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PUNCTURED INTERVALS TILE Z3

STIJN CAMBIE

Abstract. Extending the methods of Metrebian (2018), we prove that punctured intervals tile Z3.
This solves two questions of Metrebian and completely resolves a question of Gruslys, Leader and
Tan. We also pose a question that asks whether there is a relation between the genus g (number of
holes) in a one-dimensional tile T and a uniform bound d such that T tiles Zd . An affirmative answer
would generalize a conjecture of Gruslys, Leader and Tan (2016).

§1. Introduction. Given n, let T be a tile in Zn, that is, a finite subset of Zn. The cardinality
of T , |T |, is the size of T , that is, the number of elements of the subset. Confirming a conjecture
of Chalcraft that was posed on MathOverflow, Gruslys et al. [2] showed that T tiles Zd for
some d . This is an existence result and they wondered about better bounds in terms of the
dimension n and the size |T |. They conjectured the following for the case n = 1.

CONJECTURE 1.1 [2]. For any positive integer t , there is a number d such that any tile T
in Z with |T | = t tiles Zd .

Let us note that Adler and Holroyd [1] had earlier investigated which tiles in Z can tile Z.
When dealing with one-dimensional tiles, we find it convenient to use similar notation as in
[1]: a tile T in Z which is the union of n intervals I1 up to In, such that the length of interval Ii

is ai and the gap between Ii and Ii+1 is bi, will be denoted by [a1(b1)a2(b2)a3 . . . (bn−1)an].
We will call g = n − 1 the genus of the interval T . Note that for g = 0, a tile [k] is indeed
a translate of {1, 2, . . . k}, so this particular case corresponds with classical notation in set
theory. The main example we will be working with will be the punctured interval [k(1)�]
which denotes an interval of k + � + 1 points with one point removed, that is, separating two
intervals of length k and l .

Wondering about Conjecture 1.1, one may wonder if the dimension d only depends on the
genus of the tile instead of the size. Leading to the following question.

QUESTION 1.2. Does there exist a function d : N → N such that any tile T ⊂ Z with
genus g tiles Zd(g)?

Answering this affirmatively would confirm Conjecture 1.1 since g � t − 1. As observed
in, for example, [2], for any fixed d , there are one-dimensional tiles with large genus which
cannot tile Zd , see § 4. In particular, we observe that d(g) � g

2 + 1 by taking k → ∞ in
Proposition 4.1. We note that Question 1.2 is false for n-dimensional tiles with n � 2, even
for genus 0. This is explained in Proposition 4.3, but it does not imply that the generalization
of Conjecture 1.1 cannot hold for T ⊂ Zn where n � 2. We make progress on Question 1.2
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490 STIJN CAMBIE

Figure 1: Construction of Y .

for the case g = 1 by establishing that one-dimensional tiles T = [k(m)�] with m � 2 do tile
Z3, as sketched in the Appendix. In full detail, we prove that punctured intervals do tile Z3 as
our main result.

THEOREM 1.3. Every punctured interval T = [k(1)�] does tile Z3.

This theorem answers two concrete questions posed by Metrebian [4, Question 10,11].
As a corollary, the least d for which T = [k(1)k] tiles Zd equals min{k, 3}, answering [2,
Question 21].

In § 2, we prove a lemma implying that it is enough to find some structured partial tilings
of Z2 to prove tiles do tile Z3. In § 3, we exhibit such partial tilings for punctured intervals.
Some divisibility constraints for specific constructions make this a delicate task. For the
symmetric tiles T = [k(1)k], the construction depends on v2(k), the exponent of 2 in the
prime factorization of k. So we create infinitely many families of constructions. This is done in
Lemma 3.2. Metrebian [4] did have such examples already when v2(k) ∈ {0, 2}. An important
ingredient to prove the validity of this infinite family of partial tilings is some elementary
number theory. In Lemma 3.3, we give constructions for asymmetric tiles T = [k(1)�] where
k �= �. So Lemmas 3.2 and 3.3 together imply Theorem 1.3.

§2. From partial to complete tilings. In this section, we will prove that finding certain
partial tilings is enough to conclude that a whole tiling does exist. This is done in Lemma 2.1
which is a generalization of [4, Lemma 4].

LEMMA 2.1. Let T be the one-dimensional tile [k(m)�]. Suppose there are three disjoint
subsets A, B,C of Zd with the same cardinality such that one can tile Zd \ (A ∪ B), Zd \ (A ∪
C) and Zd \ (B ∪ C) with T . Then T tiles Zd+1.

Proof. First assume m < min{k, �}. We construct a subset Y ⊂ Z × {0, 1, 2} such that
|Y ∩ ({z} × {0, 1, 2})| = 2 for every z ∈ Z and such that T tiles Y . Let (x, i) ∈ Y for some
x ∈ Z and i ∈ {0, 1, 2} if and only if

x − i(k + l ) ≡ 1, 2, . . . , k; k + m + 1, k + m + 2 . . . , k + m + � (mod 3k + 3�) or

≡ 2k + � + 1, . . . , 2k + 2�;
2k + 2� + m + 1, . . . , 3k + 2� + m (mod 3k + 3�).

The construction has been sketched in Figure 1 for {1, 2, . . . , 3(k + �)} × {0, 1, 2}. By
gluing infinitely many copies of that picture together, one gets the full construction of Y .
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Figure 2: Gluing T1 and T2 and copies T ′.

Now we explain why this construction meets the conditions we need. Let S1 =
{1, 2, . . . , k}, S2 = {k + m + 1, k + m + 2 . . . , k + m + �}, S3 = {2k + � + 1, . . . , 2k + 2�}
and S4 = {2k + 2� + m + 1, . . . , 3k + 2� + m}. Let So = S1 + S3 and Se = S2 + S4. Then
both So ∪ ((k + �) + So) ∪ (2(k + �) + So) and Se ∪ ((k + �) + Se) ∪ (2(k + �) + Se) cover
all elements in Z

3(k+�)Z
exactly once, from which the result follows.

The elements of A ∪ B ∪ C can be partitioned into triples {ai, bi, ci} since A, B,C have
the same cardinality. Every set Z × {ai, bi, ci} has a subset Yi

∼= Y which can be tiled by T
in the same manner, that is, there exists a partition {Z1, Z2, Z3} of Z such that for every i
we have Yi ∩ ({z} × {ai, bi, ci}) = {ai, bi} for every z ∈ Z1, Yi ∩ ({z} × {ai, bi, ci}) = {ai, ci}
for every z ∈ Z2 and Yi ∩ ({z} × {ai, bi, ci}) = {bi, ci} for every z ∈ Z3. Now Zd+1 \ (∪iYi)

can be written as Z1 × (Zd \ (A ∪ B)) ∪ Z2 × (Zd \ (A ∪ C)) ∪ Z3 × (Zd \ (B ∪ C)) and by
the assumptions this can be tiled by T as well, so T tiles Zd+1. Looking at Figure 1, every
hyperplane πi will be covered by the intersections with ∪iYi and a partial tiling isomorphic to
one of Zd \ (A ∪ B), Zd \ (A ∪ C) or Zd \ (B ∪ C).

When m � min{k, �}, where we assume without loss of generality k = min{k, �}, one
can glue two copies T1, T2 of T together to a tile T ′ with k′ = �′ = k + � and m′ = m − k
by taking T1 = {−k, −k + 1, . . . , −1} ∪ {m, m + 1, . . . m + � − 1} and T2 = {−k − �, −k −
� + 1, . . . , −k − 1} ∪ {m − k, m − k + 1, . . . , m − 1}. See Figure 2 for a depiction. When
m′ � k′, one can glue �m′/k′ + 1
 copies of T ′ together, which are translates of T ′ with
initial point at 0, k′, . . . , �m′/k′
k′. Hence we have reduced this to the case which has been
proven already. �

§3. Punctured intervals tile Z3. Throughout this section, we let T be a punctured interval
tile, which is the union of an interval of length k and an interval of length � with a gap of size
1. So T = [k(1)�] equals a translate of {−k, −k + 1, . . . , −1, 1, 2, . . . , �} as a subset of Z.
By applying Lemma 2.1, we will prove that T tiles Z3 for any k, �.

As a warm up and for completeness of presentation, we construct three partial tilings of
the plane satisfying the conditions of Lemma 2.1 when T is the symmetric punctured interval
[k(1)k] with k ≡ 1 (mod 2). This was also proven in [4, Theorem 3].

LEMMA 3.1 [4]. If 2 � k, then T = [k(1)k] tiles Z3.

Proof. Let A = {(x, y) ∈ Z2 | x ≡ y (mod k + 1), x ≡ 0 (mod 2)}, B = (1, 1) + A and
C = (1, 0) + A. Now one can tile Z2 \ (A ∪ B) horizontally or vertically, as A ∪ B consists
of infinitely many diagonals with distance k in between.

One can tile Z2 \ (A ∪ C) by placing copies of T vertical and similarly one can tile Z2 \
(B ∪ C) with horizontal copies of T . The sets A, B,C are presented in Figure 3, with the three
partial tilings being sketched in Figure 4. Hence the result follows from Lemma 2.1. �

LEMMA 3.2. Symmetric punctured intervals T = [k(1)k] tile Z3.

Proof. Let v2(k) = n and q = 2n. When n = 0, the result follows from Lemma 3.1. So
from now on, we assume n � 1.
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492 STIJN CAMBIE

Figure 3: Construction of A, B,C for T = [k(1)k] where k ≡ 1 (mod 2).

Figure 4 (colour online): Partial tilings for k ≡ 1 (mod 2).

Let A ⊂ Z2 be the sets containing the elements (x, y) if and only if

x − y
[
2(k + 1)(q − 1) + 1

] ≡ i(k + 1) (mod 4(k + 1)q)

for some 0 � i � 2q − 1. Let B = (2q(k + 1), 0) + A and C = B + (k, 0).
One can see a depiction of this in Figure 5 in the case q = 2, n = 1 (for k = 6 actually).
Now one can tile Z2 \ (A ∪ B) with T as A ∪ B is the union of diagonals which are distance

k + 1 apart. One can tile Z2 \ (A ∪ C) horizontally as well. For this, it is enough to tile one
horizontal line as every horizontal line is a translate of that one and due to periodicity in
particular the set

(
Z2 \ (A ∪ C)

) ∩ ({0, 1, . . . , 4q(k + 1) − 1} × {0})
= ({0, 1, . . . , 4q(k + 1) − 1} × {0}) \ (A ∪ C).

For this, use translates of T starting at (1 + 2i(k + 1), 0) for 0 � i � q − 1 and at (2i(k +
1), 0) for q � i � 2q − 1.

To finish, we note that we can tile Z2 \ (B ∪ C) vertically. For this, we only have to
check ({0} × Z) \ (B ∪ C), since gcd{4(k + 1)q, 2(k + 1)(q − 1) + 1} = 1 and hence every
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Figure 5: Construction of partial planar tilings where v2(k) = 1.

vertical line is up to some translation identical to every other vertical line. By noting that B
and C are subsets of some diagonals on the plane, one checks that

({0} × Z) ∩ B = {0} × {y | y ≡ i(k + 1) (mod 4(k + 1)q), 2q � i � 4q − 1}.
For this, note that

0 − i(k + 1) · [2(k + 1)(q − 1) + 1] ≡ i(k + 1) (mod 4q(k + 1))

since k ≡ q (mod 2q). Similarly one has

({0} × Z) ∩ C = {0} × {y | y ≡ i(k + 1) + 1 (mod 4(k + 1))q), −1 � i � 2(q − 1)}.
Hence one can tile ({0} × Z) \ (B ∪ C) by putting vertical tiles starting at (0, i(2k + 2) −
k + 1) for every i ≡ 0, 1, . . . , q − 1 (mod 2q) and (0, i(2k + 2) − k) for every i ≡ q, q +
1, . . . , 2q − 1 (mod 2q). Hence the result follows from Lemma 2.1. �

LEMMA 3.3. Asymmetric punctured intervals T = [k(1)�] with k > � tile Z3.

Proof. Let A = {(x, y) | y ≡ x − k (mod k + � + 1), x ≡ 1, 2, . . . , k − � (mod 2(k −
�))}, B = (k − �, k − �) + A and C = (k − �, 0) + A.

Note that A ∪ B form diagonals distance k + � + 1 apart and so we can tile Z2\(A ∪ B) by
putting all tiles horizontal or vertical. One can tile Z2\(A ∪ C) vertically with copies of T and
Z2\(B ∪ C) horizontally. A sketch of an example is given in Figure 6. �

§4. Impossible tilings. In this section, for the convenience of the reader, we collect
two classes of (known) one-dimensional tiles of high genus and give an example of a
two-dimensional tile of genus 0 that do not tile Zd for a given d .
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494 STIJN CAMBIE

Figure 6 (colour online): Construction of A, B,C for T = [k(1)�] where k = � + 1 with a partial tiling for
Z2\(B ∪ C).

Figure 7: An example of a hook-tile H26.

Let Tk,g be the tile [k (k − 1)1(k − 1)1 . . . (k − 1)1(k − 1)︸ ︷︷ ︸
g times (k−1)

k]. Note that Tk,k was considered

in [2].
Let Dn be the tile [2(1)2(1)2 . . . (1)2︸ ︷︷ ︸

n times 2

], as considered in [3].

Let Hk be any tile which is formed by taking a (k + 4) × (k + 4)−square and removing a
k × k−square in the center and an additional 1 × 2 rectangle close to a corner in such a way
that the tile has genus 0. An example is presented in Figure 7.

The following proposition shows that for every d , one can find {k, g} and n such that neither
Dn nor Tk,g tiles Zd . The reason behind this is slightly different for the two tiles. The first uses
sparseness of tiles put in one direction. The other considers the intersection of the tiles with
subdivisions of Zd .
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PROPOSITION 4.1. Tk,g does not tile Zd for d <
kg+2k−1
2k+g−1 and Dn does not tile Zd for

n > 3d−1.

Proof. In the case of Tk,g, one looks to the maximum volume covered by tiles in one of the
d orthogonal directions in a hypercube [N]d . When N → ∞, the ratio of the volume covered
by these tiles will have a limsup which is at most 2k+g−1

kg+2k−1 from which the result follows as the
sum of the ratios over the d directions should sum to 1.

Next, we consider the Dn. We assume Dn tiles Zd and look to the intersection of this fixed
tiling with a hypercube [N]d . Look to the 3d possible (infinite) partitions of Zd in hypercubes
with side length 3. These correspond with the 3d possible vertices in ( Z

3Z )d that represent
the corners of all the cubes in the partition. Call a nonempty intersection of [N]d with a
hypercube of side length 3 for a given partition a subregion. We now count the total number
#D of intersections of a subregion of a partition and a Dn which are of size 2 (the intersection
has not necessarily to be connected), in two different ways.

For each of the 3d partitions, there are less than (N
3 + 2)d subregions. Each subregion

will contain at most 3d−1
2 intersections with a Dn of size 2. Hence #D < 3d (N

3 + 2)d 3d−1
2 =

3d−1
2 (N + 6)d .

On the other hand, there are at least (N−6n)d

2n copies of Dn completely inside the hypercube.
Every Dn of these, intersects n subregions in exactly twp places for each of 2 · 3d−1 partitions.
For 3d−1 partitions, these Dn intersects n − 1 small hypercubes in exactly two places and two
small hypercubes in exactly one place. This implies that #D � (N−6n)d

2n · 3d−1(3n − 1).

Hence 3d−1
2 (N + 6)d > (N−6n)d

2n · 3d−1(3n − 1) for all N , in particular one finds that the

leading coefficients satisfy 3d−1
2 � 3d−1 · 3n−1

2n ⇒ n � 3d−1. �

In the case of Dn, this generalizes the “only if” part of [3, Proposition 1].
Let us remark that this also follows from a straightforward generalization of [3, Theorem 1],

which concerns “convolutions” of tiles. In case it might be of use to others, we use the notation
of [3] to state the generalization (and leave the proof to the reader) of [3, Theorem 1] (where
they deal with the case n = 2 and d = 2).

PROPOSITION 4.2 [3]. Suppose T ⊂ Zn is a tile. Suppose that S ⊂ Zd is a symmetric tile
(i.e., no matter how the tile is oriented, it is a translate of itself). Then if for some m ∈ N one
has |1S�m1T |1 < |1S||1T |, or if |1S�m1T |∞ < |1T | and |1S| �= 0, then T does not tile Zd .

Next, we prove that Hk does not tile Zd for fixed d and k large enough. The idea is essentially
similar to the idea used for Tk,g.

PROPOSITION 4.3. The tile Hk does not tile Zd if k � 8
(d

2

) − 6.

Proof. Note that there are
(d

2

)
planar directions in Zd and two copies of Hk in the same

direction cannot overlap. So if Hk would tile Zd , looking to the hypercube [N]d for N → ∞,
we remark that the limsup of the volume covered by tiles in one direction is bounded by
8k+14
(k+4)2 < 8

k+6 . So when 8
k+6

(d
2

)
� 1, a tiling of Zd by copies of Hk is impossible. �

Note. This paper is an update of an older version entitled “Symmetric punctured intervals
tile Z3”. So we like to give an idea of the changes. In this version, we start our journey
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496 STIJN CAMBIE

Figure A.1 (colour online): Construction of A, B,C for T = [8(2)5].

more general from Conjecture 1.1 and Question 1.2. By finding a simple construction for the
asymmetric punctured intervals in Lemma 3.3, some results in the old versions could be stated
more elegantly. Other results could be removed, as they became redundant. The main result
now also holds for all punctured intervals and not only symmetric intervals.

A. Appendix. The tiles [k(2)�] tile Z3. In this section, we briefly sketch the construction
for the cases where the gap is of length 2.

If 2 | k, �, four copies form a tile that is isomorphic to [ k
2 (1) �

2 ] and so it is known by
Theorem 1.3. When k ≡ � (mod 4) are both odd, we have 4 | k + � + 2 and a construction
analogous to Figure 3 does work (k has to be k + � instead and every square being a 2 × 2
square).

The remaining cases where k and � are having different parity, or both are odd and 4 | k + �,
are handled in the following proposition.

PROPOSITION A.1. Let k, � ∈ Z+ and d = gcd{k + 1, � + 1} where k + 1 = dx, � + 1 =
dy and x + y is odd. Then [k(2)�] does tile Z3.

Proof. We start with selecting three transversals in ( Z

(x+y)Z
)2. Let A′ =< (−2, 1) > be

the set of elements (additively) generated by (−2, 1) in ( Z

(x+y)Z
)2. So A′ contains exactly the

pairs (c1, c2) such that c1 + 2c2 ≡ 0 (mod x + y). Since gcd 2x, x + y = 1, we note that A′

is a transversal and that it also can be written as < (−2x, x) >. Now let B′ = (0, x) + A′ and
C′ = (−x, 0) + B′ = (x, 0) + A′. Replacing every square here by a 2d × 2d square, where
the sets A, B,C are formed by taking the elements on d 2 × 2 blocks on the diagonals in
the corresponding squares of A′, B′ and C′. So now we have constructed subsets A, B,C in
( Z

2d(x+y)Z
)2, where d(x + y) = k + � + 2. We can consider A, B,C as subsets of Z2 as well,

if we consider the coordinates modulo 2(k + � + 2). By applying Lemma 2.1 on these sets
A, B,C, we conclude [k(2)�] tiles Z3. For this, note that Z2 \ (A ∪ B) and Z2 \ (A ∪ C) both
can be tiled with copies of T which are put horizontally, while Z2 \ (B ∪ C) can be tiled with
vertical copies of T .
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As an example, the idea is illustrated in Figure A.1 for k = 8, � = 5, so with d = 3, x = 3
and y = 2. The constructions of A′, B′ and C′ in ( Z

5Z )2 is presented on the left, the sets A, B,C
in ( Z

30Z )2 are depicted in the middle and part of the tiling of Z2 \ (B ∪ C) is shown on the
right side. �
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