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SUMMARY
The amyloid plaque niche is a pivotal hallmark of Alzheimer’s disease (AD). Here, we employ two high-reso-
lution spatial transcriptomics (ST) platforms, CosMx and Spatial Enhanced Resolution Omics-sequencing
(Stereo-seq), to characterize the transcriptomic alterations, cellular compositions, and signaling perturba-
tions in the amyloid plaque niche in an AD mouse model. We discover heterogeneity in the cellular compo-
sition of plaque niches, marked by an increase in microglial accumulation. We profile the transcriptomic al-
terations of glial cells in the vicinity of plaques and conclude that the microglial response to plaques is
consistent across different brain regions, while the astrocytic response is more heterogeneous. Meanwhile,
as the microglial density of plaque niches increases, astrocytes acquire a more neurotoxic phenotype and
play a key role in inducing GABAergic signaling and decreasing glutamatergic signaling in hippocampal neu-
rons. We thus show that the accumulation of microglia around hippocampal plaques disrupts astrocytic
signaling, in turn inducing an imbalance in neuronal synaptic signaling.
INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia,

characterized by progressive neurodegeneration that spreads

throughout the brain. Widespread deposition of amyloid-b (Ab)

into plaques is a key neuropathological hallmark of the disease.

Recent studies in the field have elucidated the importance of

studying the cellular phase of this disease.1 Changes inmicroglia

and astrocytes have been strongly implicated in disease pro-

gression, with disease-associated microglia (DAMs)2–4 and dis-

ease-associated astrocytes (DAAs)5–7 identified as cell states

that are strongly associated with AD.

However, studying the interaction of these cells, and how they

spatially relate to the neuronal dysfunctions in AD, has long been

limited by the available techniques. We previously identified a

network of co-expressed genes, termed plaque-induced genes

(PIGs), which co-localize with amyloid plaques and whose con-

nectivity and expression levels increase with increasing Ab

load in AppNL-G-F mice.8 The microglial and astrocytic nature of

the PIGs provides evidence for a spatially determined multicel-
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lular response to amyloid stress, involving the complement sys-

tem, oxidative stress, and inflammation. The identification of this

module suggests that the microglia-astrocyte interaction

strengthens with an increasing plaque load.8 The low resolution

of spatial transcriptomics (ST) methodologies at the time hin-

dered our ability to dissect specific cell-type responses. Since

then, the rapid advancement in ST has ushered in a number of

platforms that boast cellular and subcellular resolution.

In order to study cellular interactions using high-resolution ST,

reliable cell segmentation, ideally based onmorphology markers

rather than simply a nuclear stain, is important to accurately

assign transcripts to cells. Here, we decided to take advantage

of the CosMx platform, as its large panel of 950 genes provides

us with the possibility to not just identify cell types of interest but

to also query receptor-ligand (RL) interactions.9 In parallel, we

tested the sequencing-based Spatial Enhanced Resolution

Omics-sequencing (Stereo-seq)10,11 technique, which allows

for the unbiased profiling of the transcriptome, albeit with a cell

segmentation reliant only on a nuclear stain. Both technologies

are commercially available and therefore feasible for institutes
43, 114216, June 25, 2024 ª 2024 Published by Elsevier Inc. 1
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and core facilities to set up with ease, and they have both shown

promise in previously published studies, such as in the field of

brain regeneration11 and cancer research.12

In this study, we assessed what further insights the CosMx

and Stereo-seq technologies can shed on the amyloid plaque

niche. We thus explored microglia- and astrocyte-driven glial re-

sponses and interactions in our AD model and described the

ways in which their signaling pathways are disrupted in the vicin-

ity of plaques.8 We also describe the heterogeneity of the plaque

niche and demonstrate how this heterogeneity—and the glial re-

sponses captured within it—can subsequently influence

signaling pathways in glial and neuronal cells in the local plaque

environment. In performing the relevant analyses, we demon-

strate that the cellular resolution provided by CosMx is essential

in identifying and exploring signaling pathways. The deeper

sequencing depth of the Stereo-seq platform allows us to vali-

date gene expression changes and extend our analyses to bio-

logical pathways, but the fact that there is no direct identification

of the cell morphology hampers the full realization of this unbi-

ased and highly resolved approach. We discuss some short-

comings that need to be considered when using either technol-

ogy to study the molecular neuropathology of AD.

RESULTS

For both Stereo-seq and CosMx experiments, we used coronal

sections from AppNL-G-F mice13 (Figures 1A and 1E). Coronal

sections from C57BL/6 wild-type mice were also profiled using

Stereo-seq. This matches the brain regions and mouse models

used in our previous ST study.8

Using the CosMx platform, we analyzed data from four

18-month-old AppNL-G-F mice, covering the hippocampus and

adjacent regions (Figure 1A). The sections were also directly

stained for Ab using the monoclonal Ab antibody MOAB-2 (Fig-

ure 1D). For Stereo-seq, we obtained three adjacent coronal

brain cryosections (each 10 mm apart) from one 3-month-old

AppNL-G-F mouse and one age-matched control, as well as

from two 18-month-old AppNL-G-F mice and one age-matched

control (Figure 1E). The two outer sections were stained for am-

yloid pathology using the 6E10 antibody, whereas the middle

one was processed for Stereo-seq sequencing. Sequenced

transcripts were binned into 20 3 20 DNA nanoballs (DNB)10 to

obtain a total of 2,425,202 pseudo-cells, each with a size of

10 mm in width/height, across the five chips (Figure S1H). We

aligned the two adjacent sections from each sample to annotate

each pseudo-cell with its respective distance to the nearest edge

of plaque pathology.

Cell identification in CosMx and use of pseudo-cells in
Stereo-seq
Across the 37,840 high-quality cells in the CosMx dataset, we

were able to clearly identify the major expected cell types

(Figures 1B and S1A). We note that the glutamatergic neurons

clustered into distinct clusters, identified as somatosensory

(S1) pyramidal, CA1–CA3, CA4, and dentate gyrus (DG) neurons

based on their spatial distribution within the tissue (Figure 1C).

In contrast, in the much larger Stereo-seq dataset, we were

not able to recapitulate distinct cell-type clusters or confidently
2 Cell Reports 43, 114216, June 25, 2024
annotate cells with cell types using nuclear-staining-based

cell-segmented data10 (Figures S1F and S1G). Cell segmenta-

tion is particularly complex in the brain, in contrast to other tis-

sues, because of the high autofluorescence of the tissue, its

complex cell shapes, and a lack of reliable cell membrane

markers. We hypothesize that the effect of RNA diffusion,10

along with the difficulty of segmentation, prevented the genera-

tion of ‘‘clean’’ cells that could be confidently annotated. We

therefore performed downstream analyses using 20 3 20 DNB

binned pseudo-cells as indicated (Figure S1H). To confirm that

this binning approach yields biologically relevant information,

we scored the Stereo-seq pseudo-cells10 on their expression

of PIG module genes (Figure 1F). Pseudo-cells with high PIG

expression superimpose over the plaque staining (Figure 1G),

confirming that we can generate biological meaningful data us-

ing the Stereo-seq pseudo-cells.

The amyloid plaque niche
We have previously shown the complex global cellular re-

sponses that reflect astro- and microgliosis and neuroinflamma-

tion in the amyloid plaque cellular niche.8 The CosMx data re-

vealed that, compared to other cell types, microglia are vastly

overrepresented in close proximity to plaques (within 10 mm)

(Figure 2A). Using a continuous differential expression, we

confirmed that the gene expression of these microglial cells is

altered depending on their distance to pathology (Figure 2B).

Marker genes for homeostatic microglia (HM), such as Cx3cr1

and Tmem119, are downregulated in microglia in proximity to

plaques (Figure 2B, left), while DAM markers,2,3 including

Apoe, Lpl, and Trem2, are upregulated. Interestingly, DAA

genes,5 such asGfap, are also significantly upregulated in astro-

cytes as they approach plaques (Figure 2C, left).

This shift in cell states in function of distance to pathology was

corroborated in the Stereo-seq dataset; by correlating the mean

PIG expression levels of pseudo-cells with their distance to pla-

ques, we confirmed the higher expression of PIG module genes

near plaque pathology (rs = �0.855, p = 2.22e�58) at 18 months

(Figure 2E). Meanwhile, this correlation was much weaker at

3 months (rs = �0.122, p = 0.034) (Figure S1E), supporting our

previous finding that the PIG response is an age-dependent

response that develops over time.8

To investigate whether microglia and astrocytes display

similar responses to plaques across different brain regions, we

compared the responses of these cells to plaques in either the

hippocampus or the cortex. We found that microglial genes

showed a similar differential expression profile as the cells ap-

proached plaques, regardless of brain region (Figure 2B, right).

In astrocytes, in contrast, we observed a broader spread in re-

sponses, suggesting a region-specific aspect of the astrocytic

response to plaque pathology (Figure 2C, right). To validate

this, we turned to Stereo-seq and found that microglial DAM

genes are consistently and similarly upregulated in pseudo-cells

in the proximity of plaques, independent of whether they are

located in the isocortex or hippocampus (Figure 2F, rs = 0.817,

p < 2.2e�16). The astrocytic DAA genes show greater regional

variability (Figure 2G, rs = 0.583, p < 2.2e�16). A Fisher’s z-test

for differences of correlations indicates that the two correlations

are indeed significantly different (p = 8e�6). Astrocytic DAA



Figure 1. Resolving the plaque niche using

spatial transcriptomics

(A) Experimental setup for the CosMx experiments.

The hippocampus and adjacent cortical regions of

one coronal section from four 18-month-old

AppNL-G-F mice were assessed. Plaques were

resolved in the same section using the monoclonal

Ab antibody MOAB-2.

(B) Uniform manifold approximation and projec-

tion (UMAP) showing the 37,840 segmented

CosMx cells. Cells were unbiasedly clustered

using the Leiden algorithm and annotated using a

reference mouse brain dataset.14 The gluta-

matergic neurons were further resolved into sub-

clusters, which were annotated according to

spatial location.

(C) Spatial localization of the cells of an individual

tissue section, colored by Leiden cluster (as

shown in B). Spatially resolving the clusters

facilitated the annotation of the glutamatergic

neuron subtypes.

(D) Zoom-in image of segmented plaques (white)

overlaid with segmented cells (colored by Leiden

cluster, as shown in B and C) in the same coor-

dinate space. One representative plaque is high-

lighted with the arrow.

(E) Schematic of the experimental setup for the

Stereo-seq experiment. Two full coronal sec-

tions of 18-month-old APPNL-G-F mice and one

full coronal section from an age-matched control

were analyzed. For the 3-month time point, two-

half coronal sections were analyzed for the

APPNL-G-F mice and two-half coronal sections

for the age-matched controls. Amyloid pathol-

ogy was stained with the 6E10 antibody on

adjacent slides and aligned with the tran-

scriptome using the Fiji ‘‘Landmark correspon-

dences’’ macro.

(F) Pseudo-cells from an 18-month-old AD and

an age-matched control hemisphere scored and

colored based on relative expression of the PIG

module (white: low expression of PIG, black:

high expression). Pseudo-cells in the AD hemisphere show marked elevation of PIG expression. Scores were obtained using the score_genes() function

in SCANPY.

(G) Left: representative image of segmented plaques in white from an 18-month-old AppNL-G-F mouse. Middle: pseudo-cells in the same coordinate space

as above scored on expression of the PIG module (black: high expression of PIG). Right: spatial location of select PIG module transcripts (Trem2, Hexb,

Tyrobp, Ctsd, Lyz2), also in the same coordinate space. Scale bar represents 100 mm except for (E), where the scale bar represents 2 mm. CP, caudate

putamen; OPC, oligodendrocyte progenitor cell; LH, lateral habenula. For CosMx, 4 biological replicates were used, and for Stereo-seq 5 were used.
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genes that show increased expression in the hippocampus close

to plaques in comparison to the cortex included Itm2b,Cpe, and

C1qa. On the other hand, the astrocytic cortical response to pla-

ques was characterized by Atp1a1, Ckb, and Kcnip4. Based on

these findings, we propose region-specific differences in astro-

cytes and their response to plaques. Previous work has shown

that astrocytes display region-specific differences in expression

levels,15 and as such, it is not surprising that they also display re-

gion-specific responses to plaques. With this in mind, we will

focus subsequent analyses relating to astrocytes specifically

within the hippocampus.

Given the dual microglial-astrocytic nature of the PIG genes,

we wondered to what extent we could find evidence for a disrup-

tion in the direct crosstalk between, and within, these glial cell

types in proximity to plaque pathology. We thus sought to iden-
tify candidate disrupted PIG RL pairs between microglia and

astrocytes.

For this, we used the CellPhoneDB algorithm16 to predict

which RL pairs were likely to be active between cell types, with

a specific focus on pairs where at least one component was

significantly differentially expressed with respect to distance to

pathology. Based on a public database of annotated RL pairs,

the algorithm investigates which RL pairs are cell-type specific

and assigns a strength to the candidate pairs based on the

expression of the receptor and the ligand.16 For the predicted

RL pairs from CellPhoneDB, we took advantage of the spatial in-

formation afforded by the CosMx dataset and tested (1) whether

RL pairs do indeed co-occur in the same neighborhood and, if

so, (2) how the ‘‘strength’’ of the co-occurrence of the compo-

nents changes in different environments (e.g., as cells approach
Cell Reports 43, 114216, June 25, 2024 3



Figure 2. Cellular responses to plaques

(A) Histogram showing the relative cell-type composition of cells at varying distances to plaques, as resolved in the CosMx dataset of tissue sections from n = 4

AppNL-G-F mice.

(B) Left: MA plot showing gene differential expression in microglial cells with respect to distance to plaques (as a continuous covariate), with the x axis showing

mean expression and the y axis log fold change (LFC). Genes above the blue line (y = 0) represent genes that show an increased expression in the analyzed cells,

as these cells get closer to pathology. The top green line indicates an LFC that represents a doubling in the gene expression (i.e., FC = 2) for every 50 mm that the

cell gets closer to a plaque, while the bottom green line indicates an LFC that represents a halving of the gene expression for every 50 mm. An empirical Bayes

quasi-likelihood F-test (QLFTest) was used, and p values were adjusted with Benjamini-Hochberg correction (p.adj <0.05). Significantly changed genes are

labeled in red. Right: quadrant plot comparing the transcriptomic responses of microglia to plaque pathology in the isocortex (y axis) and in the hippocampus (x

axis) in the CosMx dataset. Red: genes significant in both comparisons; gray: genes not significant in either comparison; blue: genes significant in isocortical

microglia only; and green: genes significant in hippocampal microglia only. An empirical Bayes QLFTest was used, and p values were adjusted with Benjamini-

Hochberg correction (p.adj < 0.05).

(C) Left: the MA plot showing gene differential expression in astrocytes with respect to distance to plaques (as a continuous covariate), with the x axis showing

mean expression and the y axis LFC. Genes upregulated in cells approaching are shown above the blue line (y = 0). The top green line indicates an LFC that

represents a doubling of the gene expression (i.e., FC = 2) for every 50 mm that the cell gets closer to a plaque, while the bottom green line represents an LFC that

represents a halving of the gene expression for every 50 mm. An empirical Bayes QLFTest was used, and p values were adjusted with Benjamini-Hochberg

correction (p.adj < 0.05). Significantly changed genes are labeled in red. Right: the quadrant plot comparing the transcriptomic responses of astrocytes to

(legend continued on next page)
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plaques). We therefore calculated RL strengths on an individual

cell level for each receiving cell by taking into account the

expression level of the receptor in the receiving cell and the

average expression of the ligands from sending cells in a

50 mm radius of the receiving cell (see schematic in Fig-

ure 2D, left).

We applied this approach to the predicted RL pairs between

microglia and astrocytes in which either the receptor or the

ligand was previously identified as a PIG.8 Across our whole da-

taset, CellPhoneDB identified 130 candidate RL pairs between

microglia and astrocytes, of which 11 are PIGs. We found that

the strength of the identified PIG RL pairs significantly increased

in strength as the cells approached plaques (Figure 2D, right). As

microglia approached plaques, the strength of microglia-to-mi-

croglia signaling such as the Csf1 / Csf1r interaction and the

Cd44 / Tyrobp interaction became stronger. Both Cd44 and

Tyrobp are markers for DAM.3 The astrocyte-to-microglia cross-

talk takes the form of astrocytic Cd44, Clu, and Apoe interacting

with microglial Tyrobp and Trem2 (Figure 2D), with Clu and Apoe

being markers for DAA.5 CD44 has also been shown to be asso-

ciated with a DAA-like state in samples from patients with AD.17

This suggests that as cells approach plaques, the development

of DAMs could be in part driven by the astrocytic signals the mi-

croglia receive and that the PIG network does indeed encapsu-

late signaling pathways between microglia and astrocytes. As

we were limited by the genes in the CosMx panel, there are likely

other RL pairs that form part of the PIG network that we could not

interrogate.

Cellular effects within the plaque niche
We next explored the cellular variations in the different cellular

niches, defining the plaque niche as all cells located within

40 mm of a plaque edge. By counting the number of cells within

this area, we find that the cellular composition of niches is highly

heterogeneous, with the average CosMx plaque niche (repre-

sented in Figure 3A) containing 3 microglia (but they can contain

as many as 11 microglia, shown in Figure S2B), 1 astrocyte

(maximum [max] 5 astrocytes), 1 oligodendrocyte (max 12 oligo-

dendrocytes), 1 GABAergic (max 12 GABAergic neurons), and 2

glutamatergic neurons (max 24 glutamatergic neurons). As the

amyloid plaque varies in size, different plaque niches contain
plaque pathology in the isocortex (y axis) and in the hippocampus (x axis). A strong

comparisons; gray: genes not significant in either comparison; blue: genes signi

astrocytes only. An empirical Bayes QLFTest was used, and p values were adjus

(D) From the predicted receptor-ligand (RL) pairs between microglia and astrocy

extracted. Left: a schematic showing how the co-occurrence of RL was calculated

The expression of the receptor (Csf1r, drawn in purple) on the receiving cell (shown

in blue) expressed in neighboring sending cells (red), defined as sittingwithin a 50 m

were calculated as the receiving cells expressing the receptor were approaching p

had a positive correlation, indicating increased RL strength as the cells were app

(E) Mean PIG expression levels of 18-month-old Stereo-seq pseudo-cells (y axis)

solid line represents the fit of a second-order polynomial equation, with the 95% c

pseudo-cells approach plaques. The Spearman correlation coefficient (rs) and its

(F) Quadrant plot showing the LFCs of genes in pseudo-cells with respect to dista

marker genes. LFCs were calculated using an empirical Bayes QLFTest. rs value

(G) Quadrant plot showing the LFCs of genes in pseudo-cells with respect to dista

marker genes. LFCs were calculated using an empirical Bayes QLFTest. rs valu

campus. **p < 0.01 and ***p < 0.001.
varying total cell counts. To account for this, we compared the

cell-type densities (calculated as the numbers of each cell type

divided by the total number of cells present in a specific plaque

niche) across plaque niches. A uniform manifold approximation

and projection (UMAP) reflective of the cell-type compositions

of plaque niches reveals a notable heterogeneity with respect

to relative microglial densities, as well as the other cell types

(Figures 3B and S2A).

To validate this heterogeneity using Stereo-seq, we first

pseudo-bulked all the transcripts that fall within a plaque niche

(defined here as the area within 40 mm of the plaque edge, see

Figure 3A). Unbiased clustering of the transcriptomes of these

plaque niches (Figure 3F) suggested that the transcriptomic het-

erogeneity in plaque niches is strongly driven by region. Next, we

deconvolved each of the pseudo-bulked plaque niche transcrip-

tomes into different cell types using the cell2location algorithm18

and a well-established mouse brain reference dataset14 (Fig-

ures 3G and S2E). In this way, we obtained the predicted number

of each cell type that composes each microenvironment. By

plotting the predicted number of neuronal subtypes on the tran-

scriptomic UMAP, we confirmed that the presence of region-

specific neurons drives the overall transcriptomes of the plaque

niches (Figure S2D). Using the estimations obtained from cell2-

location, we again found that plaques are heterogeneous in their

cell-type compositions (Figures 2G and S2E). Notably, microglial

densities in plaque niches range from 4% to 50% (Figure 3G),

corresponding to a range of 0.3–20 estimated microglial cells

per plaque niche (Figure S2F). This heterogeneity in microglial

densities can be observed in all analyzed brain regions (Fig-

ure 3G) and is particularly pronounced in plaques from

18-month-old mice (Figure 3H), suggesting that as amyloid pla-

que niches mature over time, the number of microglia around

them increases.

We assessed how the transcriptomes of microglia and astro-

cytes change depending on the composition of the plaque niche

they belong to. In CosMx, we scored each microglia on its

expression of DAM genes and found a positive correlation be-

tween the microglial density of a plaque niche and the microglial

DAM score of said plaque niche (Figure 3C). We performed a dif-

ferential expression of all astrocytes sitting in a plaque niche with

respect to their respective plaque niche’s microglial density
er response of astrocytes is seen in the isocortex. Red: genes significant in both

ficant in cortical astrocytes only; and green: genes significant in hippocampal

ted with Benjamini-Hochberg correction (p.adj < 0.05).

tes (obtained from CellPhoneDB), all pairs containing PIG module genes were

using the example of the Csf1-Csf1r RL pair between microglia and microglia.

in black) wasmultiplied with the average expression of the ligand (Csf1, drawn

m radius of the receiving cell. Right: the changes in RL strength of specific pairs

laques. The Pearson correlation coefficient (R) was plotted. All plotted RL pairs

roaching plaques.

at a given distance from plaques (x axis), within 100 mm of a plaque edge. The

onfidence interval shown by the translucent bands. The PIG score increases as

respective p value were calculated.

nce to pathology in the hippocampus (x axis) and isocortex (y axis). Red: DAM

s were calculated using Spearman’s correlation.

nce to pathology in the hippocampus (x axis) and isocortex (y axis). Green: DAA

es were calculated using Spearman’s correlation. ISO, isocortex; HIP, hippo-
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Figure 3. Heterogeneity of the cellular composition of the amyloid plaque niche

(A) A representative diagram highlighting the average cellular composition of a plaque niche. The plaque niche is defined as a circle with a center equal to the

plaque niche’s centroid and a radius (r) equal to the plaque niche’s radius +40 mm. The average amyloid plaque cellular niche is composed of threemicroglia (red),

one oligodendrocyte (orange), one astrocyte (green), one GABAergic neuron (purple), and two glutamatergic neurons (blue). The sizes of the different cell types

are not to scale. Please note that the cellular composition of the amyloid plaque niche varies strongly as discussed in the text and below.

(legend continued on next page)
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(Figure 3D) and likewise saw an upregulation of canonical DAA

markers, such asS100b and Pfkp,19 and a downregulation of ho-

meostatic astrocyte (HA) genes, such asMfge8.5Mfge8 has pre-

viously been shown to be able to reverse the neurotoxic DAA-like

phenotype in astrocytes.20 To confirm this trend, we performed a

gene set enrichment analysis (GSEA), in which we tested for the

enrichment of DAA (i.e., activated neurotoxic astrocytic) marker

genes in the differential expression. The GSEA revealed a signif-

icant enrichment of DAAs in highly microglia-dense plaque

niches (Figure 3E). In addition to changes in the astrocytic cell

state, we also observed changes in neurotransmitter

transporters, such as a decrease in Slc6a11 expression in astro-

cytes, as they sit in microglia-dense plaque niches (Figure 3D).

The presence of extracellular GABA is tightly regulated, and

Slc6a11 encodes for the astrocytic GABA transporter Gat3,

which can take up GABA from the extracellular space.

We also saw the shift in microglial and astrocytic cell states in

Stereo-seq, where we assessed the relationship between the

predicted number of microglia in a plaque niche and the relevant

expression of either DAM or HM genes in the niche (Figure 3I).

We saw that plaque niches with more microglia had a higher

HM score, which is to be expected since more microglia in the

plaque niche inevitably means that there will be more microglial

transcripts—even homeostatic ones—present in the plaque

niche. However, the fact that the DAM score increases at a faster

rate than the HM score indicates that these microglia increas-

ingly upregulate DAM genes as they inhabit more microglia-

dense niches. Similarly, we saw an increase in DAA genes, while

the marker genes for HA showed a small decrease (Figure 3J).

This supports the hypothesis based on the CosMx data that
(B) A UMAP of the n = 619 CosMx plaque niches (across hippocampal sections fr

densities in the neighborhood of each plaque. Each point represents a plaque nic

the total cell count in the niche. Only plaque niches with at least 5 cells were inc

(C) Pearson correlation (and its associated p value) between the microglia densit

niche (y axis).

(D) MA plot showing differentially expressed genes in astrocytes sitting in a p

continuous covariate), with the x axis showingmean expression and the y axis LFC

LFC that represents a doubling of the gene expression (i.e., FC = 2) as microglial

line indicates an LFC that represents a halving of the gene expression for the sam

values were adjusted with Benjamini-Hochberg correction (p.adj < 0.05).

(E) From the differential gene expression analysis in (D), we performed gene set e

We saw a significant positive enrichment of DAA genes in astrocytes that sit in mi

phenotype in these plaque niches. The thick black line indicates the running enric

line indicates where the enrichment score peaks. Black vertical tick marks along t

list. The p value was calculated by permutation analysis.

(F) UMAP representing the integrated and unbiasedly clustered transcriptomes o

mice and the spatial distribution of the clusters in a 3- and an 18-month-hold he

(G) Left: the UMAP of the Stereo-seq plaque niches generated based on estimat

represents a plaque niche, colored by its estimated microglial density (calculated

cells in the plaque niche). Cell-type densities were estimated using cell2location. R

or to a certain age colored according to estimated microglial density. The remain

(H) Boxplots comparing predicted microglial densities in the plaque niches of 3-m

The boxes represent the quartiles of the datasets (with the middle line indicatin

distribution, with the exception of outlier points. Mann-Whitney U test. Microglia

(I) Blue: correlation of estimated microglial densities (x axis) in each Stereo-seq p

(DAM score, y axis). Orange: correlation of estimated microglial densities (x axi

correlation. Microglial densities were estimated using cell2location.

(J) Blue: correlation of estimated microglial densities (x axis) in each Stereo-seq p

score, y axis). Orange: correlation of estimated microglial densities (x axis) and

Microglial densities were estimated using cell2location. ISO, isocortex; BS, brain
more microglia-dense plaque niches could represent a more se-

vere local plaque environment, characterized by the concurrent

development of DAMs and DAAs.

Neuronal responses to the glial changes in the amyloid
plaque niche
We next investigated whether these changes in plaque severity

corresponded to an effect on other cells in the plaque niche.

Interestingly, in the CosMx dataset, we see that astrocytes

participate in the highest number of RL pairs as the sending

cell (Figures 4A and S3A). Astrocytes have around 15–20 RL

pairs with other cells, which is around three to four times more

than other sending cells (0–5 RL pairs shared with other cell

types) (Figure S3A). Even when normalizing the number of RL

pairs to the number of genes analyzed for each cell type, we still

see a dramatic increase in the number of RL pairs in astrocytes

(Figure 4A). This was especially striking given that only 28 of our

analyzed astrocytic genes in CosMx are found in the

CellPhoneDB database, in contrast to 66 microglial and 57

genes from CA1–CA3, for example. All this combined indicates

the importance of astrocytic signaling in the intercellular interac-

tions once the cells are exposed to a local plaque environment.

Considering the differential expression of the GABA trans-

porter Slc6a11 observed in the astrocytes in microglia-dense

plaque niches (Figure 3D), we investigated the signaling path-

ways postulated between astrocytes and the neurons within

the hippocampus. For this, we calculated the strength of co-

occurring RL pairs (as discussed above and shown in Figure 2D)

between astrocytes (as the sending cells) and the neuronal cell

types (as the receiving cells). We found that GABA-signaling
om n = 4 18-month-old AppNL-G-F mice) was generated based on the cell-type

he, colored by its estimated microglial density, expressed as the percentage of

luded in the analysis.

y in plaque niches (x axis) and the highest microglial DAM score in said plaque

laque niche with respect to the microglia density of said plaque niche (as a

. Significantly changed genes are labeled in red. The top green line indicates an

density in the plaque niche increases from 0% to 75%, while the bottom green

e increase in microglial density. An empirical Bayes QLFTest was used, and p

nrichment analysis (GSEA) to further explore shifts in the astrocytic phenotype.

croglia-dense plaque niches, indicating that astrocytes adopt a more DAA-like

hment score across the FC-ranked genes (x axis), while the vertical dotted red

he x axis show the location of individual DAA genes within the FC-ranked gene

f n = 4,285 Stereo-seq plaque niches from all 18- and 3-month-old AppNL-G-F

misphere. Plaque niches are unbiasedly clustered using the Leiden algorithm.

ed cell-type densities, calculated using cell2location. Each point in the UMAP

by dividing the number of estimated microglia by the total number of estimated

ight: the same UMAP but with only plaque niches belonging to a certain region

der of the plaque niches are shown in gray.

onth-old (n = 682 niches) to those of the 18-month-old mice (n = 3,603 niches).

g the median), while the whiskers extend to the lower and upper limits of the

l densities are predicted with cell2location.

laque niche and the expression level of DAM marker genes in the plaque niche

s) and the expression level of HM marker genes (HM score, y axis). Pearson

laque niche and the expression of DAA marker genes in the plaque niche (DAA

the expression of HA marker genes (HA score, y axis). Pearson correlation.

stem; HIP, hippocampus; 3M, 3 months; 18M, 18 months. ***p < 0.001.
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Figure 4. Cellular interactions in the plaque niche

(A) Number of RL pairs between different cells in the n = 316 CosMx hippocampal plaque niches as predicted by CellPhoneDB. The number of predicted RL pairs

between a receiving cell type expressing the receptor and a sending cell type expressing the ligand was divided by the number of genes analyzed for both cell

types in CosMx. Astrocytes show a high number of RL interaction pairs with other cell types.

(B) Strength of the RL pairs between astrocytes and neurons in the hippocampus that show a significant correlation with microglial density of the plaque niche.

Pearson correlation (and its associated p value) were plotted.

(C) MA plot showing gene differential expression in CA1–CA3 neurons in a plaque niche with respect to microglial density in said plaque niche (as a continuous

covariate), with the x axis showing mean expression and the y axis LFC. Significantly changed genes are labeled in red, while the gene associated with GABA

signaling,Gabrb1, is highlighted in yellow. The top green line indicates an LFC that represents a doubling of the gene expression (i.e., FC = 2) asmicroglial density

in the plaque niche increases from 0% to 75%, while the bottom green line indicates an LFC that represents a halving of the gene expression for the increase in

microglial density. An empirical Bayes QLFTest was used, and p values were adjusted with Benjamini-Hochberg correction (p.adj < 0.05).

(D) MA plot showing gene differential expression in n = 641 18-month-old hippocampal Stereo-seq plaque niches (pseudo-bulked) with respect to the niche

predicted microglial density, as predicted by cell2location (as a continuous covariate). Genes upregulated with higher microglial density are shown above the

(legend continued on next page)
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RL pairs between astrocytes and CA1–CA3 and CA4 neurons

(astrocytic Gad1/2 + Slc6a11 to neuronal Gabbr2) increase in

strength (Figure 4B, top) as the plaque niches these neurons

inhabit become more densely packed with microglia. In line

with this, we found Gabrb1, a subunit of the GABAergic type-A

receptor, upregulated in CA1–CA3 neurons in microglia-dense

plaque niches, whereas Gabrb2, a subunit of the GABAergic

type-B receptor, trended toward significance (adjusted p value =

0.078) (Figure 4C).

In concordance with these findings, we also saw a decrease in

the strength of RL pairs linked to glutamate signaling (astrocytic

Gls + Slc1a3 to neuronal Grik2, Grm8, and Gria4) in CA1–CA3

and DG neurons (Figure 4B, bottom). Interestingly, we noted a

decrease in a RL pair linked to GABA signaling in the DG neurons

(astrocytic Gad2 + Slc6a11 to Gabbr2 on DG), indicating a more

complicated relationship between astrocytes and DG cells. In

the differential gene expression of CA1–CA3 neurons with

respect to plaque nichemicroglial density, we observed an upre-

gulation of Nav3, which regulates axon guidance and has been

shown to be upregulated in patients with AD.21,22 Neurons ex-

pressing the protein have been demonstrated to show strong

degenerative morphology.22 On the other hand, Nos1, encoding

neuronal nitric oxide synthase (nNOS), decreases in CA1–CA3

neurons (Figure 4C). nNOS in hippocampal neurons has been

linked to long-term potentiation23 and can act to increase gluta-

matergic neurotransmission.24

To further confirm the disruption in synaptic signaling identi-

fied in CosMx, we used the Stereo-seq dataset to investigate

changes in the transcriptome of hippocampal plaque niches as

the estimated microglial density increased (Figure 4D). We saw

a downregulation of terms associated with synaptic function

(like ‘‘neurotransmitter secretion’’ and ‘‘synapse assembly’’) in

microglia-dense plaque niches (Figure S3B). In lieu of reliable

cell segmentation, we scored the pseudo-bulked plaque niches

on their expression of the predicted RL pairs from the CosMx

CellPhoneDB analysis, doing so separately for pairs associated

with GABA signaling and with glutamate signaling. We found

that the pairs linked to glutamate signaling decreased as micro-

glial density increased (Figure 4E), whereas we saw no statisti-

cally significant changes in pairs linked toGABA signaling. Taken

together, these findings confirmed that astrocytic signaling

around plaque pathology is disrupted with increasing microglial

density, which in turn induces an imbalance in synaptic signaling

in neurons in the hippocampus.

DISCUSSION

In this study, we employed two novel high-resolution ST tech-

niques to study the local cellular and gene expression changes

around Ab plaques in a mouse model of AD. We assessed the

regional specificity of microglial and astrocytic responses to pla-
blue line (y = 0). Significantly changed genes are labeled in red. A QLFTest w

(p.adj < 0.05).

(E) Based on the predicted RL pairs from the CosMx dataset, we analyzed the ex

genes are shown as networks above. Each Stereo-seq plaque niche was scored

niches (y axis) at given ranges of microglial density (x axis) was plotted. There is a

density in the plaque niche. Pearson correlation.
ques and confirmed that components of the previously identified

PIG network represent microglial-astrocytic crosstalk. Further-

more, we found heterogeneity in the cellular composition around

plaques, with the DAM and DAA phenotypes specifically devel-

oping around microglia-dense plaques. Notably, we identified

astrocytes as a key hub of cellular interactions in the plaque

niche that impairs neuronal synaptic functioning, increasing

GABAergic signaling and decreasing glutamatergic signaling.

It is well known that the transcriptomes of glial cells are altered

in AD pathology, as characterized previously by the DAM and

DAA phenotypes, and that these develop as the cells approach

plaques.25 It appears that the microglial response in the plaque

niche is a generic response that is consistent across brain re-

gions (Figures 2B, right, and 2F), confirming previous work that

DAMs develop independent of the hippocampus or cortex re-

gion.3 On the other hand, astrocytes display a heterogeneous

response to plaques dependent on their brain region of origin

(Figures 2C, right, and 2G). Other studies have shown that astro-

cytes display region-specific differences, both in terms of their

phenotype19 and their functions, including calcium signaling.15

Furthermore, it is also known that hippocampal astrocytes

develop more pronounced changes to aging, akin to developing

a DAA phenotype, compared to cortical astrocytes.26 As the

DAA signature was originally characterized in hippocampal as-

trocytes,5 it seems that astrocytes in other regions of the brain

respond differently to plaques. Indeed, since the initial descrip-

tion of the DAA phenotype,5 work from others has expanded

the nomenclature of astrocyte substates.19,27

Beyond the cell-type-specific DAM and DAA responses, we

have previously found evidence that a microglial-astrocytic PIG

response to plaque pathology represents crucial crosstalk be-

tween, and within, these two cell types in the plaque niche.8,25,28

Here, using the single-cell resolution of the CosMx platform, we

were able to, in much more detail, probe candidate RL pairs

that belong to the PIG network. The RL pair most affected

by proximity to pathology was the microglial-microglial Csf1

(ligand) / Csf1r (receptor) pair. Taken together with Csf1r’s

known role in microglial proliferation,28 as well as the upregula-

tion of Csf1 in microglia as they approach plaques (Figure 2B),

this provides evidence that microglia proliferate and activate

one another via Csf1/ Csf1r signaling in the vicinity of plaques.

Interestingly, it has previously been documented that plaque-

associated microglia, specifically, remain insensitive to elimina-

tion by Csf1r inhibitors.29 The increase we document in Csf1r

signaling around plaques (Figure 2D) could potentially make

these plaque-associated microglia more resistant to this method

of inhibition. We also cannot exclude the possibility that other

signaling pathways activated in microglia around plaques confer

a protection against Csf1r inhibitors.

We found that a number of the disrupted PIG RL pairs repre-

sent astrocyte-to-microglia signaling. The astrocytic signals
as used, and p values were adjusted with Benjamini-Hochberg correction

pression of genes linked to glutamate (purple) and GABA (blue) signaling. The

on its expression of these sets of genes, and the median score of the plaque

significant decrease in the glutamate signaling pairs with increasing microglial
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Cd44, Clu, and Apoe target the Trem2 signaling pathway in

microglia, by binding to both Trem2 and to its downstream

signaling partner Dap12 (Figure 2D), which is a known driver of

DAM development.28 In line with this, in a mouse model where

Apoe is specifically knocked out in astrocytes, microglia show

a downregulation of DAM markers.30 It should be noted that

although our analysis did not identify disruptions in the micro-

glia-to-astrocyte PIG signaling pairs that are present in both

the CosMx panel and CellPhoneDB databases, it does not

outright exclude the existence of any PIG microglia-to-astrocyte

signaling. Instead, this raises the interesting possibility that the

communication between microglia and astrocytes in the vicinity

of plaques may be a two-way street. In other words, the activa-

tion of DAMs as microglia approach plaques could be driven

not only by the plaque itself or by autocrine microglia signaling

but also by the signals microglia receive from neighboring

astrocytes.

We found that as niches increase in their respective microglial

densities, a process that appears to happen with time (Fig-

ure 3H), the microglia and astrocytes within the niches acquire

more disease-associated phenotypes (Figures 3C, 3E, 3I, and

3J), suggesting that microglial density can be used as a proxy

for plaque severity; however, this was not correlated with the

size of the plaques themselves (Figure S2C). To explore this pos-

sibility, we investigated the effect of this plaque severity on other

cells in the plaque niche. Interestingly, it turns out that particu-

larly astrocytic, notmicroglial, signaling to other cells is disrupted

as microglia density changes in the plaque niches (Figure 4A).

This aligns with previous findings that activated astrocytes can

be neurotoxic and suggests that astrocytes play a crucial role

in the cellular phase of AD.6

We investigated RL pairs between astrocytes and the neurons

in the hippocampus due to the fact that we saw a decrease of

Slc6a11, which encodes the GABA transporter Gat3, in astro-

cytes in microglia-dense plaque niches (Figure 3D). Blocking

Gat3, and therefore GABA uptake, when hippocampal neurons

are active has been shown to lead to a hyperpolarization of these

neurons due to increased GABA availability.31 The downregula-

tion of astrocytic Slc6a11 in high-microglia plaque niches may

therefore impair neuronal activity. In line with this, we saw that

the strength of co-occurring RL pairs between astrocytes (ex-

pressing Gad1/Gad2 and Slc6a11) and neurons, expressing

Gabbr2, increased (Figure 4B) within microglia-dense plaque

niches. Astrocytes produce GABA through many mechanisms

including Gad1 and Gad2,32 and previous work has shown that

GABA release from astrocytes is increased in a model of AD.33

When GABA release is blocked, these impairments are amelio-

rated.34 CA1–CA3 neurons express a range of GABA receptors,

which play an important role in synaptic plasticity and memory

formation.35 The level of GABAA receptors has been found to

increase in the CA1 regions in patients with AD.36

We also saw putative downregulation of signaling through

glutamate (Figures 4B and 4E), mediated through astrocytic

Gls and Slc1a3 and neuronalGrik2,Grm8, andGria4. Slc1a3 en-

codes a glutamate transporter to enable clearing of extracellular

glutamate. Downregulation of Slc1a3 was previously found in

patients with AD and in AD models, particularly around pla-

ques,37 and knockout of the gene exacerbated memory deficits
10 Cell Reports 43, 114216, June 25, 2024
in an animal model of AD.38 Gria4 is a postsynaptic receptor that

plays an important role in excitatory synaptic transmission and

whose downregulation on both the transcriptomic and proteo-

mic levels has been shown in patients with AD.37,39 Furthermore,

in Stereo-seq, where we had more statistical power and a wider

selection of genes, we found that other neuronal functions, such

as ‘‘regulation of membrane potential,’’ were disrupted in plaque

niches with more microglia (Figure S3B).

Previous studies have shown that neuronal hyperexcitability is

an early symptom in AD and related mouse models,40–42 with a

recent study exploring the specific hyperexcitability in a specific

subset of neurons in layers 2–3 in the cortex of human patients.40

In contrast to this, here we propose a loss of synaptic function

in the hippocampus driven by astrocytic signals. As we analyzed

the mice at a late stage of the disease, we could be missing the

preceding hyperexcitability described in the other publica-

tions,42 or there could be region-specific effects between the

cortex previously analyzed40 and the hippocampus, which is

particularly likely, as we have shown a heterogeneous response

of astrocytes to plaques in these two brain regions (Figure 2C).

Limitations of the study
Overall, while both novel spatial techniques are useful and can

be upscaled, further development of data analysis resources

and improvements are needed to maximize the output of these

approaches. New tools analyzing downstream signaling, such

as NicheNet,43 and RL-independent methods inferring changes

in transcriptome in proximity to other cells, such as NCEM,44

could be used to further explore cell-cell interactions. Reliable

cell segmentation remains a limitation in the field overall, howev-

er, and as we have demonstrated, this is an important prerequi-

site to deciphering changes in cellular transcriptomes, disrupted

RL pairs, and cellular crosstalk in the cellular phase of AD.

We found that the ability to analyze the CosMx dataset on a

single-cell level was vital in driving conclusions about the amy-

loid plaque niches, including glial responses and crosstalk, as

well as the downstream neuronal responses, within them.

While the Stereo-seq dataset proved to be complementary in

validating some of these conclusions, we demonstrate that the

lack of reliable cell segmentation poses a limitation on the type

of analyses that can be conducted with this method (Figure S1F).

A confounding factor is the likely diffusion of transcripts, which

we are confident will be addressed in subsequent versions of

this technique or with updated computational methods. We

believe that Stereo-seq may prove to be especially valuable

when an unbiased profiling of the transcriptome is desired.

This may include exploratory analysis that is focused on the

broad spatial localization of predefined cell types (or even states)

with strongly distinct transcriptomic profiles. Its unbiased nature

may also provide valuable insights when performing differential

expressions between different conditions, where wider trends

between functionally grouped genes can be discerned. Howev-

er, its potential in brain research will inevitably be limited until

adequate cell segmentation can be obtained.

It should be noted that mis-segmentation of transcripts also

appears to occur to some extent in the CosMx data, especially

for highly expressed transcripts. For example, while we see

an expected upregulation of Gfap in astrocytes close to
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plaques5,45,46 (Figure 2C), we also see an upregulation of Gfap

close to plaques inmicroglia (Figure 2B) that are not known to ex-

press this gene. Furthermore, the CosMx technique is inevitably

limited by the size of its gene panel, preventing us from reliably

assigning previously described cell states.47

We propose that the development of DAAs in pathologically

severe plaque niches causes neuronal dysfunction in neigh-

boring neurons. This dysfunction leads to a decreased firing of

hippocampal CA1–CA3 and DG and may ultimately contribute

to the memory deficits.

To validate this hypothesis, the astrocyte uptake of GABA

could be tested using GABA sensors, and mice could be

treated with Mfg-e8 to demonstrate the reversal of the DAA

signature.20 These experiments would serve as confirmation

that hypoactivity in the neurons can be resolved by targeting

astrocytic cell states and would provide indications as to

whether targeting either the development of DAA or the glial in-

teractions that drive DAA formation could serve as potential

therapeutic avenues.

Conclusion
In this study, we characterized the cellular and transcriptomic

variations in local amyloid plaque environments through the

use of two novel ST methods. We expanded on previously

defined cell-type signatures in plaque niches and provide further

evidence for microglial-astrocytic crosstalk in these microenvi-

ronments. Notably, we extended our analyses beyond glial cell

types and characterized the disruptive effects microglial and as-

trocytic alterations have on neuronal synaptic signaling in the

local amyloid plaque environment. We propose that as plaque

pathology matures, astrocytic interactions with hippocampal

neurons disrupt neuronal signaling through increased inhibitory

GABAergic signaling and decreased excitatory glutamatergic

signaling. We thus present candidate signaling partners that

link the progression of plaque pathology with downstream, detri-

mental effects on neurons. In parallel, we present a framework of

computational approaches and analytical methods with which to

probe high-resolution ST datasets.
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N., Qian, X., Laláková, J., K€uhnemund, M., Voytyuk, I., et al. (2020). Spatial

Transcriptomics and In Situ Sequencing to Study Alzheimer’s Disease.

Cell 182, 976–991.e19. https://doi.org/10.1016/j.cell.2020.06.038.

9. He, S., Bhatt, R., Brown, C., Brown, E.A., Buhr, D.L., Chantranuvatana, K.,

Danaher, P., Dunaway, D., Garrison, R.G., Geiss, G., et al. (2022). High-

plex imaging of RNA and proteins at subcellular resolution in fixed tissue

by spatial molecular imaging. Nat. Biotechnol. 40, 1794–1806. https://

doi.org/10.1038/s41587-022-01483-z.

10. Chen, A., Liao, S., Cheng,M., Ma, K.,Wu, L., Lai, Y., Yang, J., Li,W., Xu, J.,

Hao, S., et al. (2022). Spatiotemporal transcriptomic atlas of mouse organ-

ogenesis using DNA nanoball-patterend arrays. Cell 185, 1777–1792.e21.

https://doi.org/10.1101/2021.01.17.427004.

11. Wei, X., Fu, S., Li, H., Liu, Y., Wang, S., Feng, W., Yang, Y., Liu, X., Zeng,

Y.-Y., Cheng, M., et al. (2022). Single-cell Stereo-seq reveals induced pro-

genitor cells involved in axolotl brain regeneration. Science 377,

eabp9444. https://doi.org/10.1126/science.abp9444.

12. Massimo Pentimalli, T., Schallenberg, S., León-Periñán, D., Theurillat, I.,
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Antibodies

GFAP Synaptic Systems Cat: 173004; RRID: AB_10641162

MOAB-2 Abcam Cat: ab126649; RRID: AB_3095985

Goat anti-guinea pig Alexa 568 Invitrogen Cat: A11075; RRID: AB_2534119

6E10 conjugated with Alexa 488 Biolegend Cat: 803013; RRID: AB_2564765

Chemicals, peptides, and recombinant proteins

Methanol Acros Organics 2170955

ssDNA assay kit Qubit Q10212

DAPI Sigma D9542

Paraformaldehyde Thermo Scientific 199077

5% donkey serum Jackson Immunolabs 017-000-121

PBS Gibco - ThermoFisher 2293633

Triton X- Sigma-Aldrich BCCF3162

1x TrueBlack Biotium 23007

Ethanol Fisher Chemical 2351404

SSC buffer Sigma-Aldrich SLCJ5290

Glycerol Acros Organics 1528302

Critical commercial assays

Stereo-Seq S1 kit BGI 1000028496

Stereo-Seq Gene expression chip BGI 1000028497

Stereo-Seq Library Prep kit BGI 1000028498

Fresh frozen slide preparation kit Nanostring 121500007

CosMx mouse Neuroscience RNA Probe

Mix

Nanostring 121500003

CosMx Mouse Neuroscience Cell

segmentation kit

Nanostring 121500024

CosMxMouse Neuroscience Supplemental

segmentation kit

Nanostring 121500025

Deposited data

Allen brain reference atlas Yao et al., 202114 https://portal.brain-map.org/atlases-and-

data/rnaseq/mouse-whole-cortex-and-

hippocampus-10x

Microglia gene signature Frigerio et al., 20193 GEO: GSE127893

Astrocyte gene signature Habib et al., 20205 GEO: GSE143758

Raw data and count matrices from spatial

transcriptomics

This paper GEO: GSE263793

Experimental models: Organisms/strains

App NL-G-F Saito et al., 201413 Available from the Saido lab.

C57BL/6J Janvier C57BL/6JRj

Software and algorithms

Cellpose Stringer et al., 202148 github.com/mouseland/cellpose

ImageJ NIH49 https://imagej.nih.gov/ij/

SAW pipeline BGI github.com/BGIResearch/SAW

STAR Dobin et al., 201250 github.com/alex

dobin/STAR

Scikit-image Van der Walt et al., 201451 github.com/scikit-image/scikit-image
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TissUUmaps Solorzano et al., 202052 github.com/wahlby-lab/TissUUmaps

squidpy Palla et al., 202253 github.com/theislab/squidpy

scanpy Wolf et al., 201854 github.com/scverse/scanpy

QuPath Bankhead et al., 201755 https://qupath.github.io/

Scipy Virtanen et al., 202056 github.com/scipy/scipy

Harmony Korsunsky et al., 201957 github.com/immunogenomics/harmony

Cell2location Kleshchevnikov et al., 202218 github.com/BayraktarLab/cell2location

EdgeR Robinson et al., 201058 bioconductor.org/packages/release/bioc/

html/edgeR.html

clusterProfiler Wu et al., 202159 github.com/YuLab-SMU/clusterProfiler

CellPhoneDB Efremova et al., 202016 github.com/Teichlab/cellphonedb
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Professor

Bart De Strooper.

Materials availability
This study did not generate new unique reagents.

Data and code availability
d The spatial data (including imaging, raw sequencing, and expression data), have been deposited at GEO and are publicly avail-

able as of the date of publication. The accession number is listed in the key resources table. Microscopy images will be shared

by the lead contact upon request.

d This paper does not report original code.

d Further information and requests for data analysis and data availability should be directed to and will be fulfilled by Professor

Mark Fiers. Any additional information required to re-analyze the data reported in this paper is available upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Mice
All animal experiments were conducted in line with approved protocols by the Ethical Committee of Laboratory Animals of the KU

Leuven. Male mice containing the AppNL-G-F knock-in mutation13 expressed App mutations in the C57BL/6J background were

used due to the previously shown sex differences in this animal model.3 Mice were housed with ad libitum access to food and water

and a 14-h light/10 h dark cycle at 21�C. The AppNL-G-F model contains the humanized Ab sequence, as well as Swedish (NL), Arctic

(G), and Iberian (F) mutations and has been shown to accumulate Ab pathology and to suffer from cognitive impairment from the age

of 6months onwards,13 making it a relevant model for our interest in the local environment around plaques. For spatial transcriptomic

and single cell experiments, we prefer a mouse model that expresses APP from the endogenous promoter, as it reduces artifacts

caused by over-expression or off-target processing. For spatial transcriptomic experiments, AppNL-G-F mice and wildtype (WT) con-

trols were sacrificed at 3 months (3M) and 18 months (18M) using a carbon dioxide overdose. Following cervical dislocation, left and

right hemispheres were embedded in cold OCT and snap-frozen in isopentane chilled with liquid nitrogen and stored at �80�C.

METHOD DETAILS

Stereo-seq: experimental method
For Stereo-seq, 10 mm thick tissue sections were adhered to the Stereo-seq chip and incubated at 37�C for 3min,10 with immediately

adjacent slides collected for staining. The sections were fixed in methanol for 30 min at �20�C. The sections were then stained for

ssDNA and imaged to obtain nuclei location information. Tissue sections were then permeabilized for 12 min and reverse transcrip-

tion performed overnight at 42�C. Afterward, tissue was digested and cDNA released from the chip. The recovered cDNA was ampli-

fied and a total of 20ng was fragmented for library construction. PCR products were purified and sequenced on an MGI DNBSEQ-Tx
16 Cell Reports 43, 114216, June 25, 2024
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sequencer. Two mixed hemispheres, where one hemisphere is from a WTmouse and the other from an AppNL-G-F mouse, were pro-

cessed for 3M animals, whilst two full coronal sections were processed for the 18MAppNL-G-Fmice, with one full coronal section of an

age-matched control.

CosMx: experimental method
10 mm thick tissue sections were collected and fixed.9 Following the kit, target retrieval was performed followed by a tissue digestion

for 30 min at room temperature. In situ hybridisation was performed with the RNAmouse neuroscience panel, including the 18s RNA

probe, and antibody morphology stain was performed with the cell segmentation kit at a dilution of 1:25, staining for histone, glial

fibrillary acidic protein (GFAP), 40,6-diamidino-2-phenylindole (DAPI). In addition, MOAB-2 (1:25 dilution) was used to stain for am-

yloid-b. Information from 84 FOV, with each FOV the size of 510 mm 3 510 mm, were analyzed. After data acquisition, decoding of

individual transcripts and segmentation of cells, based onCellpose,48 was performed.9 Data was acquired from four coronal sections

of 18M hemispheres of an AppNL-G-F mouse.

IHC staining of adjacent sections
Adjacent slides from the Stereo-seq experiments were stained using a standard IHC protocol to visualize reactive astrocytes and

amyloid-b plaques. In brief, after fixation with 4% paraformaldehyde for 10 min and 90 min incubation with a blocking solution

(5% donkey serum and 0.5% Triton X-, in PBS) at room temperature, the tissue sections were incubated with GFAP antibody

(1:500 dilution) and anti-amyloid-b 3–8 (6E10) antibody conjugated with fluorophore Alexa 488 (1:200 dilution) overnight at 4�C.
The following day, sections were incubated with appropriate secondary antibodies (Goat anti-Guinea Pig Alexa 568, 1:200 dilution)

for 90min at room temperature. After fivewash steps, autofluorescence was quenched by treating sections for 30 swith 1x TrueBlack

solution diluted in 70% ethanol. Afterward, the sections were rinsed by dipping the slides 20x in PBS. Nuclei were visualized by incu-

bating the sections with DAPI staining for 15min at room temperature. Sections were rinsed in SSCbuffer, before 100 mL glycerol was

added and a coverslip was applied.

16-bit fluorescent images of DAPI, 6E10, and GFAP were acquired on a Zeiss Axioscan.Z1 slidescanner, with a 20x/0.8 NA air

objective using the ZEN blue software (version 3.1, Carl Zeiss Microscopy GmbH). Different FOV were stitched together using the

online stitching configuration in the software.

QUANTIFICATION AND STATISTICAL ANALYSIS

All details on the number of subjects and samples can be found in the results section and corresponding figure legends. Where

appropriate, normality was assessed using the Shapiro-Wilk test and appropriate nonparametric tests were usedwhere the assump-

tion of normality was not met. For correlation analyses, Pearson correlations were used unless stated otherwise.

Stereo-seq: data processing
The Stereo-seq raw data processing was performed using the publicly available SAW pipeline (https://github.com/BGIResearch/

SAW).10 fastq files were generated using an MGI DNBSEQ-Tx sequencer. CID sequences (1–25 bp) on the first reads were first

mapped to the designed coordinates of the in situ captured chip, allowing 1 base mismatch. Low quality reads were filtered out,

and retained reads were aligned to the mm10 reference genome using STAR.50 Mapped reads with MAPQ >10 were counted and

annotated to their corresponding genes. UMIs with the same CID and the same gene locus were collapsed, again allowing 1

base mismatch, resulting in a CID-containing expression profile matrix.

Image-based single cell segmentation
Single cell segmentation was performed by first aligning the nucleic acid staining to the Stereo-seq chips and then applying the

watershed algorithm through the Scikit-image package (V0.18.1). The number of markers required for the watershed algorithm

were obtained through Gaussian-weighted local threshold binarization with block size of 41 and offset of 0.003. We then exacted

Euclidean distance transformation (with distance of 13 or 15) from the background removed images. For each of the segmented cells,

UMIs from all DNB within the corresponding segmentation were aggregated per-gene and then summed to generate a cell by gene

matrix. The centroid of each cell was determined using rearrr (https://github.com/LudvigOlsen/rearrr).

Stereo-seq raw data processing
Gemfiles specifying the X/Y coordinates andMID count for every DNBwere read in using stereopy’s read_gem() (https://github.com/

BGIResearch/stereopy) to generate both a bin20 expression matrix (with argument bin_size = 20) and a cell_bin expression matrix

(argument bin_type = ‘cell_bins’). Both datasets were manually aligned with 13 brain regions defined by the Allen Brain Mouse

Atlas,60 and each cell/bin was assigned to a region (Figure S1D). Cells/bins overlapping with white matter and with the cerebral nuclei

region were removed. The 13 brain regions were further grouped into 5 coarse regions (brain stem, cortical subplate, hippocampus,

isocortex, and olfactory bulb). To then remove low-quality bins, bins with a high or a low number of genes, MIDs, mitochondrial

content were removed. Furthermore, genes expressed in less than 0.1% of bins in a given sample were removed. A total of

2,425,202 high-quality bin20s across all 5 tissue sections were retained for subsequent analysis.
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Transcript visualization
Visualization of spatial localization of Stereo-seq transcripts, overlaid over segmented plaque images, was performed using

TissUUmaps (v3.0.10).52 In brief, the bin1 gem file for an 18M AppNL-G-F mouse was uploaded in the ‘‘Markers’’ tab of the

TissUUmaps interface, run on a local server. Selected PIG transcripts (Trem2, Hexb, Tyrobp, Ctsd, and Lyz2) were selected for

visualization. The corresponding aligned amyloid plaque mask was uploaded in the ‘‘Image Layers’’ tab, allowing for an overlay of

the selected transcripts over the plaque mask.

CosMx: data processing
The expression matrices, metadata, and FOV files for the four AppNL-G-F tissue sections were read in using squidpy’s read_nano-

string() function. Transcripts associated with negative probes were removed from the count matrices. Cells were manually assigned

regional annotation based on visual alignment with the Allen Brain Mouse Atlas reference (Figure S1C). Cells with a high or low

number of genes or transcripts were removed. In order to identify likely mis-segmented doublets (i.e., two cells that were incorrectly

identified as one cell during the segmentation process), scrublet61 was run on each of the hippocampal sections, separately. Cells

that were assigned a high doublet probability were removed.

To account for potential non-specific binding of probes to amyloid plaques, we analyzed the expression level of each

gene, including the negative probes, within a cell overlapping with a plaque and correlated it to the plaque overlap. We found that

particularly two negative probes showed a strong correlation (R2 = 0.65 for NegPrb1 and R2 = 0.47 for NegPrb7), indicating non-spe-

cific binding of probes and arguably also genes, to plaques.We discarded all transcripts that had a higher correlation than the top two

negative probes (for a total of 56 probes) from further analysis, as likely candidates of nonspecific binding. To remove cells that may

have still been contaminated with, we subclustered the microglial cells, identified a cluster of cells characterized by higher counts of

negative probe counts, and removed this cluster (141 cells) from subsequent analysis. A total of 37,840 high-quality cells across all

tissue sections were retained for subsequent analysis.

Unsupervised clustering of the cells and bins
Cells/bins passing quality control in each of the datasets were further processed using the SCANPY workflow. Raw gene expression

counts were first log-transformed and normalized by library size using the normalize_total() and log1p() functions, and subsequently

scaled to unit variance and zero mean with the scale() function. Principal Component Analysis (PCA) was performed on the expres-

sion profile of the genes. Cells/bins from different Stereo-seq chips were integrated using Harmony57 to account for inter-chip batch

effects. The first 20 PCs were used as input for dimensionality reduction with Uniform Manifold Approximation and Projection

(UMAP). CosMx cells were clustered using the Leiden method at a resolution of 0.45 to obtain 15 clusters and did not require inte-

gration (Figure S1B). Clusters were annotated for cell type based on relative expression of cell type marker genes, (determined with

the score_genes() function). The subclusters characterizing the glutamatergic neuron cluster were further annotated based on their

regional spatial distribution.

Amyloid segmentation
Amyloid-b plaques were annotated using the QuPath software through a pixel classification threshold with an additional size

threshold of 65,000 px to discriminate the pathology from background and artificial staining. The segmentation was then manually

checked to ensure segmented plaques were of high quality. The segmented plaques were then exported to ImageJ and converted

into a binary mask for alignment to the transcriptome.

Using a previously described technique, the adjacent slide staining was aligned to the transcriptome of the Stereo-seq chip

through the selection of corresponding landmarks on both the staining and the transcriptome.8 Using the Fiji ‘‘Landmark correspon-

dences’’ plugin, the staining was then aligned to overlay with the transcriptome. The same method was followed for alignment of the

Allen Brain Atlas with the transcriptome that allowed for assignment of brain regions to the transcriptome (Figures S1C and S1D).

After alignment of adjacent slide stainings, segmented masks from either side of each chip were summed to obtain one binary

amyloid segmentation mask per chip.

Calculation of distances to plaques
The distance from the center of each bin/cell to the edge of the nearest segmented plaque was calculated using Scipy’s KDTree

package: (https://github.com/scipy/scipy/blob/main/scipy/spatial/kdtree.py).

Dimensionality reduction and deconvolution of Stereo-seq plaque niches
The transcriptomic profiles of plaque niches in the Stereo-seq dataset were acquired by ‘‘pseudo-bulking’’ all the transcripts iden-

tified within 40 mm (80 pixels) from the edge of a plaque, inclusive of those overlaying the plaque. Processing of the pseudobulked

niches was performed using SCANPY. Plaque niches with less than 10 transcripts, as well as lowly expressed genes, were discarded

from further analysis, resulting in a total of n = 4,285 analyzed plaque niches. The resultant expression matrix was log-normalized to a

scale factor of 10,000 and total transcript counts were regressed. Principal Component Analysis (PCA) was performed, and the

niches were integrated across samples using Harmony.57 The first 10 principal components were used to construct the UMAP

and a resolution of 0.3 was used to cluster the niches. Cell2location was then used to infer the cellular composition of these
18 Cell Reports 43, 114216, June 25, 2024
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pseudo-bulked plaque niches, using the scRNA-seq dataset from the Allen Brain Mouse Atlas14 as the reference dataset. The single-

cell reference dataset was first filtered using filter_genes(),with the parameters cell_count_cutoff = 5, cell_percentage_cutoff2 = 0.03,

nonz_mean_cutoff = 1.12. The regression model for the reference data was initialized with default settings. The model was then

trained using a maximum of 1,000 epochs. Reference and spatial datasets were filtered for shared genes. The inferred reference

cell type signatures were then used for spatial cell-type mapping, using the hyperparameters N_cells_per_location = 30 and detec-

tion_alpha = 15. The cell2location model was trained on the full data using 15,000 epochs, and the cell abundance estimations were

extracted.

Plaque niche neighborhood analyses
Plaque x cell type densitymatrices were created by counting, for every plaque, the number of each given cell type lyingwithin a 40 mm

distance (80 pixels in Stereo-seq, 240 pixels in CosMx) from the plaque’s edge and dividing that number by the total number of cells

within that radius. In the case of the CosMx dataset, segmented cells were counted, only taking plaques into consideration that con-

tained 5 or more cells. For Stereo-seq, cell type compositions inferred by cell2location were used. The resultant matrices were used

for dimensionality reduction in SCANPY, using the sc.tl.pca(), sc.pp.neighbors(), and sc.tl.umap() functions.

Gene set score calculation
To obtain gene set scores of plaque niches and cells in Stereo-seq and CosMx, respectively, the PNs and cells were log-normalized

to a scale factor of 10,000 and scored on their relative expression of relevant gene sets (i.e., DAMmarker genes, HMmarker genes,3

DAA markers, and homeostatic astrocyte markers5) using SCANPY’s score_genes() function. The DAM scores of CosMx plaque

niches were taken as the max DAM score of any microglia in the given plaque niche.

Differential gene expression analyses (DE)
DE analyses were conducted by fitting generalized linear models (GLM), using either distance to plaque pathology or plaque niche

microglial density as the continuous covariate of interest. This allows to capture the full extent of the changes and to not limit the

analysis to specific binary comparisons that require arbitrary cut-offs (such as cells within 10 mm from pathology in comparison

with cells further away). Each GLM model was tested for DE with EdgeR’s quasi-likelihood F-test (QLFTest) which accounts for

the uncertainty in dispersion estimation. DEs with respect to distance to pathology were performed with respect to log1p(d), with

d being the distance from the cell/bin centroid to the plaque centroid for both CosMx and Stereo-seq. This model therefore repre-

sents transcriptional changes of a cell/bin as it nears a plaque. Themicroglial density model represents the transcriptional changes in

gene expression per additional microglial density in the cell’s respective plaque niche. Multiplicity correction was performed by

applying the Benjamini-Hochberg (BH) method on the associated p-values, and a significance threshold of p.adj <0.05 was used

for all DEs. DEs in the CosMx dataset were performed on individual cells on a cell-type basis, limiting the analysis to only the cell

type markers for the given cell type. Cell type markers were obtained by running differential expressions between all clusters (i.e.,

cell types) using SCANPY’s rank_genes_groups() function, and filtering for genes that were significantly differentially expressed at

a p.adj >0.05 and log2FC > 0.5.

Gene set enrichment analyses
Gene set enrichment analyses (GSEA) were performed using R’s clusterProfiler package,59 using the log2 fold change value for gene

rank. The associated p-value was calculated based on the permutation-generated null distribution, and it reflects the probability un-

der the null distribution of obtaining an enrichment score value that is at least as strong as that observed for the randompermutations.

Receptor-ligand analyses
To analyze RL pairs between microglia and astrocytes as they approach plaques, we ran CellPhoneDB,16 because of its high spec-

ificity and precision compared to other algorithms.62We ran this algorithm on all hippocampal cells using the ‘‘cpdb_degs_analysis_-

method’’, limiting the predicted RL pairs to any gene that was differentially expressed with regards to distance to plaques (see

Methods: Differential gene expression analyses) and to any gene that is expressed in more than 10% of the cells of a given cell

type. The identified RL pairs were limited to pairs that contained at least one gene that was previously identified as PIG. To analyze

changes in the plaque nicheswith regards tomicroglial density, we followed a similar approach as above, analyzing only cells present

in hippocampal plaque niches and limiting the RL pairs to pairs where at least one partner is predicted to be differentially expressed in

the cell type with regards to microglial density of the plaque niche.

The number of RL pairs for each combination of cell type was generated by counting the number of significant RL pairs and in the

second step, normalizing this to the total number of genes that the differential gene expression was performed on.

For the co-occurrence analysis, we took the significant RL pairs generated from CellPhoneDB and analyzed them on a single-cell

level. For each receiving cell of a given cell type, we multiplied the log-normalized expression of the receptor with the average of the

log-normalized expression of the ligands expressed by all cells of the corresponding sending cell type in a 50 mm radius (416.5 pixels).

To limit the analysis to only RL pairs that did indeed spatially co-occur, we required at least 10% of the receiver cells to express both

the receptor and be exposed to neighboring ligands. When this condition was not met, we excluded the RL pair from downstream

analysis.
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Cell type reference
The 2020 10X Genomics scRNA-seq dataset for the mouse whole cortex and hippocampus was downloaded from the Allen

Brain Atlas Institute webpage. For analysis, a subset of the data was generated to only include regions annotated for ’RSP’,

’TEa-PERI-ECT’, ’ACA’, ’AI’, ’SSs-GU-VISC-AIp’, ’AUD’, ’MOp’, ’MOs_FRP’, ’PL-ILA-ORB’, ’PTLp’, ’SSp’, ’VIS’, ’VISl’, ’VISm’,

’VISp’, ’HIP’. The remaining cells were randomly sampled to retain 12.5% of the cells (131,169 total cells). Wilcoxon rank-sum

test, with multiplicity correction using the Benjamini-Hochberg (BH) method, was used to obtain the top 200 markers for annotated

cell types (Glutamatergic neurons, GABAergic neurons, microglia, astrocytes, endothelial, and oligodendrocytes).
20 Cell Reports 43, 114216, June 25, 2024
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