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Background: The phase III MONALEESA trials tested the efficacy and safety of the cyclin-dependent kinase (CDK)4/6
inhibitor ribociclib with different endocrine therapy partners as first- or second-line treatment of hormone
receptorepositive/human epidermal growth factor receptor 2enegative advanced breast cancer (ABC). Using the
largest pooled biomarker dataset of the CDK4/6 inhibitor ribociclib in ABC to date, we identified potential
biomarkers of response to ribociclib.
Patients and methods: Baseline circulating tumour DNA from patients in the MONALEESA trials was assessed using
next-generation sequencing. An analysis of correlation between gene alteration status and progression-free survival
(PFS) was carried out to identify potential biomarkers of response to ribociclib.
Results: Multiple frequently altered genes were identified. Alterations in ERBB2, FAT3, FRS2, MDM2, SFRP1, and
ZNF217 were associated with a greater PFS benefit with ribociclib versus placebo. Patients with high tumour
mutational burden (TMB) and with ANO1, CDKN2A/2B/2C, and RB1 alterations exhibited decreased sensitivity to
ribociclib versus placebo.
Conclusions: Although exploratory, these results provide insight into alterations associated with the improved response
to ribociclib treatment and may inform treatment sequencing in patients with actionable alterations following
progression on CDK4/6 inhibitors. Validation of potential biomarkers identified here and development of prospective
trials testing their clinical utility are warranted.
ClinicalTrials.gov identifiers: NCT01958021, NCT02422615, NCT02278120.
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INTRODUCTION

Cell cycle regulatory mechanisms are proven therapeutic
targets in breast cancer.1 Cyclin-dependent kinase 4 (CDK4)
is dysregulated in most hormone receptorepositive (HRþ)
breast cancers.2 CDK4 phosphorylates and inactivates reti-
noblastoma protein (encoded by the RB1 gene), promoting
G1 to S phase transition.3 CDK4 is activated upon coupling
to cyclin D1da transcriptional target of the oestrogen re-
ceptor (ER) and mitogenic signalling pathways.4 CDK4 acti-
vation also results from p16 (encoded by the CDKN2A gene)
ondence to: Prof. Fabrice André, Department of Medical Oncology
M Unit U981, Gustave Roussy Cancer Campus, 114 Rue Edouard
illejuif, 94800, France
ABRICE.ANDRE@gustaveroussy.fr (F. André).

34/© 2023 The Authors. Published by Elsevier Ltd on behalf of Eu-
iety for Medical Oncology. This is an open access article under the CC
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

4 - Issue 11 - 2023
inactivation.4 Given the reported role of CDK4 in endocrine
therapy (ET) resistance mechanisms and that inhibitors of
CDK4 have decreased proliferation of HRþ breast cancer
cells, CDK4/6 inhibitors (CDK4/6i) were developed for
treating HRþ advanced breast cancer (ABC).1,5

CDK4/6i improve progression-free survival (PFS) in pa-
tients with HRþ/human epidermal growth factor receptor
2enegative (HER2�) ABC; significant overall survival ben-
efits have been demonstrated by abemaciclib plus ET in
MONARCH-2 and by ribociclib plus ET in the MONALEESA-2,
MONALEESA-3, and MONALEESA-7 trials.6-10 Minimal clin-
ical biomarker data are available to support identification of
patients who might exhibit enhanced or reduced benefit
from CDK4/6i. CCNE1 overexpression was associated with
decreased sensitivity to palbociclib plus fulvestrant in ana-
lyses of patients with HRþ/HER2� ABC in PALOMA 3 (n ¼
302) and PEARL (n ¼ 219).11,12 While these preliminary data
https://doi.org/10.1016/j.annonc.2023.08.011 1003
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suggest that expression of some genes could predict effi-
cacy of CDK4/6i, there is no large amount of clinical evi-
dence that DNA alterations predict response to CDK4/6i.
Genomic alterations, including FGFR1 amplification, PTEN
loss, CDK6 amplification, RB1 loss, and FAT1 loss, were re-
ported to mediate CDK4/6i resistance in preclinical models
and limited clinical samples but have not translated into
validated predictive clinical biomarkers.13-26 Using a large
pooled biomarker dataset from three phase III trials, we
assessed the predictive value of genomic alterations for
efficacy of ribociclib, a CDK4/6i that preferentially inhibits
CDK4 versus CDK6, in patients with HRþ/HER2� ABC.27,28

PATIENTS AND METHODS

Trials and patients

The analysis population consisted of patients enrolled in the
MONALEESA-2, MONALEESA-3, and MONALEESA-7 trials,
the details of which have been previously published
(MONALEESA-2, NCT01958021; MONALEESA-3,
NCT02422615; MONALEESA-7, NCT02278120).9,29-31 In
brief, the MONALEESA trials were randomized, placebo-
controlled, international, double-blind, phase III studies
that evaluated ribociclib plus ET versus placebo plus ET in
patients with HRþ/HER2� ABC. The ET partners used in
MONALEESA-2, MONALEESA-3, and MONALEESA-7 were
letrozole, fulvestrant, and a nonsteroidal aromatase inhibi-
tor (NSAI) or tamoxifen, respectively. The MONALEESA-2
trial assessed the efficacy of ribociclib plus letrozole
versus placebo plus letrozole for postmenopausal patients
who received no prior therapy in the ABC setting.30 The
MONALEESA-3 trial tested ribociclib plus fulvestrant versus
placebo plus fulvestrant for patients who received �1 prior
line of ET in the ABC setting.31 The MONALEESA-7 trial
evaluated ribociclib plus goserelin and either an NSAI or
tamoxifen versus placebo plus goserelin and NSAI or
tamoxifen for premenopausal or perimenopausal patients
who received no prior ET for ABC and �1 line of chemo-
therapy in the ABC setting.29 The primary endpoint of each
MONALEESA trial was investigator-assessed PFS. Results of
these analyses were previously reported.29-31 In the analysis
presented here, PFS was defined as the time from the date
of randomization to the date of the first documented pro-
gression per local radiology assessment (RECIST version 1.1)
or death from any cause. Genomic profiling by next-
generation sequencing was an exploratory endpoint to
characterize molecular alterations in circulating tumour
DNA (ctDNA) and correlate these alterations with efficacy
outcomes in the MONALEESA trials.

All patients in the MONALEESA trials provided written
informed consent before enrolment. The study protocols,
including any modifications, were approved by an inde-
pendent ethics committee or institutional review board at
each site. These trials were conducted in accordance with
the Good Clinical Practice guidelines and Declaration of
Helsinki. A steering committee made up of Novartis repre-
sentatives and participating international investigators
oversaw each study. Safety data were assessed by an
1004 https://doi.org/10.1016/j.annonc.2023.08.011
independent data-monitoring committee. This manuscript is
compliant with REMARK reporting guidelines.
Biomarker sample collection and assessment of genetic
alterations and tumour mutational burden

The analysis of samples from MONALEESA trials was carried
out retrospectively. The investigators who carried out the
biological experiments were blinded for clinical data. The
strategy for biomarker analysis was developed before data
were analysed. Additional details on the analysis of gene
alterations are outlined in the ‘Statistical analysis’ section.

The sample size in the analysis was based on sample and
data availability. The total sample size for each trial was
determined for the primary endpoint of each trial. We then
attempted to sequence all available baseline plasma ctDNA
samples with adequate volume and then included all sam-
ples for which next-generation sequencing was successful
(i.e. passed quality control measures). Given this, the
biomarker analysis was not designed to detect a specified
effect size at a target power.

Blood samples were collected in K2-EDTA blood collec-
tion tubes and processed within 30min of the collection by
centrifugation at 1600 g (�150 g) for 10min; the clear
supernatant (plasma) was transferred to one fresh centri-
fuge tube and then centrifuged for another 10 min at 3000
g (�150 g). The plasma aliquots were then stored in
a �70�C or colder freezer and shipped in batches to the
central laboratory on dry ice and stored in �70�C or colder
freezers. There was no freeze-thaw before DNA extraction.
Cell-free DNA was extracted from frozen plasma samples
collected at baseline (before the initiation of study treat-
ment) using the QIAamp Circulating Nucleic Acid Kit (Qia-
gen, Germantown, MD) and constructed into sequencing
libraries with end repair, A-tailing, and PCR amplification
(TruSeq Nano Library Preparation Kit, Illumina, San Diego,
CA). Cell-free DNA was then sequenced on an Illumina
HiSeq instrument targeted to a depth of �1000 coverage
using a targeted panel of 558 genes including all exonic
regions, select introns for translocation detection, and tiled
regions for improved copy number calling. The limit of
detection was determined to be 1% (Supplementary
Figures S1 and S2, available at https://doi.org/10.1016/j.
annonc.2023.08.011). Samples collected after first expo-
sure of study treatment were removed. A total of 766 pa-
tients had a sample collected the same day as the first
exposure to study treatment, and 411 patients had a
plasma sample collected before the first exposure to study
treatment (1/411 patients had samples collected between
day �29 and day �44; 278/411 patients had samples
collected between day �1 and day �28).

Single-nucleotide variants were identified using MuTect
(Broad Institute, Cambridge, MA), and indels were identi-
fied using Pindel.32,33 PureCN was used to call copy number
alterations while accounting for the ploidy and ctDNA
fraction of the sample.34 Amplifications were defined as �6
copies and �7 copies for focal and nonfocal events,
respectively. Deletions were defined as 0 copies. Non-
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frameshift mutations were defined as an insertion or
deletion that does not cause a frameshift. Germline muta-
tions and artefacts were filtered out using the publicly
available dbSNP and ExAC databases. To remove artefacts,
an internal database (Novartis Institutes for BioMedical
Research) of normal circulating free DNA samples from 50
healthy individuals without cancer was used to estimate
position-specific error rates and mutations were removed if
they did not surpass the position-specific error rate. Vari-
ants with mutant allele fraction <1% were filtered out.
Mutations/indels with an allelic fraction >40% and un-
known functional significance were also removed because
matched normal DNA was not sequenced. Synonymous
mutations/indels were removed. To remove somatic muta-
tions due to clonal haematopoiesis of indeterminate po-
tential (CHIP), a classification approach was used to
determine the CH status of each mutation/indel. Variants
classified as CH positive were removed unless the variant
was present at least 5 times in the breast cancer cohort of
COSMIC.35 To account for variability in levels of ctDNA
shedding, patients with ctDNA fraction <1% were excluded
from all analyses and ctDNA fraction was included as a
covariate in all models.

Tumour mutational burden (TMB) was estimated as the
number of somatic mutations per megabase using an
established workflow.36 The estimation includes synony-
mous and non-synonymous mutations in coding regions.
Statistical analysis

For statistical analyses, each gene in the ctDNA was classi-
fied in two ways. For the first approach, each gene was
classified as altered if �1 alterationddefined as the pres-
ence of a copy number alteration, short insertion/deletion,
or mutationdwas detected and as wild-type (WT) if no
alterations were detected. For the second approach, the
classification focused on mutations/indels with known or
likely functional significance and each gene was classified as
altered if �1 alteration was detected and as WT if no al-
terations were detected. Correlative analyses were carried
out for genes altered in �3% of patients (68 genes from the
first approach; 9 genes from the second approach) and
genes of interest (RB1, CDKN2A/B/C, BRCA1/2, excluding
amplifications) with respect to clinical outcome (PFS;
Supplementary Figure S1, available at https://doi.org/10.
1016/j.annonc.2023.08.011).

For key genes of interest (top predictive signals from
predefined analysis or resistance genes reported in the
literature), additional ad hoc analyses were carried out that
focused on specific amino acid changes or types of alter-
ations such as PTEN nonsense mutations and deletions, NF1
nonsense and frameshift mutations, FRS2/MDM2 amplifi-
cations, BRCA1/2 alterations excluding amplifications and
variants of unknown functional significance, CDKN2A/B/C
loss-of-function variants (deletions, frameshift, nonsense).

TMB was divided into quartiles (Q1, 0-0.7; Q2, 0.7-1.3;
Q3, 1.3-3.3; Q4, >3.3 mutations/Mb) and a cut-off of 10
mutations/Mb.
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To identify potential biomarkers of response and resis-
tance, the relationship between each biomarker and PFS
was assessed. PFS was evaluated instead of overall sur-
vival because PFS was the primary endpoint of the
MONALEESA trials and, at the time of this analysis, overall
survival data were available only for MONALEESA-3 and
MONALEESA-7. KaplaneMeier curves were generated,
and median PFS [95% confidence interval (CI)] was esti-
mated by treatment arm and biomarker status. A Cox
proportional hazards model was used to estimate the HRs
of treatment benefit (ribociclib versus placebo) for PFS by
biomarker status. Differential treatment benefit of ribo-
ciclib versus placebo between alteration and WT genes
was assessed by including an interaction term between
treatment and biomarker in the Cox proportional hazards
model. All Cox proportional hazards models were strati-
fied by study and adjusted for ctDNA fraction as a covar-
iate. A false discovery rate (FDR) adjustment was applied
to the geneetreatment interaction P value. Results for
biomarkers with a nominal geneetreatment interaction P
value < 0.10 are discussed in the ‘Results’ section. This is
an exploratory analysis; thus, results are hypothesis
generating. Additional research is needed to confirm
the signals.

To compare patients with ctDNA fraction <1% versus
�1%, a Fisher’s exact test was used to test the association
with demographic and clinical variables. A Cox proportional
hazards model stratified by study was used to assess the
relationship between ctDNA fraction categories and PFS.

All statistical analyses were carried out using the R
package.37
RESULTS

Patient characteristics and genomic landscape per
circulating tumour DNA analysis

Next-generation sequencing data were generated for 1674
baseline plasma ctDNA samples; among these, 1045 pa-
tients with ctDNA fraction �1% were analysed. Patient
characteristics and treatment efficacy were similar in the
biomarker (n ¼ 1045) and overall (N ¼ 2066) populations
(Supplementary Table S1, available at https://doi.org/10.
1016/j.annonc.2023.08.011). In the biomarker population,
68 genes were altered in �3% of patients (Figure 1). Some
of the most frequently altered genes were PIK3CA (42%),
TP53 (21%), FGF4 (15%), FGF3 (15%), ANO1 (14%), FGF19
(14%), CCND1 (13%), ZNF703 (12%), ADGRA2 (11%), CDH1
(11%), andWHSC1L1 (11%). Median PFS with corresponding
hazard ratios (HRs) for treatment benefit was determined
for each genetic subgroup (Supplementary Table S2, avail-
able at https://doi.org/10.1016/j.annonc.2023.08.011).
Gene alterations associated with increased sensitivity to
ribociclib treatment

Genes with a nominal geneetreatment interaction <0.10
are reported in Figure 2 and discussed. Note that none of
the genes survived a multiple testing correction (see FDR-
https://doi.org/10.1016/j.annonc.2023.08.011 1005
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adjusted P values in Figure 2). Ribociclib sensitivity was
defined by PFS; genes with an alteration frequency of �3%
were assessed, as were several genes of interest, including
RB1, BRCA1/2 (excluding amplifications), and CDKN2A/B/C.
Gene alterations associated with higher sensitivity to ribo-
ciclib (nominal P value for nominal geneetreatment inter-
action <0.10) are reported in Figure 2A and Supplementary
Figure S3A, available at https://doi.org/10.1016/j.annonc.
2023.08.011. These include ERBB2, FAT3, FRS2, MDM2,
SFRP1, and ZNF217. Alterations in these genes were
generally associated with a poor response to placebo and
an added benefit of ribociclib treatment (Figure 2B-E). FRS2
and MDM2 alterations were individually associated with
high sensitivity (P ¼ 0.0714 and P ¼ 0.0159, respectively)
(Figure 2F and G). FRS2 and MDM2, located on the same
amplicon (12q15), were co-amplified in 34/1045 patients
(3%) (Supplementary Figure S3B, available at https://doi.
org/10.1016/j.annonc.2023.08.011); no additional genes in
this region were included in the panel; thus, amplification
here may be a surrogate for amplifications somewhere
within this region. Patients with co-amplified FRS2/MDM2
1006 https://doi.org/10.1016/j.annonc.2023.08.011
exhibited a greater reduction in disease progression with
ribociclib versus placebo [HR ¼ 0.23 (95% CI 0.11-0.51), P ¼
0.0255] (Figure 2H).

Gene alterations associated with lower sensitivity/relative
resistance to ribociclib treatment

Gene alterations associated with lower sensitivity/relative
resistance to ribociclib (P value for geneetreatment inter-
action <0.10) are reported in Figure 3A and Supplementary
Figure S3A, available at https://doi.org/10.1016/j.annonc.
2023.08.011. These included ANO1, CDKN2A/B/C, and
RB1. In patients with alterations in ANO1 (147/1045; 14%),
there was limited benefit of ribociclib versus placebo, with
median PFS values of 10.5 versus 7.4 months [HR ¼ 0.78
(95% CI 0.53-1.16); interaction P ¼ 0.0749] (Figure 3B);
however, the benefit of ribociclib over placebo was evident
in patients with WT ANO1 [HR ¼ 0.53 (95% CI 0.44-0.63)].
For genes of interest though with lower alteration rate,
CDKN2A/B/C alterations occurred in 27/1045 samples (3%).
Patients with altered CDKN2A/B/C did not experience a
benefit with ribociclib versus placebo [median PFS 6.5
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Figure 2. PFS in patients with gene alterations associated with improved outcomes with RIB.
(A) Forest plot analysis of potential biomarkers of RIB response. (B) PFS by ERBB2 Alt status. (C) PFS by FAT3 Alt status. (D) PFS by SFRP1 Alt status. (E) PFS by ZNF217 Alt
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versus 9.2 months; HR ¼ 1.20 (95% CI 0.50-2.88); interac-
tion P ¼ 0.0874] (Figure 3C). Patients with RB1 alterations
(29/1045; 3%) experienced a decreased benefit with ribo-
ciclib versus placebo (Figure 3D), with a median PFS of 3.8
versus 9.2 months [HR ¼ 1.48 (95% CI 0.65-3.38)] compared
with that of 18.9 versus 11.1 months for those with WT RB1
[HR ¼ 0.56 (95% CI 0.47-0.66)].

Additional genes of interest

ESR1 alterations occurred in 92/1045 samples [9% overall,
5.7% in MONALEESA-2, 15.5% in MONALEESA-3 (3.6%-7.0%
in the first-line setting, 17.8%-46.7% in the second-line
Volume 34 - Issue 11 - 2023
setting), and 3.8% in MONALEESA-7] (Supplementary
Table S2, available at https://doi.org/10.1016/j.annonc.
2023.08.011). While patients with ESR1 alterations versus
WT treated with placebo had poor PFS outcomes, a similar
treatment benefit with ribociclib was observed with altered
ESR1 [HR ¼ 0.49 (95% CI 0.31-0.78); median PFS for ribo-
ciclib versus placebo, 8.6 versus 3.7 months] or WT ESR1
[HR ¼ 0.57 (95% CI 0.48-0.68); median PFS for ribociclib
versus placebo, 19.2 versus 11.4 months]. FGFR1 alterations
occurred in 92/1045 samples (9%) (Supplementary Table S2,
available at https://doi.org/10.1016/j.annonc.2023.08.011).
Patients benefited from ribociclib regardless of FGFR1
https://doi.org/10.1016/j.annonc.2023.08.011 1007
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Figure 3. PFS in patients with gene alterations associated with decreased RIB activity.
(A) Forest plot analysis of potential biomarkers of RIB resistance. (B) PFS by ANO1 Alt status. (C) PFS by CDKN2A/2B/2C Alt status. (D) PFS by RB1 Alt status. (B-D)
KaplaneMeier curves for PFS in patients who exhibited alterations in the indicated genes in circulating tumour DNA. PFS in patients in the RIB treatment arm is shown in
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Adj, adjusted; Alt, alteration; CI, confidence interval; FDR, false discovery rate; HR, hazard ratio; PBO, placebo; PFS, progression-free survival; RIB, ribociclib; WT,
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alterations [altered: HR ¼ 0.44 (95% CI 0.28-0.71); WT:
HR ¼ 0.57 (95% CI 0.48-0.68)]. With ribociclib versus pla-
cebo, median PFS was 18.9 versus 11.1 months in patients
with WT FGFR1 and 11.0 versus 6.1 months in patients with
altered FGFR1. BRCA1/2 alterations (excluding amplifica-
tions) occurred in 43/1045 samples (4%) (Supplementary
Table S2, available at https://doi.org/10.1016/j.annonc.
2023.08.011). Median PFS in patients with altered BRCA1/
2 was 14.6 months with ribociclib and 8.1 months with
placebo [HR ¼ 0.38 (95% CI 0.19-0.76)]; in patients with WT
BRCA1/2, it was 18.8 months with ribociclib and 11.1
months with placebo [HR ¼ 0.58 (95% CI 0.49-0.68)]. BRCA2
alterations occurred in 36/1045 samples (3%). Regardless of
BRCA2 alteration status, the benefit of ribociclib was
observed over placebo, similar to that observed in patients
with alterations in BRCA1/2 (Supplementary Table S2,
available at https://doi.org/10.1016/j.annonc.2023.08.011).
AURKA alterations were identified in 40/1045 samples (4%)
(Supplementary Table S2, available at https://doi.org/10.
1016/j.annonc.2023.08.011). Benefit with ribociclib was
observed regardless of alteration status [altered: HR ¼ 0.34
(95% CI 0.17-0.69); WT: HR ¼ 0.57 (95% CI 0.49-0.68)].
PTEN loss (nonsense mutation or gene deletion) was
observed in 19/1045 patients (2%) and was associated with
worse prognosis, regardless of treatment (Supplementary
Table S2, available at https://doi.org/10.1016/j.annonc.
2023.08.011). In these patients, median PFS was 8.9
months with ribociclib and 10.9 months with placebo (HR,
not estimable). NF1 alterations were observed in 34/1045
samples (3%), of which 16/34 were nonsense/frameshift
alterations (Supplementary Table S2, available at https://
doi.org/10.1016/j.annonc.2023.08.011). Overall, patients
with NF1 alterations responded poorly to placebo versus
ribociclib [median PFS 1.8 versus 13 months; HR ¼ 0.32
(95% CI 0.15-0.68)], and this was particularly evident in
those with nonsense/frameshift NF1 alterations (median
PFS 1.8 versus 23.5 months; HR, not estimable).
ctDNA fraction analysis

An analysis of patients with <1% versus �1% ctDNA frac-
tion was undertaken. There were no significant differences
between treatment arms in ctDNA fraction representative-
ness (Supplementary Table S3, available at https://doi.org/
10.1016/j.annonc.2023.08.011). Patients with <1% ctDNA
fraction generally had a more favourable best overall
response, lower rate of prior chemotherapy and prior hor-
mone therapy, higher frequency of de novo disease, better
Eastern Cooperative Oncology Group (ECOG) performance
status, and were composed of a slightly higher percentage
of whites and a lower percentage of Asians. Total target
lesion diameter at baseline was lower among patients with
a ctDNA fraction <1% (P < 0.0001) (Supplementary
Figure S4A, available at https://doi.org/10.1016/j.annonc.
2023.08.011) and higher ctDNA fraction was prognostic of
poorer PFS regardless of treatment (Supplementary
Figure S4B, available at https://doi.org/10.1016/j.annonc.
1010 https://doi.org/10.1016/j.annonc.2023.08.011
2023.08.011). The PFS benefit of ribociclib over placebo
was observed regardless of ctDNA fraction.
Tumour mutational burden and efficacy of ribociclib

TMB was estimated in 1045 patients and the predictive
relationship with PFS was assessed (Figure 4). There was no
significant difference in TMB between arms, but TMB was
lower in MONALEESA-7 than in MONALEESA-2 and
MONALEESA-3. Higher TMB has been associated with
increased age; thus, this observation could be explained by
the enrolment of premenopausal patients in MONALEESA-7
(Supplementary Figure S5, available at https://doi.org/10.
1016/j.annonc.2023.08.011).38 The P value for interaction
between TMB quartile and treatment effect was 0.0498.
The benefit of ribociclib was observed across all quartiles,
but the magnitude of benefit was weakest in the top
quartile (HR ¼ 0.74). A relative reduction in the efficacy of
ribociclib versus placebo was observed with TMB >10
mutations/Mb [n ¼ 34; median PFS 7.5 versus 5.1 months;
HR ¼ 0.59 (95% CI 0.22-1.57)]; this was consistent with the
results in the top quartile in which the median PFS for
ribociclib versus placebo was 9.2 versus 7.4 months [HR ¼
0.74 (95% CI 0.56-0.99)]. Higher TMB was prognostic of
worse PFS regardless of treatment (Supplementary
Figure S6, available at https://doi.org/10.1016/j.annonc.
2023.08.011).

DISCUSSION

This is the largest pooled biomarker analysis characterizing
the correlation between genomic alterations in baseline
ctDNA and clinical efficacy of a CDK4/6i.

This analysis has implications for further clinical research
and practice, including identification of patients with CDK4/
6i-resistant tumours. Consistent with preclinical studies
showing that RB1 mutations confer CDK4/6i resistance,
patients with RB1 mutations demonstrated little PFS benefit
with ribociclib [HR ¼ 1.48 (95% CI 0.65-3.38)], although
alterations in RB1 occurred in 3% of patients.39 Patients
with loss-of-function alterations of CDKN2A/B/C had
numerically shorter PFS treated with ribociclib compared
with placebo; this is in contrast with reported preclinical
observations.40,41 Compared with WT, alterations in ANO1
were observed to be associated with lower ribociclib
sensitivity. Among patients with alterations associated with
decreased sensitivity to ribociclib, PFS with ET was in the
same range as that observed in patients without alteration,
suggesting that these genes could be involved in CDK4/6i
but not ET resistance. Additionally, when the PTEN analysis
was restricted to nonsense mutations or gene deletions
(n ¼ 19), median PFS was shorter with ribociclib than ET
alone in patients with altered PTEN, implicating PTEN loss-
of-function mutations as potential biomarkers of ribociclib
resistance. These data are consistent with prior studies and
could provide rationale to combine PI3K pathway inhibitors,
CDK4/6i, and ET in patients with PTEN loss-of-function
mutations.14 As previously reported, PIK3CA mutations
were not predictive of CDK4/6i efficacy.42,43
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ERBB2, FAT3, FRS2, MDM2, SFRP1, and ZNF217 alter-
ations were associated with sensitivity to ribociclib treat-
ment. Patients treated with ET alone with alterations in
these genes had a shorter PFS than those with WT genes,
suggesting that these genes are associated with ET resis-
tance. Although these alterations are associated with ET
resistance, the addition of a CDK4/6i appears to reverse the
resistance leading to a large relative increase in PFS. An
interesting observation is that, while MDM2 alterations
were associated with sensitivity to ribociclib and met the
interaction P < 0.10 threshold, TP53 alterations did not
meet this threshold. The results ofMDM2 may be related to
the fact that MDM2 and FRS2 were co-amplified, with FRS2
being the potential driver of the ribociclib benefit observed.
Volume 34 - Issue 11 - 2023
With respect to additional genes of interest, in the case of
ESR1 and FGFR1, while a benefit was observed for ribociclib
over ET alone regardless of whether an alteration was
present, those with alterations in these genes had a shorter
PFS, regardless of treatment. The identification of genomic
alterations associated with sensitivity to CDK4/6i could help
identify which patients derive benefit from CDK4/6i in the
adjuvant setting.

Higher baseline purity/ctDNA levels have been shown to
be prognostic of poor response and to correlate with
prognostic clinical factors.44,45 In this analysis, we found
that a ctDNA fraction of <1% was associated with a more
favourable best overall response, lower rates of prior
chemotherapy and prior hormone therapy, higher
https://doi.org/10.1016/j.annonc.2023.08.011 1011
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frequency of de novo disease, and better ECOG perfor-
mance status. We also observed that ctDNA fraction <1%
was associated with a lower total target lesion diameter at
baseline and was prognostic of better PFS; however, the
benefit of ribociclib was observed over ET alone regardless
of ctDNA fraction.

While ribociclib generally demonstrated benefit in pa-
tients with TMB in lower quartiles (Q1-Q4), it was weakest
in the top quartile, and patients with TMB >10 did not
experience a clinically relevant benefit with ribociclib. These
patients therefore represent a large unmet need, and there
remains a necessity to develop prospective clinical trials
testing new drugs in this population. A basket study
recently showed that pembrolizumab is effective in patients
with high TMB, irrespective of tumour origin.46 Prior reports
suggested that patients with HRþ, TMB-high metastatic
cancers could be responsive to antieprogrammed cell
death protein 1 antibodies.47 These findings challenge the
conventional sequence of therapy in HRþ ABC, for which
consensus groups suggest that patients should start with
ET.48 Thus, there is rationale to test cytotoxic agents and
immunotherapies in this selected population because
studies suggest that TMB-high cancers could be sensitive to
chemotherapy.49

In addition to its large size, this analysis had several
strengths (Supplementary Table S4, available at https://
doi.org/10.1016/j.annonc.2023.08.011). Use of ctDNA as
a surrogate pool of all metastases in a patient is likely
more informative than an analysis of a single metastatic
tumour biopsy specimen. Analysis of genomic status at
study entry is another strength, given that many published
reports used archival material from primary tumours,
which is unlikely to reflect the genomic profile of the
metastatic tumour. Nevertheless, this analysis had several
1012 https://doi.org/10.1016/j.annonc.2023.08.011
limitations. Data generation was initiated when unique
molecular identifiers were not routinely used, limiting the
sensitivity of the assay. Given the relative insensitivity of
ctDNA detection, the requirement of ctDNA fraction >1%
for inclusion, and the previous findings that patients with
detectable ctDNA have a worse outcome overall, the se-
lection of the population included in this analysis could
have been biased towards patients with poorer prog-
nosis.50 The ability to detect copy number is more limited
in ctDNA, and the frequency of amplified genes is likely
underestimated here. Subclonal variants may be missing in
patients with low levels of shedding or very low mutant
allele fractions. Patients presented a large variability of
ctDNA that could potentially affect the mutant allele
fraction of the genes. This could be relevant for genes
associated with resistance, as high ctDNA levels could be
associated with more aggressive disease. To mitigate this
limitation, we limited the analyses to patients who had
ctDNA levels �1%. TMB was estimated using all non-
synonymous and synonymous alterations but was not
adjusted for CHIP, which is another limitation of this
analysis; however, patients with CHIP generally have few
CHIP mutations (generally 1 or fewer), and thus the impact
on TMB should be limited.35,51-53 Germline sequencing was
not carried out, but germline mutations were filtered out
bioinformatically (Methods). This analysis was exploratory,
and if an adjustment was carried out, none of the alter-
ations would have remained significant with a P value of
0.05. This dataset did not have the power to test the
predictive value of alterations occurring at low frequency,
thus splitting the current population into training and test
sets would have limited the power of the analysis. Small
sample sizes and wide 95% CIs in some cases should also
be noted. While adjusted for each trial, the analyses
cannot test whether the predictive value of an alteration is
specific to an ET backbone. This analysis tested the asso-
ciation between gene alteration and drug resistance or
sensitivity, but only mechanistic investigation will provide
evidence of causality.

This analysis identified biomarkers that may be associ-
ated with response of or resistance to ribociclib that could
affect future drug development for patients with ABC.
These data are hypothesis generating, and while they do
not have immediate clinical implications, they do provide
direction for future research.
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