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ABSTRACT

The magnetorotational instability (MRI) plays a crucial role in regulating the accretion efficiency in astrophysical accretion
discs. In low-luminosity discs around black holes, such as Sgr Ax and M87, Coulomb collisions are infrequent, making the
MRI physics effectively collisionless. The collisionless MRI gives rise to kinetic plasma effects that can potentially affect its
dynamic and thermodynamic properties. We present 2D and 3D particle-in-cell (PIC) plasma simulations of the collisionless
MRI in stratified discs using shearing boxes with net vertical field. We use pair plasmas, with initial § = 100 and concentrate on
subrelativistic plasma temperatures (kg T < mc?). Our 2D and 3D runs show disc expansion, particle and magnetic field outflows,
and a dynamo-like process. They also produce magnetic pressure dominated discs with (Maxwell stress dominated) viscosity
parameter o ~ 0.5—1. By the end of the simulations, the dynamo-like magnetic field tends to dominate the magnetic energy and
the viscosity in the discs. Our 2D and 3D runs produce fairly similar results, and are also consistent with previous 3D MHD
(magnetohydrodynamic) simulations. Our simulations also show non-thermal particle acceleration, approximately characterized
by power-law tails with temperature-dependent spectral indices — p. For temperatures kgT ~ 0.05 — 0.3 mc?, we find p ~
2.2-1.9. The maximum accelerated particle energy depends on the scale separation between MHD and Larmor-scale plasma
phenomena in a way consistent with previous PIC results of magnetic reconnection-driven acceleration. Our study constitutes a
first step towards modelling from first principles potentially observable stratified MRI effects in low-luminosity accretion discs

around black holes.
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1 INTRODUCTION

The primary driver of accretion in astrophysical discs is believed to be
the turbulence generated by the magnetorotational instability (MRI;
Balbus & Hawley 1991, 1998), which provides the needed outward
transport of angular momentum. Most of our knowledge about the
non-linear evolution of the MRI in different disc regimes comes from
magnetohydrodynamic (MHD) simulations. However, in the regime
where the plasma accretion rate is much lower than the Eddington
rate, the Coulomb mean free path of the particles can be much larger
than the system size, rendering the disc effectively collisionless and
making the MHD approach inapplicable. This collisionless accretion
regime is expected, for instance, in the low—hard state of X-ray
binaries (Esin, McClintock & Narayan 1997) as well as around the
central supermassive black holes of most nearby galaxies, including
M87 and Sagittarius Ax (Sgr Ax) in our own Milky Way (Yuan &
Narayan 2014).

The collisionless version of the MRI can give rise to several
kinetic plasma phenomena, which may in turn affect its dynamics
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as well as the thermodynamic properties of the accreting plasma.
These kinetic phenomena have been studied mainly via unstrati-
fied shearing-box MRI simulations, using either a fluid approach
through kinetic-MHD models (Sharma et al. 2006, 2007) or particle
simulations that employ either the hybrid or the particle-in-cell
(PIC) methods (Riquelme et al. 2012; Hoshino 2013, 2015; Kunz
et al. 2016; Inchingolo et al. 2018; Bacchini et al. 2022). One of
the relevant kinetic phenomena is the appearance of an anisotropic
stress, which is due to the presence of a pressure anisotropy in the
accreting turbulence. Previous unstratified shearing-box simulation
studies, both based on fluid and particle methods, have found
that this anisotropic stress may contribute significantly to the disc
viscosity, making the collisionless MRI turbulence more efficient
in transporting angular momentum compared to its collisional
counterpart.

Another potentially important collisionless phenomenon is the
possibly different ion and electron heating rates (e.g. Sharma et al.
2007). However, to date PIC studies have only used an ion to electron
mass ratio m;/m, = 1 (or close to unity), therefore not capturing the
possibly different heating efficiencies of the different species. Plasma
energization can also include non-thermal particle acceleration.
Studying this phenomenon requires fully kinetic treatments of at
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least one species, which has been done through PIC and hybrid
simulations. Different levels of non-thermal particle acceleration
have indeed been found by these types of studies (Riquelme et al.
2012; Hoshino 2013, 2015; Kunz et al. 2016; Inchingolo et al.
2018; Bacchini et al. 2022), although the conditions under which
this acceleration is most efficient and the mechanism(s) underlying
this phenomenon remain to be clarified.

An important physical ingredient, so far not included in hybrid or
fully kinetic PIC studies of the MRI, is the vertical stratification of
the discs. While the unstratified local shearing-box approximation
allows us to investigate a disc by focusing on a small vertical
section, this approach does not account for potentially important
processes in stratified discs, such as outflows, disc expansion,
and the generation of a corona, among others. Stratified discs
have been included in previous MHD shearing-box simulations
of the MRI, which have found that stratification can give rise to
important phenomena like outflows and dynamo-like processes,
which may in turn affect the overall accretion efficiency of the
discs (Bai & Stone 2013; Salvesen et al. 2016). Also, a kinetic-
MHD study that considers a stratified disc (Hirabayashi & Hoshino
2017) has found that disc stratification may decrease the importance
of anisotropic stress significantly compared to unstratified kinetic-
MHD results.

To address these possible effects, our study employs 2D and 3D
stratified shearing-box PIC simulations to examine the development
of the collisionless MRI. We use equal ion and electron masses,
m; = m, = m for computational convenience, and focus on the
subrelativistic temperature regime, relevant for the inner regions of
black hole accretion discs (kg7 < mc?, where kg is the Boltzmann
constant, 7T is the plasma temperature, and c is the speed of light).!
By comparing with unstratified PIC runs, we show the importance
of including stratification to describe phenomena like plasma beta
evolution, effective viscosity and particle acceleration. In our 2D
runs, we pay special attention to the role played by the ratio between
the initial cyclotron frequency of the particles and the Keplerian
frequency of the disc, w,. ¢/2y (hereafter, the scale-separation ratio).
In realistic discs, this ratio satisfies @, 0/€2o >> 1 and determines the
scale separation between mesoscale MHD phenomena and kinetic
microphysical processes. Even though most of our analysis is done
in 2D, in this paper we take a step forward by conducting the
first fully kinetic 3D simulation of the stratified MRI evolution.
This preliminary 3D simulation enables us to compare it with our
established 2D results and gain valuable insight into the limitations
of the 2D approach. This exploration sets the stage for future
investigations aimed at fully unravelling the complexities of the 3D
scenario.

The paper is organized as follows. In Section 2, we describe our
numerical method and simulation setup. In Sections 3 and 4, we
present the general properties of the stratified MRI turbulence in 2D
and 3D, respectively. In Section 5, we quantify the effective viscosity
in our runs. In Section 6, we analyse the ability of the stratified MRI
turbulence to accelerate particles, and in Section 7, we validated the
assumptions we made based on the results of our simulations. Finally,
we present our conclusions in Section 8.

I'This choice for the mass ratio is intended to provide a reasonable approx-
imation for the evolution of the ions, which carry most of the inertia of the
plasma. For correctly describing the electron dynamics, we would have to
reduce the electron mass to realistic values, while keeping the same ion mass.
This would require resolving the evolution of the system on much smaller
scales, which we plan to pursue in future works.

Stratified PIC simulations of the MRI 1867

2 SIMULATION SETUP

We use the electromagnetic PIC code TRISTAN-MP (Buneman 1993;
Spitkovsky 2005) in 2D and 3D. Our simulations are performed in
the local, shearing-box approximation (Hawley, Gammie & Balbus
1995), using Cartesian coordinates where the x-, y-, and z-axes cor-
respond to the radial, azimuthal (or toroidal), and vertical directions
of the disc, respectively. This reference frame rotates with an angular
velocity ¢ = 2, corresponding to the Keplerian angular velocity
at a radius that coincides with the centre of our simulation box. In
order to model a stratified disc, we include the vertical component
of the gravitational force produced by the central object, —m Q%z%,
and we initially set up an isothermal disc in hydrostatic equilibrium
with a z-dependent density profile:

22
n(z) = ng exp < H&) . M
where ng is the plasma density at the disc mid-plane (considering
both species), Hy is the scale height of the disc given by Hy =
(2kg Ty/m)"?/Q, and Ty is the initial plasma temperature, which is
given by kgTo/mc? = 5 x 1072 in all of our runs. Our runs do
not include any type of radiative cooling, so a gradual increase in
the temperature and scale height of the simulated discs is expected
due to dissipation of magnetic energy. This approximation is only
valid in extremely low-luminosity accreting systems, which may
be the case of Sgr Ax (Yoon et al. 2020). The whole simulation
domain is initially threaded by a vertical, homogeneous magnetic
field By = ByZ, so that the initial plasma g8 parameter in the disc
mid-plane, By (= SﬂnokBTo/Bg), has a value of 8y = 100. These
choices for 7y and B, imply that the initial Alfvén velocity in the
disc mid-plane, v4 o (=By/(4rngm)'?), is V4, 0lc = 10~2 in all of our
runs.

2.1 Basic equations

In our rotating frame, the time derivative of particles momentum
P = (P, Py, P;) is determined by the Lorentz force, the radial and
vertical components of gravity, and the Coriolis force:?

d
dit’ —q (E + 2 x B) 3mSRk —mQz — 22 x p. ()
c

where v = p/(ym) = (v, vy, v;), g, E and B are, respectively, the
particle velocity, the particle charge, and the electric and magnetic
fields. In this non-inertial frame, Maxwell’s equations also acquire
extra terms, which modify the evolution of the electric field as (Schiff
1939):

oE vg OB L0
—:chB—4nJ—|——><——VX(vOX(E——xB)),
c at c

ot
3)

where J is the current density and v, is the Keplerian rotation
velocity of the disc at the centre of our simulation box (the evolution
of the magnetic field 0B /dt = —cV x E is not modified in the
rotating frame). As discussed in Riquelme et al. (2012), the terms
proportional to vy in equation (3) can in principle be comparable
to the displacement current d E/d¢, but should not change the non-
relativistic MHD behaviour of the plasma. This is because, in the
non-relativistic regime (|vg| = vy K ¢), these extra terms are always

2Since Coriolis forces conserve kinetic energy, the standard Coriolis expres-
sion for the evolution of v, dv/dt = 28 X v, can be directly translated into
a relativistic momentum p evolution as dp/dt = 28 x p.
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much smaller than the first term on the right-hand side of equation (3)
(cV x B /4m). Therefore, the current density J should still adjust to
satisfy J &~ ¢V x B/4m, as assumed in the non-relativistic MHD
approach. Thus, as it has been done in all previous PIC and
hybrid studies of the MRI, we drop the terms proportional to vg
in equation (3) and solve the conventional Maxwell’s equations. We
are thus implicitly assuming that these (beyond MHD) modifications
to the displacement current do not affect considerably the kinetic
MRI dynamics.

2.2 Shearing coordinates

Simulating the MRI in the shearing-box approximation requires
implementing shearing periodic boundary conditions in the radial (x)
direction (e.g. Hawley et al. 1995). We do this by employing shearing
coordinates (Riquelme et al. 2012), in which the grid follows the
shearing velocity profile within the shearing box, allowing the use
of standard periodic boundary conditions in the radial (x) direction.
However, the use of shearing coordinates introduces modifications
in the evolution of the electric and magnetic fields, as well as in the
evolution of particles momenta and positions. These modifications
are described in detail in the appendix of Riquelme et al. (2012) and,
for easy access, are also summarized below.
In the shearing coordinates, the fields evolve as

0B
— =—cVxE
ot
39 3Q0 dE yoE
——By+— |ct—+=— £ and 4
2 Yt (Cay+cat xran “®
oE
— =cVXB—-4n]J
ot
3Q 3 dB yodB
——Ey—-—|ct—+-— £ 5
2 ) 2 (C dy ¢ ot o ©)

The last terms in these equations, which are proportional to y/c
(hereafter, the y-dependent terms), can, however, be neglected in
the v4, 0/c < 1 regime, as it is shown below. This can be seen
considering that the size of our shearing boxes in the y-direction
should be typically a few times the wavelength of the most unstable
MRI modes Aprr = 27 v4, 0/€29, which means that Qgy ~ v, ¢ (the
fact that Aypgp is the dominant scale of the MRI turbulence even
in its non-linear stage will be shown in Section 4.1 and further
discussed in Section 7). Also, assuming that the order of magnitude
of the time derivative of any field component f should satisfy df/ot
~ Qqf, one can calculate the ratios between the magnitudes of the y
-dependent terms in equations (4) and (5) and the left-hand side of
these equations, obtaining:

‘(Qoy/c)aE/at‘ Elvas

; (6)
‘33 /az( B| ¢
for equation (4) and
‘(Qoy/c)aB/Bt‘ 1Bl v o

(aE /az( |E| ¢

for equation (5). Since in general |E|/|B| < 1 (which is verified
in Section 7), the right-hand side of equation (6) is much smaller
than unity as long as v4 ¢/c < 1, implying that the y-dependent
term in equation (4) can be safely neglected. The right-hand side of
equation (7), on the other hand, is not necessarily <1 since its value
depends on the precise magnitude of the ratio | E|/| B|, which makes
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the y-dependent term in equation (5) not necessarily negligible.
However, using the approximation V f ~ )\r;[}u f~(Qo/van)f, we
can calculate the ratio between the magnitude of this y-dependent
term and an estimate of the magnitude of the first term on the right-
hand side of equation (5) (cV x B), obtaining:

~ (Lo’ ®

C

‘(Qoy/c)aB/Bt’
‘CV X B‘

This implies that dropping the y-dependent term in equation (5)
should not change the non-relativistic MHD behaviour of the plasma,
in which J =~ ¢V x B/4m, and is also consistent with our previous
choice of ignoring the terms proportional to vy in equation (3). Doing
a similar analysis, we find that the ratio between the magnitudes of
the third and the first terms on the right-hand side of equation (5) is

QlEx|  |Elvao

— —_—, )
‘cv x B‘ IB| ¢

so, for consistency, we also neglect the former. Therefore, in our
simulations we evolve the fields by solving the equations:

B

— = —cVXE 10
ar ¢ (10)
3QBA+3Qt aE><,€ d
—= o — c— an
PRI St e
JoE 3 0B
— =cVXB—-4nJ — —Qoytc— X X. (11)
ot 2 dy

In terms of particles evolution, in the shearing coordinates each
particle’s momentum p evolves as (Riquelme et al. 2012):
dp

1 v
L = 290p,% = 3Py — Mm@zt +q (E + = x B) . (12

which is valid in the limit Qpy ~ v4 0 < c and as long as the shear
velocity of the plasma within our simulation domain, vy, is non-
relativistic. This last assumption is justified since v, ~ Qox, and x in
our shearing box is also of the order of a few times Ayri = 27 v4, 0/€20.
This implies that |vg| ~ Qox ~ v4 0, making equation (12) valid in
the regime vy, o < c.

We emphasize that equations (10)—(12) are valid under the
assumption that Qox, oy are <c. Since the typical scale of the
MRI turbulence along the x- and y-axes is determined by Amrr =
2mva,0/2 even in the non-linear MRI regime (as checked in
Section 4.1 and discussed in Section 7), these equations are valid
as long as v4 o <K ¢, which is reasonably well satisfied by our
choice vy o/c = 1072, Additionally, these equations also require
|E|/|B] <1 and the plasma to be in the non-relativistic MHD
regime where J ~ ¢V x B/4m (which implies the instantaneous
Alfvén velocity to satisfy vs < ¢). In Section 7, we check that these
assumptions are also satisfied in the disc region of our runs during
almost the entire simulation time.

Finally, the evolution of the particles position r = (x, y, z) is given
by:
dr

3
—_— = 7QtXA, 13
ar v+2 of Uy (13)

which is obtained combining equations (A30) and (A35) of Riquelme
et al. (2012) also in the limit in which vy is non-relativistic.

In order to safeguard the numerical stability and accuracy of
our simulations, every time the factor (3/2)$2o¢ on the right-hand
side of equations (10), (11), and (13) equals an integer, we reset
these equations to their initial (+ = 0) shape. This implies a
periodic ‘unshearing’ of our shearing grid that, therefore, requires
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Table 1. Simulations parameters.
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Run UN2D-20  ST2D-28 ST2D-20 ST2D-14 ST2D-10 ST2D-7 ST2D-3.5 ST3D-3.5 ST2D-20LR ST2D-20HR
e, 0/20 20 28 20 14 10 7 3.5 3.5 20 20

Ly [2mvg, o/Q0] 22 35 43 47 46 46 48 24 44 44

Ly [2mva, 0/S20] - - - - - - - 24 - -

L [2mvga, /2] 22 120 89 95 92 93 96 96 90 90

A [clwp, 0] 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.5 0.25
Nppe 25 400 350 200 200 200 200 30 350 350

At [Alc] 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.225 0.45 0.45

Notes. We list the initial parameters of our simulations, which are: the scale-separation ratio w, 0/S20, where w., o = |q|Bo/mc is the initial cyclotron frequency
of the particles, the box size along the different axes (Ly, Ly, and L) in terms of Apmrr = 27 v4, /€20, the grid spacing A (equal in all dimensions) in terms of
the initial plasma skin depth, c/w) o = c/(4nn0q2/m)” 2 the initial number Nppe of particles (ions and electrons) per cell, and the simulation time-step At in

units of A/c, where c is the speed of light.

a remapping of the electric and magnetic fields, as well as of the
particles positions. This periodic redefinition of the time origin in
our runs means that the factors (3/2)<2y¢ in equations (10), (11), and
(13) never surpass unity. Notice also that the presence of the term
proportional to (3/2)2y¢ in equation (13) implies that relativistic
particles may in principle change position in the y-direction at a
rate close to twice the speed of light. This should not be considered
a violation of special relativity, since this equation only describes
the update of particle positions in our non-inertial, time-varying
shearing coordinates. Also, we have empirically found that the
terms proportional to (3/2)2pt do not affect the numerical stability
and energy conservation properties of our method as long as we
use a time-step At < 0.25A/c, where A is the grid spacing (this
has also been tested in previous works where this method has
been used, as, e.g. in Riquelme, Quataert & Verscharen 2015).
Because of this, in our 3D runs we use At = 0.225A/c. In the
2D simulations, where the time-dependent term (3/2)2¢ is absent
from equations (10), (11), and (13), we use the less stringent
time-step At = 0.45A/c, which is smaller than required by the
Courant-Friedrichs—Lewy condition in 2D (e.g. Sironi & Cerutti
2017).

We emphasize that, in order to obtain our plasma evolution
equations, we have assumed a non-relativistic plasma with v4/c <K 1,
which rotates at non-relativistic velocities (vy < ¢). This implies that
our work strictly applies to a plasma at radii significantly larger than
the gravitational radius of a central black hole. For this reason, in this
work we concentrate on a subrelativistic regime, where the plasma
temperature satisfies kg7 < mc?. Notice, however, that the treatment
of individual particles is relativistic, since (as we see below) a small
fraction of them can still be non-thermally accelerated to energies

much larger than mc?.

2.3 Boundary conditions along z

Using shearing coordinates allows the use of periodic boundary
conditions both in the x (radial) and y (toroidal) coordinates. In
the z coordinate we use open boundary conditions, which allow the
existence of field and particle outflows in our stratified setup. Thus,
in our runs particles are removed from the simulation box after they
cross the vertical boundaries, while the fields are absorbed by these
boundaries. This configuration effectively prevents outflowing fields
from rebounding into the simulation domain (Cerutti et al. 2015;
Belyaev 2015; Sironi, Giannios & Petropoulou 2016). This is done
by implementing an absorption layer of width A, in the vertical
boundaries, where the terms

—n(z)(B — Bo) and —n(2)E (14)

are added to the right-hand side of equations (10) and (11), respec-
tively. We use Ay = 50 cells and 1(z) = (40/AD(1Z — Zaps|/ Agps)’
within the absorption layer (n7(z) = 0 otherwise), where z,s is the
inner edge of the absorption layer and At is the simulation time-step.

2.4 Numerical parameters

The simulations presented in this paper and their numerical parame-
ters are listed in Table 1, with all physical quantities in stratified runs
corresponding to plasma conditions in the disc mid-plane. These
parameters are the scale-separation ratio w, ¢/€2p, where w. o =
|g|Bo/mc is the initial cyclotron frequency of the particles, the box
size along the different axes (L., Ly, and L;) in terms of Aywri, the
grid spacing A in terms of the initial plasma skin depth, c/w, ¢ =
c/(4mnoq*/m)"?, the initial number Nype of macroparticles (ions and
electrons) per cell and the time-step At in terms of A/c. Notice that
we ran simulations using several values of A, Ny, and Ly, Ly, and
L, to make sure that our results are numerically converged. Table 1
includes some simulations with different values of A [c/w,, ] in order
to explicitly show that our spatial resolution is sufficient to capture
the relevant MRI physics.

2.5 Notation convention

In this section, we introduce various types of averages denoted by
angled brackets with different subscripts, namely (A),, (A), -, and
(A),. (A), denotes the average along the x-axis at a fixed height z for
2D stratified simulations, (A), _, denotes the average over the x-y
plane at a fixed z for 3D stratified simulations, and (A), represents the
average taken over the volume of the disc for stratified simulations,
while for unstratified simulations it represents the average over the
entire simulation domain.

Additionally, we use an overline notation (7) for quantities that
are computed as the ratio of two volume averages. For instance, for
the plasma B and temperature we define 8 = (87 P),/(B?), and
kzT = (P),/(n),.In these expressions, (P), = (P)o/3 +2(P1)u/3,
where P denotes the isotropic pressure, and P and P, correspond
to the pressure parallel and perpendicular to the local magnetic field,
respectively. Notice that throughout this work, P is calculated within
the frame of reference that moves with the bulk plasma velocity (i.e.
the frame where the average momentum of the particles within a
fluid element cancels out).

Since in the stratified runs these averages are calculated in the
disc region, we define this region through the condition |z| < H(T),
where H(T) = (2k37/ m)'/? /€2y denotes the instantaneous scale
height of the disc. Notice that the calculation of T has to be done
in the disc region itself, whose definition depends on T through the
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inequality |z| < H(T), implying that the T of the disc has to be
determined recursively.

3 2D RESULTS

In this section, we describe the stratified MRI turbulence using
2D simulations, paying special attention to the difference between
stratified and unstratified simulations and to the role played by
the scale-separation ratio . ¢/€2. In Section 3.1, we analyse the
properties of the turbulence, and in Section 3.2 we show the evolution
of the plasma properties in the disc.

3.1 Turbulence properties in 2D

Fig. 1 shows three snapshots of the squared magnetic fluctuations § B>
(where 6B = |6B| and § B = B — B)) and of the particle density n
for the stratified 2D run ST2D-20 (w,, /€20 = 20). Panels (a) and (b)
show the initial formation of non-linear channel flows at time r =
2.5 [27/€2]. These channel flows appear both in 8B? and n and are
more clearly formed within the disc region (|z| < H(T)), which is
marked by the horizontal dotted lines in all the panels. Panels (c)
and (d) show the same quantities but at t = 3.25 [27/$2y], when the
channel flows have already experienced reconnection, breaking into
aturbulent state. At that moment, the disc thickness has increased due
to plasma heating and significant particle and magnetic field outflows
occur. This turbulent state continues during the entire simulation and
is accompanied by a permanent puffing up of the disc, as shown by
panels (e) and (f), corresponding to t = 4.5 [27/Q].

Our 2D runs also show the formation of a large scale, preferentially
toroidal dynamo-like field, similar to those observed in previous
MHD studies (e.g. Bai & Stone 2013; Salvesen et al. 2016). This is
seen in panel (a) of Fig. 2, which shows (By), as a function of time
t and of the vertical coordinate z. We see that a net (B, ), is formed,
with a maximum amplitude of ~30—40 B during the non-linear stage
of the stratified simulation and with oposite signs inside and outside
the disc. The amplitude of (B,), is very close to the one observed by
previous equivalent 3D MHD simulations of the stratified MRI with
initial B¢ = 100 in the disc mid-plane (Salvesen et al. 2016).

In order to explore the effect of the scale-separation ratio w,, /€2
on the 2D turbulence structure, Fig. 3 shows 6B and n in the non-
linear MRI state (=4 [271/€2]) for an analogous run using @, ¢/2p =
3.5 (run ST2D-3.5) instead of w ¢/2p = 20. By comparing with
panels (e) and (f) of Fig. 1, we see that the scale-separation ratio
does not appear to produce a qualitative change in the properties of
the 2D MRI turbulence, preserving features such as disc thickness
increase and the presence of outflows. Run ST2D-3.5 also shows
significant dynamo-like activity, as seen in panel (b) of Fig. 2, where
anet (B, ), field appears similarly to the case of run ST2D-20 in panel
(a).

The weak effect of w. /€2p on the field structure of the
stratified MRI can also be seen in the magnetic field power
spectra, which are shown in Fig. 4 for runs with w. ¢/Qy =
7, 10, 14, 20, and 28 (all of them at t ~ 5 [27/2y]). Panel
(a) shows the spectra of the poloidal component of the mag-
netic field, d(|B,(k)> + |B.(k)|?)/dIn(k) (B.(k) and B.(k) are
the Fourier transform of the x and z components of B and
k is the corresponding wavenumber), while panel (b) shows
the spectra of the toroidal component, d|l§y(k)|2/dln(k). For all
the values of w. /€2, the spectra show similar shapes, with
a break at kp; ~ 1 (kp; = 1 is marked by the coloured
dots on each line), where p; is the typical particle Larmor
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Figure 1. Squared magnetic fluctuations B> (left) and plasma density n
(right) for simulation ST2D-20 at ¢ = 2.5, 3.25, and 4.5 [27/0]. The black
arrows in the left panels show the total magnetic field direction. The horizontal
dotted lines in all the panels mark the region defined as disc region in our
analysis (i.e. |z| < H(T)).
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Figure 3. Panels (a) and (b) are analogous to panels (e) and (f) of Fig. 1,
but for a run using a much smaller scale-separation ratio w,, o/ = 3.5 (run
ST2D-3.5).

radius, defined as p; = mc(3kgT /m)'/?/|q|(B*)!/>. Their main
difference is the location of the break of the spectra, which
moves to larger wavenumbers (in units of A;,[}U = Qo/2mva,)
as w0/ increases, implying a growing separation between
the kinetic (o;) and the MHD (Ayg;) scales.> However, apart
from this growing separation between scales, increasing w,, /€2y
does not significantly affect the qualitative shape of the power
spectra.

3Notice that, as explained in Section 2.5, T is calculated in the frame of each
fluid element, so p; does not include the bulk motion of the plasma.
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Figure 4. Panels (a) and (b) show the power spectra of the poloidal and
toroidal components of the total magnetic field, d(| B, (k)|* + | B, (k)|?)/dIn(k)
and d|1§y(k)|2 /dIn(k), for 2D stratified runs with w. o/29 = 7, 10, 14, 20,
and 28. Panels (c) and (d) are analogous to panels (a) and (b), but considering
only the turbulent component of the magnetic field, B. In all the panels, the
spectra use arbitrary normalization and the wavenumber & is normalized by
Qo/2mva, 0.

Panels (a) and (b) also compare d(|B,(k)|> + |B.(k)|?)/dk and
d|1§y(k)|2 /dk with power-law functions of index v (ox k™) and show
that, at sub-Larmor scales (kp; 2 1), the poloidal and toroidal spectra
are approximately consistent with v & 3. This v = 3 behaviour is
expected for kinetic Alfvén wave turbulence (e.g. Passot & Sulem
2015) and it has also been observed in previous unstratified 2D and
3D kinetic simulations (Kunz et al. 2016; Inchingolo et al. 2018;
Bacchini et al. 2022). Above Larmor scales (kp; < 1) the poloidal
spectra show a peak at k2mwv4 0/ Q0 ~ 1, followed by a power-
law region characterized by v &~ 5/3. The toroidal spectra, on the
other hand, has a peak at k2w v, o/ Qo ~ 0.2, followed first by an
approximately flat region for 0.2 < k27v4,0/ Q0 < 1 and then by a
steeper v & 2 region for k 27rv4 0/ 2 2, 1. The nearly flat behaviour
of the toroidal spectra at 0.2 < k27wvs /2 S 1 is significantly
affected by the presence of the dynamo-like field. Indeed, panels
(c) and (d) of Fig. 4 show the poloidal and toroidal spectra of
the ‘turbulent’ part of the magnetic field, B”, which is obtained
by removing the contribution from the dynamo-like field:

B" =B — B?, (15)

where B? = (B),. While the turbulent and total spectra of the poloidal
field are very similar [see panels (a) and (c), respectively], the
turbulent spectra of the toroidal field (panel d) decrease substantially
at 0.2 S k2mwva0/ Q0 S 1 compared to the total toroidal spectra
(panel b), maintaining its v ~ 2 behaviour for k 27v 4,0/ Q2 2, 1. The
v &~ 5/3 and 2 behaviours of the poloidal and toroidal components
of the turbulent field is similar to the unstratified results from 3D
MHD simulations of the MRI (e.g. Walker, Lesur & Boldyrev 2016),
as well as the ones of 3D kinetic simulations (Kunz et al. 2016;
Bacchini et al. 2022). We show in Appendix A that these results are
not affected by the spatial resolution of our simulations.
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Figure 5. The squared magnetic fluctuations 8B (left) and the plasma
density n (right) for simulation UN2D-20 at t = 2.5 and 3 [27/S2¢]. The
black arrows in the §B* panels show the total magnetic field projected on the
x—z plane.

3.2 Disc properties in 2D

In this section, we show the evolution of the average disc properties
in our 2D runs, paying attention to the way these properties are
affected by the presence of stratification and by the scale-separation
ratio w,, o/€2o.

In order to assess the effect of stratification, we compare run ST2D-
20 with the analogous unstratified run UN2D-20, with the same initial
conditions as in the disc mid-plane of run ST2D-20. Fig. 5 shows
8B? and n for run UN2D-20 at the moment when non-linear channel
flows appear (r = 2.5 [27/€2]) and then when these channel flows
have reconnected and broken into turbulence (f = 3 [27/€2]). At first
glance, this figure suggests that the evolution of the MRI turbulence
in run UN2D-20 is similar to the one in the disc region of run ST2D-
20. However, the average plasma properties between these two runs
differ substantially, as shown in Fig. 6. Panel (a) of Fig. 6 shows
the evolution of (B?), in the disc of run ST2D-20 (solid blue line)
and in the whole volume of the analogous unstratified run UN2D-20
(solid red line). In both simulations there is an initial exponential
growth regime that transitions to a much slower growth regime at ¢ ~
3 [27/€20]. Also, the two runs show the lack of a complete magnetic
field saturation. However, at t = 3 [27/€2], at any given time the
unstratified case reaches a (B?), magnitude ~5-10 times larger than
in the stratified case. This factor ~5-10 larger amplification applies
similarly to the three components of the magnetic field, as can be
seen from panel (b) of Fig. 6.

Interestingly, the B, component in the unstratified case appears
to be dominated by a large scale, dynamo-like component, similarly
to what occurs in the stratified runs. This can be seen from panel
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Figure 6. Plasma properties as a function of time ¢ for the disc region of
the stratified run ST2D-20 and for the entire domain of the unstratified run
UN2D-20, respectively. Panel (a) shows (B2), (solid) and B (dashed). Panel
(b) shows the contributions to (B2),, by the x (solid), y (dashed), and z (dotted)
components of the magnetic field. Panel (c) shows & (solid) and 7' (dashed).

(c) of Fig. 2, which shows (By), for run UN2D-20. We see that by
t =6 [2m/Q], {By), reaches an amplitude ~100B,, similar to the
one of the total B, component, as shown by the dashed red line
in panel (b) of Fig. 6. However, whereas the dynamo activity in
the analogous stratified run ST2D-20 (shown in panel a of Fig. 2)
produces a rather homogeneous (B,), in the disc region (|z| < H (T),
marked by the dashed black lines), the characteristic wavelength of
the large-scale B, field in the unstratified case is ~4 times smaller.
We thus interprete the large-scale B, field in the unstratified case as
a growth in the wavelength of the MRI modes, being therefore of
different nature compared to the larger scale (B,), of the stratified
runs.

The time when the stratified simulation significantly slows down
its growth (r ~ 3 [27/Qp]) coincides with the moment when
stratification effects, such as outflows and disc expansion become
important, as can be seen from Fig. 1. Notice that this moment
coincides with the time when the disc temperature starts increasing
significantly, as we can see from the dashed-blue line in panel (c)
of Fig. 6, showing a connection between energy dissipation and disc
expansion and outflow generation.

Despite the fact that the magnetic field is amplified less in the strat-
ified case, the average cold sigma parameter &, (= (B?),/(4mnmc?),)
is larger in the non-linear regime of these runs. This is shown by the
solid blue and solid red lines in panel (c) of Fig. 6 for the stratified
and unstratified cases, respectively. This can be explained by the
decrease in the disc density n due to its expansion in the stratified
runs. Finally, in both cases the plasma beta 8 (= (87 P)./(B%),)
reaches a nearly steady state regime for r 2 3 [27/€], as shown
by the dashed lines in panel (a) of Fig. 6. However, while g ~ 2 in
the unstratified case, 8 ~ 0.4 in the stratified case, which shows that
stratification produces a disc that is magnetic-pressure supported,
consistently with previous MHD stratified simulations (Bai & Stone
2013; Salvesen et al. 2016).
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In order to explore the role of the scale-separation ratio w., ¢/
in our stratified runs, panels (a) and (b) of Fig. 7 show the quantities
(B?),, B, T, and T for stratified simulations with o, ¢/Q% = 7, 10,
14, 20, and 28. We see that increasing ., ¢/2p produces a slight
increase in (B?), and &, not yet showing a clear convergence for
the highest values of w, /€2p. (Note that the time origins of these
simulations were slightly adjusted to align their exponential growth
temporally, facilitating comparison.) The evolutions of 7 and B
exhibit some variations within a factor of ~2, but without showing a
discernible dependence on w,, ¢/€2y. Also, in Appendix A we use the
case w.,o/2 = 20 to show that these results are not affected by the
spatial resolution of our runs.

As discussed in Section 3.1, another important feature of the
stratified 2D simulations is a dynamo-like action that produces a
significant B)l,) = (B,), field, as shown in panels (a) and (b) of
Fig. 2. The magnetic energy in the disc provided by the dynamo-
like field B? in run ST2D-20 is shown by the solid lines in the panel
(a) of Fig. 8, where the red-solid, black-solid, and green-solid lines
show the contributions by the three components of B?: ((B” )y,
((BP)?),, and ((BP)?),, respectively. We see that the dynamo-like
action within the disc is indeed dominated by the toroidal component
of the magnetic field. Panel (a) of Fig. 8 also shows in dashed
lines the contribution to the magnetic energy provided by the three
components of the turbulent magnetic field BT, which are averaged
over the disc volume obtaining ((er)z)v’ ((B;)z)v, and ((BZT)Z)U
(red-dashed, black-dashed, and green-dashed lines, respectively). We
see that the turbulent field is dominated by its toroidal component as
well and contributes most of the magnetic energy in the disc from
the triggering of the MRI turbulence at t ~ 2 [27/2] until ¢ ~
3.5 [2/€2]. After that, the toroidal component of the dynamo-like
field ((By)f) . becomes larger (by a factor of ~2) than the toroidal
component of the turbulent field.

Panel (b) of Fig. 8 shows the total energies in the dynamo-like field
B? (blue-solid line) and in the turbulent field B” (blue-dashed line)
for run ST2D-20 (w,, o/20 = 20). We see that after r ~ 4 [27/€2] the
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Figure 8. Panel (a): the solid lines show ((BP)?),, ((BP)?),, and ((B?)?),,
respectively, for run ST2D-20 (w., 0/ = 20). The dashed lines show
((BXT)Z),,, ((ByT)Z)v, and ((BZT)Z)U for the same run and in the same region.
Panel (b): the total energies in the dynamo-like field B? (solid line) and in
the turbulent field B” (dashed line) for the runs ST2D-20 (., o/ = 28) and
ST2D-7 (w¢, 0/ = 7).

energies in the dynamo and turbulent fields are comparable. Thus,
in terms of the total magnetic energy, the dynamo-like and turbulent
magnetic fields are roughly equally important after the initial period
(of ~1 orbit after the triggering of the MRI) in which the turbulent
magnetic energy dominates. This trend appears to not be significantly
affected by the scale-separation ratio w,, ¢/€2. This is shown by the
pink-solid and pink-dashed lines in panel (b) of Fig. 8, which show the
contributions by, respectively, the turbulent and dynamo-like fields
to the magnetic energy in the disc of run ST2D-7 (w,, /20 = 7). We
see that in this w. (/€29 = 7 run there is also an initial period of about
~1 orbit in which the turbulent field energy dominates, followed by
a similar contribution to energy by the turbulent and dynamo-like
fields.

Thus, we have shown that disc stratification in 2D can change
significantly the behaviour of the MRI turbulence compared to
the unstratified case. Besides producing significant outflows and
a puffing up of the disc due to temperature increase, stratification
makes the disc turbulence more magnetically dominated (smaller
B) compared to what is shown in an analogous 2D unstratified
simulation. Stratification also gives rise to a significant large-scale
dynamo-like activity, which contributes similarly to the magnetic
energy in the non-linear MRI stage as the turbulent field after ~1
orbit from the triggering of the MRI. We also found that increasing
the scale-separation ratio produces slightly more magnetized discs,
obtaining no complete convergence for the largest values of w, /€2
used, consistent with the result obtained by Bacchini et al. (2022)
who found that a scale-separation ratio w,. (/29 = 60 is required for
a complete convergence in the 2D case.

In the next section, we compare these 2D results with a 3D
simulation showing that, although some differences appear, most
of our 2D results are reasonably well reproduced in the 3D case.
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Figure 9. Panels (a)—(c) show §B? for simulation ST3D-3.5 at r = 1.5, 2.5,
and 4.5 [2m/Q], respectively.

4 3D MRI TURBULENCE

In this section, we present results from a 3D stratified simulation,
run ST3D-3.5 (w,, 0/$2p = 3.5) and compare them with the analogous
2D stratified run ST2D-3.5. Given their small-scale separation, we
use these runs only as an initial attempt to assess the importance of
3D effects. Thus, our 3D run ST3D-3.5 is not intended to provide
definitive answers regarding the 3D behaviour of the MRI turbulence.

4.1 Turbulence properties in 2D versus 3D

Fig. 9 shows three snapshots of 8B for the stratified 3D run ST3D-
3.5 at times ¢ = 1.5, 2.5, and 5.5 [27/€2]. At the qualitative level,
there are many similarities with the turbulence structure of the 2D
runs. At t = 1.5 [27/Q], non-linear channel flows are present in
8B2, which look similar to the ones shown in panel (a) of Fig. 1 for
run ST2D-20. At t = 2.5 [27/€2], the channel flows have already
reconnected and broken into turbulence, with a significant increase in
the disc thickness, similarly to what was shown for run ST2D-20 in
panel (c) of Fig. 1. This trend continues at later times, as can be seen
in panel (c) of Fig. 9, which shows 8B% att = 5.5 [27/%]. Fig. 10
shows the same snapshots of Fig. 9, but for the particle density n. At
t = 1.5 [271/€2¢] non-linear channel flows are present in n, similarly
to what is shown in panels (b) of Fig. 1 for run ST2D-20. At r =
2.5 and 4 [27/€2], a much more turbulent and progressively thicker
disc is shown, as also shown for run ST2D-20 in panels (d) and (f)
of Fig. 1.

Our 3D run also shows the action of a dynamo-like mechanism,
as can be seen from panel (d) of Fig. 2, which shows B, averaged
over the x—y plane, (By). _ ,, as a function of time ¢ and of the vertical
coordinate z. We see that a net (B,),_, field is formed, with an
amplitude similar to the 2D cases shown in panels (a) and (b) of
Fig. 2 (runs ST2D-20 and ST2D-3.5). However, while the dynamo-
like field in 2D shows significant time-variability and inhomogeneity
along the z-coordinate, in 3D this field appears less variable and more
homogeneous.

The behaviour of the magnetic power spectrum seems to be quite
similar in 2D and 3D. Panels (a) and (b) of Fig. 11 compare,
respectively, the poloidal and toroidal magnetic spectra of the 2D and
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Figure 11. Panels (a) and (b) show the power spectra of the poloidal and
toroidal components of the magnetic field, d (1B (k)2 + |l§Z *))®) /dIn(k) and
d|l§y(k)|2 /dIn(k), respectively, for the 2D and 3D stratified runs ST2D-3.5
and ST3D-3.5. Panels (c) and (d) show the same as in panels (a) and (b),
respectively, but considering only the turbulent field B

3D runs ST3D-3.5 and ST2D-3.5 (blue and green lines, respectively).
These runs share the same ratio w,, /€29 = 3.5, so that the effect of
the scale-separation does not affect significantly the comparison.
At sub-Larmor scales (kp; > 1, where kp; = 1 is marked by the
coloured dots on each line), we observe a magnetic spectrum with
v & 3.3 (poloidal case) and v =~ 3.5 (toroidal case), for both types
of runs. These v & 3.3 and 3.5 spectra are, however, steeper than
the ones shown by the 2D runs with higher w, ¢/€2, showing that a
minimum scale-separation ratio is necessary for correctly capturing
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Figure 12. Average disc plasma properties as as a function of time ¢ for 2D
and 3D stratified runs ST2D-3.5 and ST3D-3.5, respectively. Panel (a) shows
(B2), (solid) and B (dashed). Panel (b) shows &, (solid) and 7 (dashed).
Panel (c) shows the magnetic energy densities in the turbulent field [B|?
(dashed) and in the dynamo-like field |B”|? (solid) in 2D and 3D.

the behaviour of the sub-Larmor part of the spectra. Above Larmor
scales (kp; < 1), both runs show a poloidal and toroidal magnetic
field spectra with v close to v & 5/3 and ~ 2, respectively. These v &
5/3 and ~ 2 behaviours are maintained when removing the dynamo-
like field in both runs (which in 3D is defined as in equation (15) but
with B? = (B), _ y). This is shown in panels (c) and (d) of Fig. 11
where we show the poloidal and toroidal spectra of BT. The main
effect of removing B? is to substantially reduce the contribution of
k2mva0/ R S 1 to the toroidal part of the 2D and 3D spectra. In
this way, the peak of the poloidal and toroidal spectra of B both in
2D and 3D approach k 2w v4 0/ Qo ~ 1 (although the toroidal part of
the turbulent spectrum in 3D has its peak at wavelengths ~3 times
larger than in 2D). This behaviour of the BT spectra in runs ST3D-3.5
and ST2D-3.5 above Larmor scales is similar to the ones shown in
our stratified 2D runs with higher scale-separation ratio (Fig. 4), as
well as in previous unstratified MHD (Walker et al. 2016) and kinetic
3D simulations (Kunz et al. 2016; Bacchini et al. 2022).

4.2 Disc plasma properties in 2D vs 3D

In this section, we compare the disc plasma properties evolution in
2D and 3D. Panel (a) in Fig. 12 shows the evolution of (B?), in the
2D and 3D runs ST2D-3.5 and ST3D-3.5. In both cases, there is
an initial exponential growth regime that evolves into a non-linear
regime with a much smaller growth rate at t & 1.5 [27/2]. Later,
in the time interval  ~ 1.5-3 [27/R], significant differences appear
in the 2D and 3D cases, with the 3D run having a (B?), amplitude
~5 times smaller. This significant difference in (B?), produces a
similar difference in o, as can be seen from the solid blue and green
lines in panel (b) of Fig. 12. This implies that in that time interval the
disc expansion (and therefore its density) is about the same in the two

Stratified PIC simulations of the MRI 1875
simulations. This is consistent with the fact that their temperatures
T reach similar values, as shown by the dashed lines in panel (b) of
Fig. 12. Finally, consistently with the behaviours of 7' and &, 8 is
~5 times larger in the 3D case during the time period ¢ ~ 1.5-3.5
[27/€2]. Later, when t 2 3 [27/2] there is a transition towards a
state in which the amplitudes of (B?), in 2D and 3D tend to give
more similar values, which also tends to produce similar values of 8.
Indeed, for ¢ > 4 [27/Q], B ~ 0.5 in both runs while (B?), is only
a factor of ~2 larger in the 2D case.

The smaller magnetic amplification shown by the 3D run in the
time interval ¢ ~ 1.5-4 [27/2,] is consistent with recent unstratified
PIC simulations of the MRI that show that using 3D runs is important
to allow the reconnection of the toroidal magnetic field component
(Bacchini et al. 2022). By the end of the simulations, however, the 2D
and 3D magnetic energies only differ by a factor of ~2. This can be
explained by the growing importance of the dynamo-like field in the
stratified 2D and 3D runs, which evolves very similarly in these two
types of runs. The progressively growing importance of the dynamo-
like field in 2D can be seen from panel (c) of Fig. 12, which shows
that in run ST2D-3.5, |BP|? (solid-blue line) starts smaller than the
turbulent part of the magnetic energy density |B”|? (dotted-blue line)
for t S 4 [2m/S], but afterwards it becomes comparable to [B”|%.
This is indeed consistent with what was shown for 2D runs with
larger scale-separation ratios in Fig. 8. In the 3D run ST3D-3.5, this
increase in the dynamo-like field importance is even more significant,
since |BP|? (solid-green line) becomes ~5 times larger than [BT|?
(dotted-green line) at t = 4 [271/L], given that 3D runs dissipate
IB”|> more efficiently via reconnection. Since |B”|? has essentially
the same values in 2D and 3D, it is thus expected that, by the end of
the simulations, (B?), only differs by a factor of ~2 between the 2D
and 3D cases.

In Section 5.2, we show that the similitude between 2D and 3D by
the end of the runs is also reproduced when analysing the MRI-driven
effective viscosity.

5 EFFECTIVE VISCOSITY

In this section, we analyse the effective disc viscosity caused by
the MRI turbulence. This viscosity is quantified making used of
the o parameter (Shakura & Sunyaev 1973), defined as the xy
component of the plasma stress tensor 7,, normalized by the plasma
pressure, o = T,,/P. This stress tensor component T, has three
contributions: the Maxwell stress M,, = —B.B,/4m, the Reynolds
stress R, = mnV.V,, where V = (V,, V,, V,) is the fluid velocity,
and the anisotropic stress Ay, = —(P, — P) )BxBy/Bz, where P, and
P are the plasma pressures perpendicular and parallel to the local
magnetic field. Notice that, even though in the calculation of R,, we
assume non-relativistic fluid velocities, in our simulations individual
particles can still acquire relativistic velocities. Thus, V is calculated
as V = (p),/m(y),, where p and y are the momenta and Lorentz
factors of the particles in a given fluid element and (), denotes an
average over those particles. In this way, we ensure that the fluid
velocity V corresponds to the velocity of the reference frame where
the average particles momentum within a fluid element vanishes.

5.1 Effect of stratification and w,, ¢/2y on viscosity

Fig. 13 shows in solid blue line the time evolution of the average
parameter o (= (Ty),/(P),) for run ST2D-20, along with the
contributions from the Maxwell, Reynolds, and anisotropic stresses:
ay (= (Myy),/{P),; dotted blue line), ar (= (Ry),/(P),; dotted—
dashed blue line) and @4 (= (A,)./(P),; dashed line), respec-
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Figure 13. The solid lines show the evolution of @ in the stratified run ST2D-
20 and the unstratified run UN2D-20. The contributions from the Maxwell,
Reynolds, and anisotropic stresses (@, @g, and o 4, respectively) are also
shown by the dotted, dashed—dotted, and dashed lines, respectively.

tively. We see that o reaches a saturated value of o ~ 1, which
s dominated by the Maxwell stress, with the contributions to
following the ordering o) > @g > @4. The fact that oy ~ 1
s consistent with the dominance of magnetic pressure compared
to particle pressure (8 < 1) seen in panel (a) of Fig. 6 for the
same run ST2D-20. We compare these results with the ones of
the analogous unstratified run UN2D-20, where we find a similar
ordering of the contributions to o, oy > ag > @4, but with a
~4 times smaller o, . This difference is consistent with the ~4 times
larger B obtained in the unstratified run, implying a significant
effect of stratification on the disc viscosity in collisionless studies
of the MRI. Notably, the importance of &g in our results seems
to contradicts previous unstratified kinetic studies (Kunz et al.
2016; Bacchini et al. 2022), but are in line with the findings from
stratified MHD simulations (Bai & Stone 2013; Salvesen et al.
2016).

Including stratification also allows capturing the different be-
haviours of the effective viscosity as a function of the z coordinate.
Panel (a) of Fig. 14 shows the 2D map of the effective o viscosity
for run ST2D-20 at time ¢t = 4 [27/2¢]. This viscosity is computed
as the ratio between the total stress tensor (7,) on each grid, divided
by the the plasma pressure averaged along the x-axis ({P),) (the
horizontal dashed black lines denote the disc region). As can be
seen, the effective viscosity at |z| > 2H(T) is significantly larger
than in the disc region, consistent with the idea that accretion can
proceeds more efficiently through surface layers around the disc
(Rothstein & Lovelace 2008; Guilet & Ogilvie 2012; Jacquemin-
Ide, Lesur & Ferreira 2021). This is confirmed in panel (b) of
Fig. 14, which shows the radially averaged viscosity (Ty)./(P)s,
disaggregated by its contributions from the Maxwell, Reynolds, and
anisotropic stresses. Both within and outside the disc, (T,)./(P) is
dominated by the Maxwell stress, which increases about one order
of magnitude away from the disc. This increase in the viscosity
outside the disc is expected to significantly increase the advection of
magnetic flux, although, due to the low-mass density in this region,
it should have a secondary impact on the overall mass accretion
rate. This can be seen in panel (c) of Fig. 14, where the different
contributions to the effective disc viscosity are multiplied by the
radially averaged plasma density (p), normalized by py.
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Figure 14. Panel (a) shows the 2D map of the total a(= Tyy/(P)) parameter
in the stratified run ST2D-20 at time ¢ = 4 [27/€9], the horizontal black
dashed lines represent the disc region at that time. Panel (b) shows the hori-
zontally integrated oo parameter and the Maxwell, Reynolds and anisotropic
stresses contribution are also shown.
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Figure 15. Panel (a) shows in solid lines the evolution of @ in 2D runs with
we, 0/ =7 (ST2D-7), w¢, o/ = 10 (ST2D-10), 14 (ST2D-14), 20 (ST2D-
20), and 28 (ST2D-28). The corresponding contributions from the Maxwell,
Reynolds, and anisotropic stresses (@, @g, and o 4, respectively) are also
shown by the dotted, dashed—dotted, and dashed lines, respectively. Panel (b)
shows the contribution to @ys by the turbulent field BT (dashed lines) and
dynamo-like fields B (solid lines) in runs ST2D-28 run (w,, o/S% = 28) and
ST2D-7 (wc, 0/ = 7) , which we name &}, and &%), respectively.

We also measured the effect of w,. (/€29 on the behaviour of o,
R, 04, and the total o, which is done in panel (a) of Fig. 15. We
see that, although @ fluctuates by factors of order unity, there is no
discernible dependence of this quantity on w./2y, implying that the
scale separation used in our 2D runs appears to be large enough to
accurately capture the behaviour of the MRI-driven viscosity. The
blue lines in panel (b) of Fig. 15 also compare the contribution to &
by the turbulent field B (dashed lines) and dynamo-like fields B?
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Figure 16. Panel (a) shows in solid lines the evolution of @ in the 3D run
ST3D-3.5 and the 2D run ST2D-3.5. Their contributions from the Maxwell,
Reynolds, and anisotropic stresses (@, @, and o4, respectively) are also
shown by the dotted, dashed—dotted, and dashed lines, respectively. Panel (b)
shows the contributions of the dynamo-like magnetic field (solid) and the
turbulent magnetic field (dashed) to the Maxwell stress, Eﬁ and &{,,, in the
3D run ST3D-3.5 and the 2D run ST2D-3.5.

(solid lines) in the ST2D-28 run (v, ¢/$2p = 28), which we name &1{4
and @¥, respectively. We see that &}, dominates until # ~ 4 [27/2].
After that moment @, and @2 are comparable, with fluctuating
differences of a factor ~2-3). A similar behaviour is obtained for
@l and @b in run ST2D-7 (w. ¢/Q = 7), which are shown by
dashed-pink and solid-pink lines, respectively. This implies that no
clear effect of the scale-separation ratio of @}, and @, is observed
in our simulations. The fact that these quantities become comparable
after £ ~ 4 [277/S0] is in line with the behaviours of |B”|> and |[B”|?
for runs ST2D-28 and ST2D-7, which also become comparable in

the same time period, as shown in panel (b) of Fig. 8.

5.2 Viscosity in 2D versus 3D

Panel (a) of Fig. 16 compares the effective viscosities of the 3D and
2D runs ST3D-3.5 and ST2D-3.5, respectively. We see that for ¢ >
1.5 [27/82], the viscosity of the 3D run has a nearly steady value of
o ~ 0.5. For t ~ 1.5-3.5 [27/€], the 3D @ is ~3—4 times smaller
than in the 2D case, while for ¢t 2 3.5 [27/Q(] the & of the 2D and
3D runs become more similar, differing by a maximum factor of ~2.
The time dependence of the difference between the 2D and 3D values
of « is consistent with the fact that, initially, the 3D B is ~3-5 times
larger than in 2D, with a subsequent period at 7 = 3.5 [27/Q] in
which both @’s acquire essentially the same value, as shown by the
dashed blue (2D) and green (3D) lines in panel (a) of Fig. 12.
These results reinforce the idea that, when the dynamo-like field
becomes either dominant (3D) or comparable to the turbulent field
(2D) at t 2 3.5 [2m/20], the 2D and 3D runs produce fairly similar
results, which include the value of the (Maxwell stress-dominated)
disc viscosity. When that happens, o), itself is significantly affected
by the dynamo-like field. This can be seen from panel (b) of Fig. 16,
which shows the contributions of the dynamo-like magnetic field

Stratified PIC simulations of the MRI 1877
2.0 2D, We0/0 =20 20, W/ =35 3D, W o/@=35 .
@ ® @]
15 15
1.0 Mirror threshold Mirror threshold Mirror threshold 1.0
o 05 0.5
=5
o 0.0 o i — 0.0
g-us / / / -0.5
-1.0 :"Firelmse { Firehose i Firehose -1.0
5 threshold } threshold } threshold
-1.5 | | i -15
20" T 8.1 2 =2 1 0.7 2 2 930 1 3 4
109108 109108 109108

I
0 545 1090 1635 0.1

92.4 1847 277.0 0O 732 1465 2197

Figure 17. Panels (a)—(c) show the distributions of plasma anisotropy P /P
and B in the disc of the 2D run ST2D-20 during t = 3.5 — 4.5 [27/Q],
the 2D run ST2D-3.5 during ¢ = 2.5 — 3.5 [27/20], and the 3D run ST3D-
3.5 during t = 2 — 3 [27/2], respectively. The three cases are compared
with a threshold for the growth of unstable mirror modes (black line) and
firehose modes (dashed line) obtained from linear Vlasov theory (Hellinger
et al. 2006).

(solid) and the turbulent magnetic field (dashed) to the Maxwell
stress, @4y and @2, in the 3D run ST3D-3.5 (green) and the 2D run
ST2D-3.5 (blue). At ¢ > 3.5 [27/S2], the 3D run exhibits a greater
contribution to the Maxwell stress attributed to the dynamo-like field
(by a factor ~5). This dominant contribution to the viscosity by the
large-scale dynamo-like field is in qualitative agreement with the 3D
MHD simulations of Bai & Stone (2013) in the case of Sy = 100.
Conversely, in the 2D run ST2D-3.5 the dynamo-like contribution to
the viscosity becomes comparable to the one of the turbulent field
after r ~ 3.5 [27/S2], with some dominance of the former after
t ~ 4.5 [27/Q] by a factor of ~2-3. This is in line with results
shown for the 2D runs ST2D-28 and ST2D-7 (w,, /20 = 28 and 7,
respectively), for which @2, and @}, were comparable after t ~ 4
[27/€2], with no discernible dependence on w,, /2.

Both our 2D and 3D runs give rise to an anisotropic stress that is
subdominant compared to the Maxwell stress, although the former is
larger than the Reynolds stress in the 3D run, which is the contrary to
what occurs in 2D, suggesting that 3D effects would tend to suppress
the fluid velocities that give rise to the Reynolds stress.

5.3 Pressure anisotropy behaviour

The very small contribution of o4 to the total effective viscosity in
our 2D and 3D stratified runs seems to contradict previous kinetic
simulation studies that suggest that the anisotropic stress can be as
important as Maxwell stress in collisionless discs (e.g. Kunz et al.
2016). This discrepancy, however, appears to be mainly due to the
small B regime reached in the non-linear state of our simulations. To
demonstrate this point, panel (a) of Fig. 17 shows the distribution of
plasma anisotropy P, /P| and B in the disc of run ST2D-20 during a
time interval = 3.5 — 4.5 [27/€2], and compares it with a threshold
for the growth of unstable mirror modes (black line) obtained from
linear Vlasov theory (Hellinger et al. 2006):

P, 0.77

P I (B — 0.016)076" (16)
We see that in most cases P, /P tends to be larger than unity and
limited by the mirror threshold. As an estimate of the upper limit for
the expected importance of a4, one can compute the ratio (wa/oty),
assuming that the pressure anisotropy of the plasma is given by
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equation (16). In that case we would have

(o) = (IR <oapp, ~ 040 ()
Oy /v PH 2/

where we have applied equation (16) in the limit 8] > 0.016 (E” ~
0.4 for r 2 3 [27/S], as can be seen from the B” evolution for run
ST2D-20 shown in Fig. 6). Thus, using B” ~ 0.4, we obtain (a/a ),
< 0.3. This upper limit is consistent with the fact that o4 is much
smaller (by a factor of ~10) than &), in run ST2D-20, as shown,
respectively, by the dashed blue and dotted blue lines in Fig. 13.
Notice that in a hypothetical case in which E” ~ 100 (e.g. as in Kunz
et al. 2016), equation (17) would predict comparable contributions
from the anisotropic and Maxwell stress with @4 ~ &y;.

Panel (b) of Fig. 17 shows the same as panel (a), but for the
2D run ST2D-3.5. We see that P /P| is somewhat larger in the
case of run ST2D-3.5 for a given B). The larger value of P,/P
is consistent with the smaller scale-separation ratio, as shown by
previous PIC simulation studies of the mirror instability driven by
a growing background magnetic field (see e.g. Ley et al. 2023).
However, the distribution of P, /P and B in the disc of run ST2D-
3.5 still follows reasonably well the threshold for the growth of mirror
modes presented in equation (16), consistently with the essentially
absent effect of scale-separation on the dominance of &y in our runs.
Panel (c) of Fig. 17 shows the behaviour for P, /P| and § in the 3D
run ST3D-3.5. We see that the pressure anisotropy behaves similarly
in the runs ST2D-3.5 and ST3D-3.5, in agreement with the small
contribution of @4 to the effective viscosity in the 3D case.

In summary, our 2D and 3D runs give a (Maxwell stress dom-
inated) o with values between ~0.5 (3D) and ~1 (2D), with a
progressively similar behaviour of the 2D and 3D runs as the dynamo-
like field becomes dominant (¢ 2 3.5 [27/]). In this dynamo-
dominated regime, o is expected to be mainly produced by the
dynamo-like field. Interestingly, this viscosity behaviour is very
similar to the one obtained from 3D MHD simulations of stratified
disc with net vertical field and initial 8 = 100 (Salvesen et al. 2016).

6 PARTICLE ACCELERATION

Our stratified MRI simulations show significant particle acceleration.
In this section, we show that the acceleration efficiency grows as the
disc temperature and the scale-separation ratio w,, ¢/€2 increase. Well
developed non-thermal tails are observed mainly in our 2D runs, due
to their relatively large scale-separation ratio.

6.1 Spectrum evolution in 2D

The evolution of the particle spectrum, dr/dy, calculated in the
disc of run ST2D-20 is shown in Fig. 18, where y is the particle
Lorentz factor in the local fluid frame, substracting the bulk velocity
of the plasma. The spectra are shown for different values of the
disc temperature T, instead of at different times. (This allows us to
compare spectra from different simulations, removing the fact that
different runs may take different times to trigger the MRI and/or to
heat the plasma.) As the plasma temperature increases, their spectra
develop a nonthermal tail that can be approximately described as a
power law with an exponential cut-off,

d
an x (y — 1)—116—7/%, (18)
dy

where p and y. are the corresponding spectral index and cut-off
Lorentz factor, respectivel}i This behaviour can be seen in Fig. 18,
forinstance, in the cases kg T /mc? ~ 5.2 x 1072 and 3.5 x 10~!. For
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Figure 18. The evolution of the particle energy distribution for our fiducial
run ST2D-20. Different colours represent different disc temperatures. The
dotted lines correspond to fits to the non-thermal tails using equation (18),
which use only particles with energies larger than 10 times the temperature
for each spectrum. The solid dots in each spectrum mark the value of y — 1
corresponding to that energy.

the first temperature, we fitted equation (18) using p &~ 2.2 and y. &
3.8 (green dotted line), while for the second temperature we used p ~
1.9 and y. ~ 34 (pink-dotted line). These fits were obtained using a
maximum likelihood analysis considering only particles with energy
larger than 10k T . The smallest particle energies considered in the
fits are marked by the green and pink dots in Fig. 18. In Appendix A,
we show that the spatial resolution that we are using (A = 0.35¢/w,, o)
is sufficient to capturing this non-thermal behaviour.

6.2 Role of w., (/2

The role of the scale-separation ratio w, ¢/ is shown in Fig. 19,
which shows the spectra of simulations with w. ¢/ = 7, 10, 14,
20, and 28, for temperatures kg T /mc* = 5.2 x 1072 (panel a) and
3.5 x 107! (panel b). For each of these spectra, we show in dotted
lines the corresponding fits using power laws with exponential cut-
offs (equation 18). The dependencies of the fitted y . and p on w, ¢/S2
are shown in panels (a) and (b) of Fig. 20, respectively. By comparing
with the black line in panel (a) (y. = 36(w., 0/€20)/20), we see that
for the spectra with temperature kBT/mc2 ~ 3.5 x 107!, y. behaves
approximately as y . & @, ¢/S2. For kgT /mc? ~ 5.2 x 1072, on the
other hand, y. ~ 4-10 with no clear dependence on w, ¢/S2.

This discrepancy in how y. depends on w. ¢/ is likely a
manifestation of the underlying acceleration mechanism, which
appears to be consistent with the expectation from reconnection
driven acceleration. Indeed, the y. dependence on w. /€2y for
kgT /mc* ~ 3.5 x 107! is qualitatively consistent with the pair
plasma magnetic reconnection results of Werner et al. (2016) in
the limit of small system size, L. These results show power laws with
supra-exponential cut-offs (dn/dy y‘pefyz/ v ree) With y¢ rec ~
0.1L/pg, where pg = mc?/eB and B is the magnitude of the magnetic
field in the upstream medium of the reconnecting plasmas. The
corresponding value of L in our simulations can be estimated from the
power spectrum of the x—z (poloidal) magnetic energy component,
d(|B.(k)|> + |B; (k)|?)/dIn (k), for runs with different scale-separation
ratios shown in panel (a) of Fig. 4 (we use the poloidal magnetic
field since this is the component that can experience reconnection in
2D). We see that the poloidal spectra peak at k ~ Q¢/2mwvy4, ¢ fairly
independent of the scale-separation ratio (as shown by Fig. 4a). Thus,
a reasonable estimate for L is L ~ 27/k ~ (27)*v 4, ¢/S2. In addition,

20z AeIN 20 U0 1saNB Aq G/829//9981/2/0€SG/2I01HE/SEIUW/ W09 dNO"D1WLaPED.//:Sd))Y WO PapEOjuMOd



10 o) kgT=5.2e-02 [mc?] }
10°4
i 107!
§ 102
T 03] — weo0=28 L
> —— We,0/Qo =20
1074 — w.o/Qo=14
10-5] — @eol@o=10
We,ofo =7
10°° ‘ - : :
10-? 1072 10-1 10° 10!
1007 ksT=3.5e-01 [mc?] |

100 J
g 107}
5
? 1072 Wz, /0 = 28
= 10-3] — We,o/Qo =20
— W, o/Qp=14
10744 |— We,0/Qp =10 L
We,0/Qo =7
10-5 . : . i .-' %
1071 10° 10! 102

y-1

Figure 19. The particle spectra for runs with w. o/ = 7, 10, 14, 20, and
28, and with temperatures kpT /mc? =5.2 x 1072 (panel a) and 3.5 x 107!
(panel b). For each spectra, we show in dotted lines a power-law fit with an
exponential cut-off (as in equation 18). The normalizations of the spectra are
arbitrary.
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obtained spectra as a function of w, (/2. Different colours correspond to
different disc temperatures.
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and dashed lines as a function of 7 and for simulations with w. 0/ = 7,
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we can estimate pg = mc*/eB ~ c/(w,. of3), Where fz (= ((B2),)"*/By)
is the root mean square amplification factor of the magnetic field in
the disc at a given time. Thus, if reconnection is the main driver of
particle acceleration in our runs, y. should be close to ¥, rec, Which
would be given by

where we have used that v4 o/c = 1072 in all our simulations. The
value fp as a function of T is shown in dashed lines in Fig. 21 for
different values of w,, ¢/Q. We see that when kgT /mc? ~ 3.5 x
1071, fz ~ 30, fairly regardless of the scale-separation ratio. This
means that the expected .. . at kg7 /mc? = 3.5 x 107! is

we,0/ 20 )

20 '

The black line in panel (a) of Fig. 20 shows the case y. = ¥, rec,
where y .. ¢ is given by equation (20). We see that y ., . reproduces
well the behaviour of y. in our runs with kg T /mc? = 3.5 x 107",

The behaviour y . & 0.1L/p, expected from reconnection is
valid as long as L/c!py S 40 (Werner et al. 2016), where o
corresponds to the cold sigma parameter in the upstream medium
of the reconnection simulations. We estimate ¢ using (o), in our
runs when kg7 /mc? = 3.5 x 107!, which is (o'.), ~ 10-50 for the
range of w,, /2y considered, as shown by the solid lines in Fig. 21 4
Thus, using equation (19), we obtain that

P()LOc - 18(%690) (%) (%ﬁv)_l- @1

Equation (21) thus implies that all of our simulations satisfy
the restriction L/pgo, < 40 when kgT /mc? = 3.5 x 107!, even
in our run with the largest scale-separation ratio, w. /€2y = 28.
Interestingly, Fig. 21 also shows that, when kg T /mc? = 5.2 x 1072,

eree ~36( 20)

4Since we want to estimate the equivalent of the upstream cold sigma
parameter ¢, we are mainly interested in the values of o, outside the
current sheets, where o is the largest. Thus, given that in our runs (o),
(= (B%/4mnm?),) > @ (=(B?), /47 (n),m?), we are using (o), instead of
o as our estimate of o'
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Figure 22. Particle energy distribution for stratified (solid) and unstratified
(dashed) runs with the same magnetization w./29 = 20 (runs ST2D-20 and
UN2D-20, respectively). Different colours represent different temperatures.
The dotted line corresponds to a Maxwell-Boltzmann spectrum. In order to
help the visual distinction between the thermal and non-thermal parts of the
spectra, the solid dots mark the value of y — 1 corresponding to an energy of
10kgT.

(o¢)y ~ 1, and fp &~ 20, implying that for that temperature L/pyo .
~ 240(w., o/$20)/120 2 40. This means that, if particle acceleration
is driven by magnetic reconnection at kg7 /mc? = 5.2 x 1072, y.
should not be proportional to w, ¢/€2. Instead, a weaker dependence
on L is expected for 2D runs, since in that case y . likely grows more
slowly with time as y . o "2 (Petropoulou & Sironi 2018; Hakobyan
et al. 2021). This possibly explains why we do not observe a clear
dependence of y. on w,, ¢/ in the case of kg T /mc? = 5.2 x 1072,

The values of p for kgT /mc? = 5.2 x 1072 and 3.5 x 10~! seen
in panel (b) of Fig. 20 are close to p ~ 2.2 and ~1.9, respectively, and
do not show a clear dependence on the scale-separation ratio. This is
also consistent with acceleration being driven by reconnection. For
instance, for L/pgo . 2 40 and 0. = 3 (a case close to our results with
kBT/mC2 = 5.2 x 1072, where (0.), ~ 1-2; see Fig. 21), Werner
etal. (2016) predict p ~ 2.3-2.5. Whereas for L/pyo, S40and o, =
10-30 (close to our results with kBT/mc2 = 3.5 x 107!, where (o,),
~ 10-50; see Fig. 21), the results of Werner et al. (2016) show p ~
1.4-1.9.

6.3 Effect of stratification on the acceleration

The previous discussion underscores the importance of plasma
conditions, in particular o, and f3, in determining the efficiency
of non-thermal particle acceleration. Since these conditions vary sig-
nificantly between stratified and unstratified simulations (as shown
by Fig. 6), we expect the acceleration efficiency in these two types of
runs to be different. Fig. 22 compares spectra from run ST2D-20 with
the equivalent spectra in the unstratified run UN2D-20 at the same
values of T. We see that the spectra in the unstratified run are always
softer than in the stratified run ST2D-20. This is consistent with the
fact that, for a given temperature, in run UN2D-20 the value of & is
smaller than in the run ST2D-20 (as seen in panel c of Fig. 6), which
favours softer non-thermal acceleration in the unstratified case.

6.4 Acceleration in 2D versus 3D

In Fig. 23, we compare spectra from the 2D and 3D simula-
tions ST2D-3.5 and ST3D-3.5, both with a scale-separation ra-
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Figure 23. Spectra from simulations in 2D (dashed) and 3D (solid), both
with a scale-separation ratio w., 0/S2p = 3.5 (runs ST2D-3.5 and ST3D-3.5,,
respectively). The different colours represent temperatures.

tio w o/ = 3.5, for kT /mc®> = 6.8 x 1072, 2.1 x 107!, and
3.5 x 107!, As expected from our previous discussion on the
dependence of y. on w, ¢/2, the 2D run ST2D-3.5 should produce
a non-thermal tail of rather short extension, which is what we
see in Fig. 23. However, it is still interesting to verify whether
its main features are reproduced in the 3D run ST3D-3.5. We see
that, although the spectra show somewhat different shapes, they
both feature non-thermal tails with similar maximum energies. In
particular, when kgT /mc? = 3.5 x 107!, the 2D and 3D spectra
look very similar, suggesting that, at least for small-scale separations,
3D effects maintain the main particle accelerating properties of the
MRI turbulence observed in 2D. However, 3D simulations with
larger scale separation appear necessary to check whether in 3D
runs y. follows the same dependency on scale separation shown
for 2D in Figs 19 and 20. This is particularly interesting given
recent results showing that 3D reconnection may allow significantly
larger values of y. (Zhang, Sironi & Giannios 2021; Zhang et al.
2023).

Even though the non-thermal particle behaviour in our runs sug-
gests a significant role of magnetic reconnection in the acceleration
of particles, our simulations may be subject to effects that are not
present in previous magnetic reconnection studies. These include
particle escape from the disc, stochastic acceleration by the MRI
turbulence (e.g. Kimura, Tomida & Murase 2019; Sun & Bai 2021),
and the action of various kinetic instabilities that may contribute to
field dissipation and/or particle acceleration, including, for example,
the drift kink instability (Zenitani & Hoshino 2007) and the ion-
cyclotron instability (Ley et al. 2019). We thus defer to future research
a detailed determination of the dominant acceleration process(es) as
well as the role of the scale-separation ratio by including 2D and 3D
runs with larger values of w, o/€2.

7 VALIDATION OF ASSUMPTIONS

In this section, we use our obtained MRI turbulence behaviour to
validate the assumptions underlying the shearing coordinates method
used in this work, which is described in Section 2.2.

The fact that the peaks of the poloidal and toroidal spectra of B”
are close to k 2w v4 9/ 20 ~ 11in 2D and 3D (as shown in Section 4.1)
is important for the validation of the shearing coordinates approach.
Indeed, since B” only depends on ¢ and z, subtracting this quantity
from the total field does not change the power spectra of the magnetic
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Figure 24. Panels (a) and (b) show the distribution of current density
magnitude |J| and the |E|/|B| ratio in the stratified run ST2D-20 and ST3D-
3.5 at time t = 5 [27/Q], respectively. Panels (c) and (d) show the same
for simulations ST2D-20LR and ST2D-20HR, which are analogous to run
ST2D-20 but using lower and higher spatial resolutions (A = 0.5 and 0.25
[clwp, 0], respectively).

field for k, and k, (ky = £ -k and k, = J -k, where k is the wave
vector in Fourier space). Thus, the dominance of k2w v, o/ 2o ~ 1
for poloidal and toroidal components of BY implies that the dominant
wavelength of the magnetic fluctuations along the x and y axis is given
by ~2m v, o/€2. This is indeed one of the assumptions made in our
implementation of the shearing coordinates approach (Section 2.2),
which, combined with the condition v4 ¢/c < 1, allowed us to drop
the y-dependent terms in the field evolution equations (4) and (5),
as well as to obtain the momentum and particle position evolution
equations (12) and (13).

Our shearing coordinates approach also assumes that the electric
field in the MRI turbulence is either smaller or of the same order of
the magnetic field (|E|/|B| < 1). To support this assumption, panels
(a) and (b) of Fig. 24 show an example of the distribution of the
electric current magnitude |J| and the |E|/|B| ratio for runs ST2D-20
and ST3D-3.5 at time r = 5 [27/22y]. We see that in both cases the
entire distribution satisfies |E|/|B| < 3, including the regions with the
largest value of |J|, which are expected to correspond to reconnecting
current sheets. In order to show that this behaviour is not affected by
the spatial resolution of our simulations, panels (c) and (d) show the
same results as panel (a), but for runs ST2D-20LR and ST2D-20HR
of Table 1, which are analogous to run ST2D-20 but with lower and
higher spatial resolutions, respectively (A = 0.5 and 0.25 [c/w), o],
respectively). We see that the highest resolution case reaches even
smaller values of |E|/|B|, and shows a clearer trend in which the
locations with the largest |E|/|B| tend to have the largest |J|.

Finally, another important assumption in our simulations is that
J =~ ¢V x B/4m, valid in the non-relativistic MHD regime. This
assumption implies that the cold sigma parameter o. (equivalent
to the square of the instantaneous ratio v4/c) must be on average
significantly smaller than unity. In our stratified setup, this condition
is necessarily broken at sufficiently large values of |z|, due to
the significant drop in plasma density outside of the disc. Also,
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Figure 25. Panel (a) shows v4/c for the 2D run ST2D-20, where v4/c =
((B%), /47 (n)ymc?)'/2. Panel (b) shows the same as panel (a), but for the 3D
run ST3D-3.5. In this case, V4 /c = ((B2)x_y /47 (n)x—ymc*)!/2. The dashed
line shows the scale height of the disc, defined by |z| = H(T).

Fig. 7(b) shows that, for r 2 5[27/Q], 7. (defined within the
disc) becomes 2 1, implying that our results are strictly valid
only until ¢ ~ 5[27/2¢]. These restrictions are verified in Fig. 25,
which shows an average of the Alfvén velocity in our 2D and 3D
runs ST2D-20 and ST3D-3.5 (panels a and b, respectively), as a

function f and z. In this case, the average Alfvén velocity is defined

as
( (B2, )” g
47 (n)ymc?
B, \ 12
(4n< : 2)
We see that, for run ST2D-20, the disc region (defined
by |z| < H(T) and delimited by the dashed lines) satisfies
Va/c S1 only until ¢ ~ 5[27/2]. For run ST3D-3.5, v4/c <
1 is satisfied across most of the disc volume until ¢ ~
6[27/29]. These considerations reinforce the idea that our
results are strictly valid only in the sub-relativistic regime
(kgT /mc* < 0.3), which, according to Fig. 7(b), occurs at ¢ <
5[27/S2].

Given that our treatment is only valid in the subrelativistic
regime, our particle acceleration results have been presented only
until kBT/mc2 ~ 0.3. Notice, however, that the particle accelera-
tion properties at kg7 /mc* ~ 0.3 are consistent with them being
determined by the ‘upstream’ cold sigma parameter, o, which
correspond to the cold sigma outside of the current sheets (as
explained in Section 6.2). This o) is expected to be relatively
large, because of the low plasma density and high magnetic
field in the regions outside of the reconnection current sheets.
As discussed in footnote 4, we estimated o using (o.),, which
reaches (o.), ~ 20 when kgT/mc* ~ 0.3 (see Fig. 21). Thus,
even though by kg7 /mc? ~ 0.3 the plasma in the disc is ap-
proximately still within the subrelativistic regime, the upstream
regions of the reconnecting plasma appear to be (locally) in a
fairly relativistic state. This is consistent with the fact that the
obtained cut-off Lorentz factor y. and spectral indices of the non-
thermal particles at kg7 /mc? ~ 0.3 follow quite well the expec-
tations from the relativistic reconnection study of Werner et al.
(2016).

for run ST2D-20 and
(22)

V4
¢ for run ST3D-3.5.

n)x—ymc
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8 CONCLUSIONS

In this work, we have studied the effect of stratification on the
collisionless MRI using 2D and 3D PIC simulations. Comparing
2D stratified and unstratified runs, we found that stratification affects
the evolution of the disc conditions, due to the presence of outflows
and disc expansion, leading to a decrease in the amplification of
magnetic field energy density in the turbulent non-linear MRI regime.
However, the expansion of the disc also decreases the plasma pressure
and density, resulting in a highly magnetized disc, with smaller 8 and
larger cold magnetization parameter o . compared to the unstratified
case. Indeed, in the non-linear regime the disc is magnetic-pressure
supported with 8 ~ 0.4, which is a factor ~5 smaller than the
value reached by its unstratified counterpart. In the disc region, our
runs also give rise to a significant large scale and predominantly
toroidal dynamo-like field B? (= (B), in 2D), whose dominant scale
length follows the disc scale height. Although a large-scale (B),
field also appears in the 2D unstratified case, its scale length is
~4 times smaller. The increased magnetization of our 2D stratified
runs produces an effective viscosity « in the disc that reaches o
~ 1, which is a factor ~5 larger than in the equivalent unstratified
case. This viscosity is dominated by the Maxwell stress, o, with
a small contribution of the anisotropic stress, o4. This small o4 is
consistent with the regulation of pressure anisotropies by kinetic
microinstabilities in the low 8 regime.

Even though our 2D and 3D stratified simulations produce similar
results, some differences are present. In order to assess them, we
compared 2D and 3D runs focusing on a specific case with small-
scale separation, w, ¢/€29 = 3.5. In the early phase of the non-linear
MRI stage (i.e. ~1-2 orbits after the triggering of the instability),
3D simulations exhibit a significantly lower amplification of the
magnetic field energy density compared to their 2D counterpart.
This is consistent with the fact that 3D runs allow reconnection
of the toroidal component of the magnetic field (as shown in the
recent work of Bacchini et al. 2022), which is impossible in 2D. This
primarily affects the effective viscosity o and the plasma 8, which
are, respectively, ~3—4 times smaller and larger in the 3D case.
However, after this initial stage (at t ~ 4 [27/2]), our 2D and 3D
simulations are more similar, with B reaching essentially the same
values and the effective viscosity o being only ~2 times smaller in
3D (in 3D, « = 0.5 during the whole non-linear MRI stage). This
transition at ¢ ~ 4 [27/€2] occurs because of the growing importance
of the large-scale dynamo-like field B? (= (B), _ y in 3D). Indeed,
after an initial stage in which the turbulent field B” (=B — B”)
dominates, the dynamo-like field becomes larger than the turbulent
field in the 3D runs, while in 2D it reaches values comparable to the
turbulent field. Since the dynamo field has almost the same amplitude
in 2D and 3D, the total fields in these two types of runs differ by a
small amount after r ~ 4 [277/]. Also, in this dynamo-dominated
period, the 3D viscosity is mainly produced by the dynamo-like field,
while in 2D the turbulent and dynamo fields contribute comparably
to . In 3D the disc viscosity is also dominated by the Maxwell
stress, oy, with a small contribution from the anisotropic stress, 4.
This is also consistent with the action of pressure anisotropy-driven
kinetic microinstabilities in the 3D case, as it occurs in 2D. Our 2D
and 3D results in terms of «, B, and dynamo-like field behaviours
are reasonably consistent with previous 3D MHD simulations of
stratified discs with similar initial conditions (e.g. Bai & Stone 2013;
Salvesen et al. 2016).

In terms of particle acceleration, in our 2D runs we find that
the particle spectra in the non-linear MRI stage follow power laws
with exponential cut-offs, with power-law indices p ~ 2.2-1.9 for
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disc temperatures ~ 0.05 — 0.3 mc?. Additionally, depending on the
value of o, during the non-linear MRI stage, the maximum energy
attained by the particles is either proportional to the scale separation
¢, 0/ or fairly independent of this parameter, which appears to
be consistent with previous magnetic reconnection studies (Werner
et al. 2016). Particle acceleration in our 2D unstratified runs appears
to be less efficient than in the analogous stratified case. This is
likely due to the smaller cold magnetization parameter o . attained
in the unstratified simulations. Furthermore, the particle acceleration
observed in our 2D run with o, (/€29 = 3.5 is well reproduced by its
analogous 3D simulation, suggesting that 3D effects should maintain
most of the acceleration properties of the MRI turbulence. However,
3D runs with larger scale-separation ratio are needed to confirm this
trend.

In summary, our results suggest that including disc stratification in
shearing-box PIC simulations of the MRI is important for studying
its saturation, effective viscosity generation, and particle acceleration
physics. Interestingly, 2D and 3D simulations give quite similar
results for the scale-separation ratios used in this work, especially
after the magnetic field energy becomes dominated by a large-scale,
dynamo-like field (which occurs ~1-2 orbits after the triggering of
the instability). However, recent PIC simulation studies show that the
maximum energies attained by particles accelerated by reconnection
may be significantly higher in 3D (Zhang et al. 2021, 2023). Since
our particle acceleration results appear consistent with reconnection,
we expect these differences to be apparent in future 2D and 3D
simulations with large enough scale separation. We also note that
our results refer to a specific case of initial plasma conditions.
Further research is thus needed to clarify the effects of changing
the initial B and/or temperature in the disc, potentially leading to
a more distinct differentiation between an unmagnetized disc and
a magnetized corona (e.g. Salvesen et al. 2016). Finally, obtaining
emission predictions from our stratified setup requires including the
effect of realistic mass ratios on the dynamic and thermodynamic
properties of the MRI turbulence, as well as incorporating the effect
of electron cooling, which may modify the overall disc dynamics and
affect the emission spectrum (Sridhar, Sironi & Beloborodov 2023).
We defer these important aspects of the collisionless MRI problem
to future work.
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APPENDIX A: SPATIAL RESOLUTION
CONVERGENCE

In this appendix, we performed numerical convergence tests for our
fiducial simulation ST2D-20, by comparing our results for different
spatial resolutions. Table 1 shows the parameters of simulations with
different values of A[c/w), o], including our fiducial case (ST2D-
20, Alc/wy, o] = 0.35), an equivalent low resolution (ST2D-20LR,
Alclw, o] = 0.5), and a high resolution (ST2D-20HR, A[c/w), o] =
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Figure Al. Same as Fig. 7, but for different spatial resolutions at fixed
e, 0/ = 20.
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Figure A2. Same as panels (a) and (b) of Fig. 4, but for different spatial
resolutions at fixed w., 0/ = 20.

0.25) simulations. All the other parameters are essentially the same
between these three runs. Panels (a) and (b) of Fig. Al show
(B),, B, G, and T for these runs, with the starting time of each
simulation slightly shifted to make their exponential MRI growth
phases coincide. The two highest resolution runs, ST2D-20 and
ST2D-20HR, behave in almost indistinguishable manners, while the
case with the lowest resolution (ST2D-20LR) shows a small increase
in (B?),,5,,and T. The similarity between the two highest resolution
runs implies that the spatial resolution used in our fiducial run ST2D-
20 is large enough to capture the overall evolution of the magnetic
field and plasma temperature in the disc.

Fig. A2 shows the poloidal and toroidal (panels a and b, respec-
tively) power spectra of the magnetic turbulence for these three runs
at kgT ~ 0.3 [mc?]. It can be seen that the poloidal and toroidal
parts of the turbulence are essentially unaffected by the resolution.
The only difference occurs, at sub-Larmor scales (kp; 2 1; kp; =
1 corresponds to the solid dots in both panels), where the spectra
get interrupted by noise at progressively smaller values of k as the
resolution decreases. Although these differences in resolution may
in principle have an impact on particle acceleration, especially if
the current sheets are not well resolved, we verified that the particle
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ksT=52e-02 [mc?] spectra do not change significantly for the three values of A[c/w, ¢].
Indeed, Fig. A3 shows the spectra of the same runs ST2D-20, ST2D-
20LR, and ST2D-20HR for the same two temperatures shown in

Fig 19. Apart from a slight hardening of the spectra as the resolution
increases, no significant differences are observed, especially between

the two highest resolution runs.
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Figure A3. Same as Fig. 19, but for different spatial resolutions at fixed
wc, 0/Q0 = 20. This paper has been typeset from a TeX/IATgX file prepared by the author.
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