inform the design of 
frequency-tagging experiments for cognitive neurosci-
ence and reactive BCI paradigms.

In conclusion, the present findings demonstrate that 
reducing flicker amplitude modulation depth down to the 
perceptual visibility threshold is a promising approach 
for implementing minimally intrusive frequency-tagging 
probes within experimental paradigms commonly used 
in cognitive neuroscience research. Flickers presented 
just above and below the perceptual visibility threshold 
improved visual comfort, alleviated mental tiredness, 
and were considered less distracting. Furthermore, while 
subliminal flickers elicited SSVEP responses that could 
only be observed by averaging over trials, periliminal 
flickers elicited sufficiently distinctive SSVEP responses 
to achieve relatively high classification performance. 
These findings highlight the potential of periliminal flick-
ers for the ready implementation of minimally intrusive 
and reliable frequency-tagging and SSVEP-based BCI.
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