Received 00th January 20xx, Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x

High-efficiency visible-light-driven oxidation of primary C−H bonds in toluene over CsPbBr₃ perovskite supported by hierarchical TiO₂ nanoflakes†

Jiayu Yi,^a Sunzai Ke,^a Suwei Lu,^a Bo Weng,^b Lijuan Shen,^a Xuhui Yang,^a Hun Xue,^a Min-Quan Yang^{*a} and Qingrong Qian^{*a}

Photocatalytic oxidation of toluene to valuable fine chemicals is of great significance, yet challenged in the development of advanced catalysts with both high activity and selectivity for the activation of inert $C(sp^3)$ –H bonds. Halide perovskites with remarkable optoelectronic properties have shown to be prospective photoactive materials, but the bulky structure with small surface area and severe recombination of photogenerated electron-hole pairs are obstacles to application. Here, we fabricate a hierarchical nanoflower-shaped CsPbBr₃/TiO₂ heterojunction by assembling CsPbBr₃ nanoparticles on 2D TiO₂ nanoflakes subunits. The design significantly downsizes the size of CsPbBr₃ from micrometer to nanometer, and forms type II heterojunction with intimate interfacial contact between the CsPbBr₃ and the TiO₂ nanoflakes, thereby accelerating the separation and transfer of photogenerated charges. Moreover, the formed hierarchical heterojunction heightens light absorption by the refraction and scattering, offers large surface area and enhances the adsorption of toluene molecules. Consequently, the optimized CsPbBr₃/TiO₂ exhibits a high performance (10200 μ mol g⁻¹ h⁻¹) for photocatalytic toluene oxidation with high selectivity (85%) for benzaldehyde generation under visible light. The photoactivity is about 20 times higher than blank CsPbBr₃, and is among the best photocatalytic performance reported for selective oxidation of toluene under visible light irradiation.

Introduction

The direct oxidation of toluene to high-added-value fine chemicals, such as alcohols and aldehydes, is one of the most important conversions in chemical industry. 1-4 However, due to the inertness and high bond dissociation energy (89.8 kcal mol-1) of the C(sp3)-H bond,5 the activation of toluene generally need to be operated under harsh reaction conditions (high pressure and temperature) and with the assistance of specific metal complexes or aggressive oxidants, which is expensive, energy intensive and causes negative impacts on the environment.⁶⁻⁸ Solar-driven photocatalytic aerobic oxidation using molecular O₂ as oxidant represents a promising methodology to overcome these challenges, but the overall photocatalytic performance reported so far is still unsatisfactory due to the lack of desired photocatalysts with broad optical absorption windows, efficient charge separation, and high product selectivity.9-11

Over the past years, halide perovskite materials have triggered wide attention in photocatalysis because of their outstanding optical and electronic properties. ¹²⁻¹⁶ The high charge carrier mobility, visible light absorption, and tunable

band structures enable them to be potential competitors for photocatalytic oxidation of toluene. 17,18 Nevertheless, single-component halide perovskites typically evolve to bulky aggregates with large particle size (several to tens micrometers), which leads to severe bulk recombination of charge carriers and restricts the photoactivity. 19,20 To tackle the problem, construction of heterojunction is an effective strategy. By hybridization of the halide perovskite with preferred substrates, it not only can prevent the aggregation of the halide perovskites to mediate the bulk recombination of photoexcited electron—hole pairs, but also can establish interfacial built-in electric field to further facilitate the spatial charge transfer and separation. 21

Moreover, the catalytic functions of photocatalysts also strongly depend on the nanostructure. 22,23 To realize high photocatalytic performance, the delicate design of well-defined nanostructure for heterojunction composites is also critical.²⁴⁻²⁷ For diverse structural configurations, 3D hierarchical flower-like nanostructure constructed by 2D nanoflakes subunits have demonstrated intrinsic advantages for photocatalysis. Such hierarchical structure can strengthen the light absorption of photocatalysts by multi-light reflection and scattering within the nanoflakes subunits, and prohibit the aggregation of the 2D nanoflakes to afford large surface area with abundant active sites.^{28,29} In addition, the nanoflakes subunits will greatly shorten the diffusion path of charges, thereby facilitating the separation and transfer of photogenerated charges to surface for redox reactions.^{30,31} Thus, the development of advanced 2D subunits-assembled hierarchical structure with heterogeneous junction would be promising for high-efficiency photocatalytic toluene oxidation.

Here, inspired by these above considerations, we design and fabricate a hierarchical nanoflower-shaped CsPbBr₃/TiO₂

^{a.} College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, P.R. China

b- cMACS, Department of Microbial and Molecular Systems, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium Electronic Supplementary Information (ESI) available: [details of any supplementary information available should be included here]. See DOI: 10.1039/x0xx00000x

(abbreviated as CPB/TiO₂) heterojunction composed of TiO₂ nanoflakes-supported all-inorganic CsPbBr₃ perovskite nanoparticles. Benefiting from the composition nanostructure engineering, the CPB/TiO₂ heterojunction displays excellent performance for photocatalytic toluene oxidation under the irradiation of visible light. The optimized 20%CPB/TiO₂ heterojunction composite delivers a toluene conversion rate of 10200 $\mu mol\ g^{\text{-}1}\ h^{\text{-}1}$ and a high selectivity of 85% towards benzaldehyde (benzyl alcohol as the main byproduct). The performance outperforms most of the state-of the-art catalysts in literature for visible-light-driven oxidation of toluene. This work provides a new idea by constructing hierarchical heterojunction structure over halide perovskite materials for high-efficiency photocatalytic toluene conversion.

Experimental section

Materials

Cesium bromide (CsBr, 99.999%), lead bromide (PbBr₂, 99.0%) and tetrahydrofuran (THF), were purchased from Macklin (Shanghai, China). N, N-Dimethylformamide (DMF), toluene, tetrabutyl titanate (TBOT), ethanol (EtOH), concentrated hydrochloric acid (HCl, 36%), acetic acid and glycerol were obtained from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China). All chemicals and solvents were used without further purification.

Synthesis of mesoporous hierarchical TiO₂ nanoflowers

Typically, 1.5 g of Pluronic F127 was dispersed into a mixed solvent of 2.4 mL acetic acid, 3.2 mL concentrated hydrochloric acid (HCl) and 30 mL tetrahydrofuran (THF). After vigorously stirring for 20 min, 3.4 mL tetrabutyl titanate (TBOT) and 0.2 mL H₂O were added subsequently to obtain a clear primrose yellow solution. After that, the solution was dried in an oven at 45 °C for 24 h to form a light-yellow gel. Then, 1.0 g of the gel was added into 25 mL ethanol (EtOH) and 5 mL glycerin under vigorous stirring. After 20 min, the transparent solution was transferred to a 50 mL Teflon-lined autoclave, heated at 150 °C for 15 h, and then cooled naturally to room temperature. The precipitation was washed with ethanol, and dried at 60 °C in oven.32 Finally, the precipitation was calcinated in a Muffle furnace at 400 °C for 5 h with a heating rate of 1 °C min-1 to obtain the hierarchical TiO₂ nanoflowers. To synthesize the collapsed TiO₂ without hierarchical nanoflower structure, the precipitation was calcinated in the same Muffle furnace at 400 °C for 5 h, but with a heating rate of 5 °C min⁻¹.

Synthesis of CsPbBr₃/TiO₂ composites and blank CsPbBr₃

CsPbBr $_3$ /TiO $_2$ composites were synthesized according to an antisolvent precipitation method at room temperature. 33 Typically, 1 mmol CsBr and 1 mmol PbBr $_2$ were dissolved in 10 mL of N, N-Dimethylformamide (DMF) by ultrasonication to form a precursor solution. Meanwhile, 100 mg TiO $_2$ was dispersed into 10 mL of DMF and stirred to form a uniform white dispersion. Then a certain amount of the CsPbBr $_3$ precursor

solution was added into the TiO_2 dispersion under ultrasonication. Then, the mixture was added dropwise into 50 ml toluene and stirred vigorously for 30 min. After that, the solution was centrifuged at 8000 rpm for 3 min. The precipitation was collected and dried in a vacuum oven. The series of x% $CsPbBr_3/TiO_2$ composites were synthesized by changing the volume of the added $CsPbBr_3$ precursor solution, where x is the mass ratio of $CsPbBr_3$ in the composite (x = 10, 20, 30, 40). Blank $CsPbBr_3$ was prepared by the same procedure without the addition of TiO_2 .

Characterizations

Scanning electron microscopy (SEM) images were captured by Hitachi 8100. Transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) images were recorded using a JEM-2100F EX microscope at an accelerating voltage of 200 kV. The Brunauer-Emmett-Teller (BET) specific surface area was measured by N2 adsorptiondesorption instrument (BELSORP-mini II). The X-ray diffraction (XRD) patterns of the catalysts were characterized on a Bruker D8 advance X-ray diffractometer operated at 40 kV and 40 mA with a Cu K α radiation in the 20 ranging from 10° to 80°. The UV-Vis diffuse reflectance spectra (DRS) were obtained on a CARY-100 spectrophotometer (Agilent) using 100% BaSO₄ powder as a standard sample. X-ray photoelectron spectroscopy (XPS) was recorded by an X-ray photoelectron spectrometer (Thermo Escalab 250 electron spectrometer) with Al-Ka radiation. Raman spectra were obtained using a laser at a wavelength of 785 nm (Thermo Fisher Scientific, DXR 2xi). Photoluminescence (PL) spectra of solid samples were obtained by an RF-5301PC spectrophotometer (Shimadzu, Japan) with the 435 nm excitation wavelength.

Electron paramagnetic resonance (EPR) measurements were performed at room temperature using a Magnettech ESR5000X spectrometer. In general, 10 mg samples were dispersed in a mixed solution of 2 mL CH $_3$ CN containing 1 mL toluene and 2 μ L 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). The suspension was then transferred into a glass capillary. The sealed glass tube was then placed in the microwave cavity of the EPR spectrometer and exposed to a 300 W Xe lamp source (CEL-PF300-T8, Beijing China Education Au-light Co., Ltd.) at room temperature.

Photoelectrochemical measurements

The photoelectrochemical analysis was carried out in a conventional three-electrode cell using a Pt plate and an Ag/AgCl electrode as the counter electrode and the reference electrode, respectively. The working electrode was prepared on fluorine-doped tin oxide (FTO) glass that was cleaned by ultrasonication in ethanol for 1 h. Typically, 5 mg of the catalyst was dispersed in 0.5 mL of isopropanol to get a slurry. After that, 20 μ L of the slurry was dropped onto FTO with a size of 1 cm² and dried in air. The electrochemical impedance spectroscopy (EIS) measurement was performed in an electrolyte of tetrabutylammonium hexafluorophosphate (TBAPF6) in ethyl acetate (EA). Transient photocurrent was tested in the same electrolyte and A 300 W Xe lamp (CEL-PF300-T8, Beijing China

ARTICLE

Education Au-light Co., Ltd.) equipped with a 420 nm cutoff filter ($\lambda \geq$ 420 nm) is used as light source. Mott-schottky measurement was performed in an electrolyte of 0.1 M TBAPF₆ in CH₂Cl₂.

Density functional theory (DFT) calculations

DFT calculations were carried out using the Vienna ab initio simulation package (VASP) with the projector-augmented-wave (PAW) method. The Perdew-Burke-Ernzerhof (PBE) scheme was used for the exchange correlation function, employing the generalized gradient approximation (GGA). The electronic wave function was expanded using a plane wave basis with an energy cutoff of 500 eV. The energy convergence criterion was set to 1.0×10^{-5} eV, and the force convergence criterion was set to 0.03 eV Å⁻¹ for each atom. For the CsPbBr₃ (110) and TiO₂ (101) slabs, a $6 \times 3 \times 1$ and $3 \times 9 \times 1$ k-point mesh was used, respectively. A 30 Å vacuum layer along the z direction was adopted to prevent unintended periodic interactions between adjacent slabs. The CsPbBr₃/TiO₂ heterostructure model

consists two CsPbBr $_3$ layers and one TiO $_2$ layer, with a 20 Å vacuum space along the z direction. To saving computing resources, a 1 × 1 × 1 k-point mesh was employed for CsPbBr $_3$ /TiO $_2$ heterostructure. The van der Waals interactions between TiO $_2$ and CsPbBr $_3$ were taken into account using the DFT-D3 correction method.

Photocatalytic activity measurements

All photocatalytic reactions were conducted in a quartz reactor. Typically, 10 mg photocatalyst and 1 mL toluene (9.4 mmol) were dispersed in a reactor containing 2 mL acetonitrile. The reactor was purged with O_2 for 10 min, and then irradiated by visible light ($\lambda > 420$ nm) with a 300 W Xe lamp (CEL-PF300-T8, Beijing China Education Au-light Co., Ltd.). After light irradiation of 2 h, the liquid product was analyzed by a gas chromatography (GC-2030, Shimadzu, Japan, FID detector, nitrogen (N_2) as carrier gas) after centrifuging the suspension at 10000 rpm for 3 min.

Results and discussion

Characterizations of catalysts

The 3D hierarchical CPB/TiO $_2$ heterostructure was prepared by a simple anti-solvent precipitation method with the addition of TiO $_2$ nanoflowers into the precursor solution of CsPbBr $_3$, as schematically illustrated in **Fig. 1a**. X-ray diffraction (XRD) was exploited to characterize the crystal structure of the blank CsPbBr $_3$, CPB/TiO $_2$ composites and TiO $_2$. As shown in **Fig. 1b**, the diffraction peaks at 15.1°, 21.5°, 30.7°, 34.4°, and 43.8° can be ascribed to monoclinic CsPbBr $_3$ (100), (110), (200), (210) and

(220) planes (JCPDS No. 18-0364). $^{36-38}$ In addition, the peaks at 25.3°, 37.7°, 48.0°, 53.8°, 55.0°, 62.6°can be attributed to the (101), (004), (200), (105), (211), and (204) planes of anatase TiO₂, respectively. 32 The XRD patterns of CPB/TiO₂ composites indicate both characteristic peaks of CsPbBr₃ and TiO₂, and the peaks intensity of the CsPbBr₃ increases as the CsPbBr₃ content increasing (**Fig. S1**†).

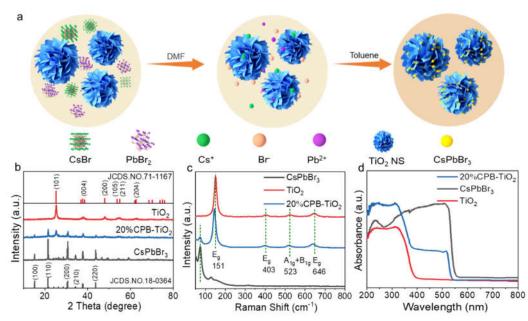


Fig. 1. (a) Schematic diagram for the synthesis of 3D nanoflower-shaped CPB/TiO₂ heterostructure. (b) XRD patterns, (c) Raman spectra, and (d) UV-Vis DRS spectra of CsPbBr₃, CPB/TiO₂ and TiO₂.

ARTICLE

Raman spectra was used to further confirm the composition of the synthesized catalysts. As shown in Fig. 1c, the peaks at $151\,cm^{-1}(E_g),\,403\,cm^{-1}(E_g),\,523\,cm^{-1}\,(A_{1g}+B_{1g}),\,and\,646\,cm^{-1}\,(E_g)$ belong to the anatase TiO_2 vibration modes. A new peak of 74 cm⁻¹ assigned to the vibrational mode of [PbBr₆]⁴⁻ octahedron of CsPbBr₃ is observed in the CPB/TiO₂.³⁹⁻⁴¹ The characteristic peak of CsPbBr3 is also enhanced with the increment of the loading amount of CsPbBr₃ (Fig. S2†). This coincides with the XRD analysis, validating the successful preparation of the CPB/TiO₂ composites. Notably, after the growth of CsPbBr₃ on the TiO₂ nanosheets, the Raman peaks of TiO₂ shift to a lower wavenumber compared to that of blank TiO₂. The shift indicates an increasing of bond length and decreasing of the bond energy of the Ti-O bond, which can be attributed to the strong electrostatic interaction between the CsPbBr₃ and the TiO₂.⁴²⁻⁴⁵ Fig. 1d shows the UV-vis diffuse reflectance spectroscopy (DRS) analysis of the samples, which is employed to assess the optical absorption properties. It can be seen that the light absorption edge of blank TiO2 is around 390 nm, denoting its UV light

response nature. After integrating with CsPbBr3, the light absorption of CPB/TiO₂ is extended to approximately 540 nm. Meantime, the absorption edge of TiO₂ at 390 nm can also be detected. This should be ascribed to the hybridization of high weight content of CsPbBr₃ with TiO₂ support. As such, both absorption features are present in the composite. The greatly extended light absorption enables the visible-light-excitation of the CPB/TiO₂ composites to be possible, which is beneficial for promoting the solar energy utilization. With the increase of CsPbBr₃ content, the visible light absorption of CPB/TiO₂ is also gradually enhanced (Fig. S3†). Moreover, in comparison with blank CsPbBr₃, it is notable that the visible light absorption edge of the hybrid CPB/TiO₂ composite is slightly blue shifted (ca. 14 nm). This can be attributed to the quantum size effect resulted from the smaller size of CsPbBr₃ in the composite. The inference has been demonstrated by the following scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses.

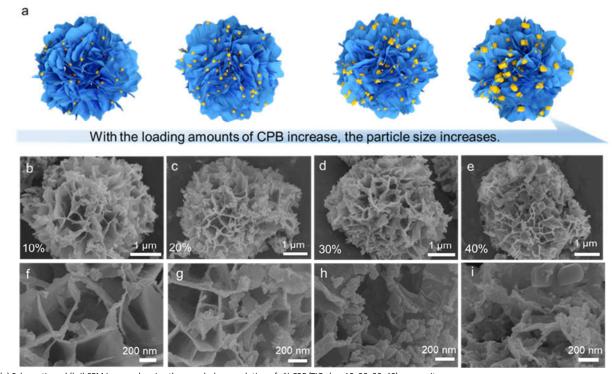


Fig. 2. (a) Schematic and (b-i) SEM images showing the morphology evolution of x% CPB/TiO₂ (x = 10, 20, 30, 40) composites.

As shown in **Fig. 2** and **Fig. S4-S5†**, SEM is firstly utilized to characterize the morphology and microstructure of the CPB/TiO₂, blank TiO₂ and CsPbBr₃ samples. The blank TiO₂ presents a nanoflower shape, which is assembled by vertical nanoflakes (**Fig. S4†**). The surface of the nanoflakes subunits is clean and smooth. For blank CsPbBr₃, it shows a large particle morphology and the particle sizes range from 0.9 to 2.0 µm (**Fig. S5†**). After the construction of the CPB/TiO₂ heterojunction, the

 TiO_2 nanoflower-shaped structure is maintained (Fig. 2), while the surface of the nanoflakes subunits becomes rough due to the in-situ growth of CsPbBr₃. From Fig. 2b-2i, it can be clearly seen that for all the CPB/ TiO_2 samples, the sizes of the CsPbBr₃ particles in the composites are much smaller than that of blank CsPbBr₃, indicating that the formation of heterojunction is beneficial for preventing the aggregation and reducing the size of the CsPbBr₃ halide perovskite. This can be ascribed to that

the presence of TiO₂ nanoflower with nanoflakes subunits can act as heterogeneous nuclei site to facilitate the nucleation and growth of the CsPbBr₃, which generates more seeds and leads to the smaller size of the CsPbBr₃ particles.²⁰ The significantly decreased particle size could greatly promote the exposure of surface active sites and inhibit the charge recombination of CsPbBr₃ under light irradiation. Moreover, it is notable that with the increase of the CsPbBr₃ contents from 10% to 40% in the composites, the particle sizes of CsPbBr₃ are increased, as schematically illustrated in **Fig. 2a**. This can be attributed to the further growth of CsPbBr₃ at high concentrations.

To further obtain the microscopic structure information of the samples, transmission electron microscopy (TEM) analysis is carried out. Taking the 20%CPB/TiO₂ as an example, the TEM image of the sample (**Fig. 3a** and **b**) shows a nanoflakes structure of TiO₂. The surface is rough and densely covered by small CsPbBr₃ nanoparticles. Since that the sample for TEM analysis is prepared by strong ultrasonication, the well-defined CsPbBr₃ nanoparticles on the 2D nanoflakes surface indicates intimate interfacial contact between the two components. Meanwhile, the intensive coverage of CsPbBr₃ forms large contact interface with TiO₂ nanoflakes, which is conducive to

the migration of charge carriers across the CPB/TiO₂ heterojunction.⁴⁶ Moreover, nanopores can be observed on the CPB/TiO2, which is resulted from the mesoporous structure of the TiO₂ nanoflakes, as demonstrated by the N₂ adsorptiondesorption analysis (Fig. S6†). High-resolution TEM (HRTEM) image (Fig. 3c) shows distinct lattice fringe of 0.35 nm and 0.41 nm, corresponding to the (101) planes and (110) planes of anatase TiO₂ and monoclinic CsPbBr₃, respectively. Furthermore, Fig. 3d shows the corresponding energy dispersive X-ray spectroscopy (EDS) elemental mappings analysis of the 20%CPB/TiO₂. Cs, Pb, Br, Ti and O elements are uniformly distributed on the nanoflakes structure, indicating that CsPbBr3 and TiO2 are well combined. The results further verify the formation of CPB/TiO₂ hybrid composite with intimate interfacial contact. Moreover, in comparison with blank TiO₂, the 20%CPB/TiO₂ composite displays smaller specific surface area (**Table S1**†), which can be attributed to that the growth of CsPbBr₃ nanoparticles on the surface of TiO₂ may aggregate in the TiO₂ pores. Correspondingly, the total pore volume of 20%CPB/TiO₂ is also slightly lower than that of blank TiO₂. The result matches with the SEM measurement.

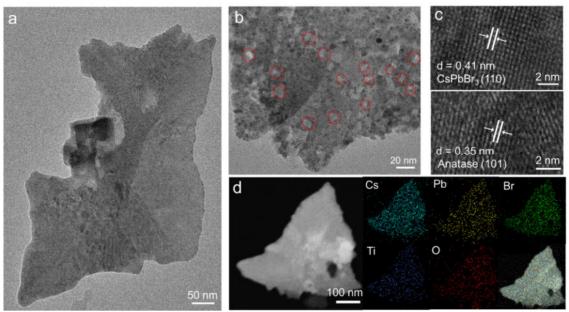


Fig. 3. (a, b) TEM images, (c) HRTEM image, and (d) corresponding EDS elemental mapping images of 20%CPB/TiO₂.

To study the surface chemical states of the samples, X-ray photoelectron spectroscopy (XPS) has been performed. As shown in **Fig. 4a**, the presence of Cs, Pb, Br, O and Ti elements can be detected from the XPS survey spectrum of CPB/TiO₂. The high-resolution spectrum of Ti 2p shows two peaks of Ti $2p_{3/2}$ and Ti $2p_{1/2}$ at 458.5 eV and 464.2 eV (**Fig. 4b**), which indicates that Ti element mainly exists as Ti⁴⁺ ions. For the O 1s pattern (**Fig. 4c**), it can be divided into two peaks, which are attributed to the lattice O (Ti–O) and hydroxyl O (–OH). **Fig. 57**† shows the fine-scanned Cs 3d XPS spectrum, the two peaks with binding energies at 724.2 eV and 738.1 eV are assigned to Cs $3d_{5/2}$ and

Cs $3d_{3/2}$, indicating that the chemical state of the Cs in the composite is +1. The Pb 4f spectrum in **Fig. 4d** shows characteristic peaks at 138.0 eV and 142.9 eV, corresponding to Pb $4f_{7/2}$ and Pb $4f_{5/2}$ orbitals of Pb²⁺ ion. Moreover, the Br 3d is decomposed into two peaks at 67.9eV and 68.9 eV, corresponding to the binding energies of Br $3d_{5/2}$ and $3d_{3/2}$, attributed to the presence of Br⁻ (**Fig. 4e**). It is worth noting that for the CPB/TiO₂ composite, the Ti 2p and O 1s peaks show a negative shift of 0.2 eV in comparison with blank TiO₂ (**Fig. 4b** and **c**). In contrast, the binding energies of Cs 4d, Pb 4f, and Br 3d in the CPB/TiO₂ show a positive shift (**Fig. 4d-e and S7**†),

which are higher than those of blank CsPbBr₃ by 0.4 eV. The results verify the strongly interacted interface with electron transfer from the CsPbBr₃ to the TiO_2 nanosheets in the heterostructure, which is in accordance with the Raman analysis. To further clarify the interaction and electron transfer at the interface, density functional theory (DFT) calculation has been carried out. **Fig. 4g** and **h** shows the work functions of the TiO_2 (101) and CsPbBr₃ (110) slabs, which are 7.09 eV and 4.63 eV, respectively, corresponding to the Fermi levels (E_f) of -3.61 eV and -2.51 eV (vs. the vacuum level). Due to the lower E_f value

of TiO_2 than that of blank CsPbBr₃, the electrons would be migrated from the CsPbBr₃ to the TiO_2 at the heterojunction interface until their E_f are aligned. Similar result is obtained from the calculated planar-averaged charge density difference of CPB/ TiO_2 . As shown in **Fig. 4f**, the light cyan and yellow regions indicate the charge depletion and accumulation area, respectively. The calculation results reveal that the cyan region is mainly on the CsPbBr₃ side, while the yellow region is on the TiO_2 side, further validating the transfer of electrons from CsPbBr₃ to TiO_2 . This is consistent with the XPS analysis results.

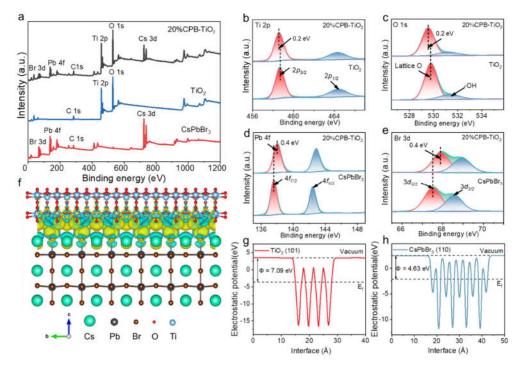


Fig. 4. XPS spectra of CsPbBr₃, TiO₂ and 20%CPB/TiO₂: (a) survey, (b) Ti 2p, (c) O 1s, (d) Pb 4f and (e) Br 3d. (f) Charge density differences in the CPB/TiO₂ composite. (g, h) The work functions of blank TiO₂ and CsPbBr₃.

Photocatalytic performances

Collectively, the above characterizations faithfully verify the successful fabrication of CPB/TiO₂ hybrid composites with intimate interfacial contact and strong chemical interaction. The presence of TiO₂ nanoflower with 2D nanoflakes subunits greatly inhibits the agglomeration of the halide perovskites, while the CsPbBr₃ extends the light absorption range of TiO₂. In view of the desired structural and optical properties, the photocatalytic oxidation of toluene over the hybrid CPB/TiO₂ composites has been tested. A 300 W Xeon lamp equipped with a 420 nm cutoff filter is utilized as a visible light source. It is well known that the solvent/reactant ratio has great influence on the oxidation of toluene,2,47 thus, the reaction condition of different acetonitrile/toluene ratio is firstly optimized using the $20\%CPB/TiO_2$ as an example. As shown in Fig. 5a, as the ratio of toluene increases from 0.3 to 1 mL, the photoactivity of the 20%CPB/TiO₂ composite gradually increases. The catalyst shows the highest toluene conversion rate of 10200 $\mu mol\ g^{-1}\ h^{-1}$ when

the volume ratio of acetonitrile solvent and toluene reactant is 2:1. The enhanced photoactivity can be attributed to that the increased toluene concentration enhances the reaction possibility between the photogenerated charge carriers and the toluene molecules. However, further increase of the toluene to 1.5 mL and 2 mL decreases the conversion rate. This might be ascribed to the excess adsorption of toluene reactant on the catalyst surface, which would slow down the desorption of the BA and BAD products and suppress the oxidation activity. Based on the result, the following photoactivity tests of all the other samples are carried out under the optimized condition with the acetonitrile/toluene ratio of 2:1.

Fig. 5b shows the visible-light-driven photocatalytic performances of the blank CsPbBr $_3$ and the CPB/TiO $_2$ composites with different ratios of CPB for the selective oxidation of toluene. The blank CsPbBr $_3$ exhibits a low activity with generation rates of 390 μ mol g $^{-1}$ h $^{-1}$ for BAD and 130 μ mol g $^{-1}$ h $^{-1}$ for BA. The unsatisfactory photocatalytic performance should be due to the severe charge recombination caused by

the large particle size of CsPbBr₃. For blank TiO₂, it presents no activity. This is reasonable since that the TiO₂ has no visible light absorption and cannot be excited by visible light. In contrast, after the hybridization of CsPbBr₃ with TiO₂, the photocatalytic performances of all the hierarchical CPB/TiO₂ heterojunctions are significantly improved. The best photocatalytic toluene oxidation activity is achieved over the 20%CPB/TiO₂ composite, which shows a toluene conversion rate of 10200 μ mol g⁻¹ h⁻¹ (BAD production rate of 8670 μ mol g⁻¹ h⁻¹ and BA generation rate of 1530 μ mol g⁻¹ h⁻¹). The photoactivity is about 20 times higher than blank CsPbBr₃, which is also among the top photocatalytic performance reported so far for UV and visible-light-driven selective oxidation of toluene (**Fig. 5c** and **Table S2** †). The apparent quantum efficiency (AQE) of the 20%CsPbBr₃/TiO₂ composite reaches 2.9% at λ = 420 nm for the

transformation of toluene into BA and BAD (**Fig. S14**†). The gas chromatography-mass (GC-MS) analysis of the reaction solution after light irradiation reveals four peaks, which are ascribed to acetonitrile solvent, toluene reactant, BAD and BA products (**Fig. S8**†). No other product or intermediate is detected, validating the high selectivity of the reaction. With the increase of CsPbBr₃ loading to higher contests (30% and 40%), it results in a performance degradation. This may be ascribed to that: (1) an excess of halide perovskite tends to aggregate into large particles, which will lead to longer migration distances of charge carriers and increase charge recombination; (2) the coverage of excessive and oversized CsPbBr₃ on TiO₂ surface will lead to the reduction of the exposed surface area, inhibiting the adsorption of toluene molecules.

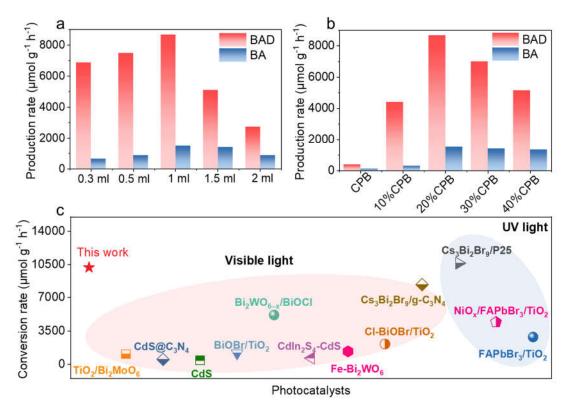


Fig. 5. (a) Photocatalytic oxidation of toluene with different toluene amount in acetonitrile solvent over 20%CPB/TiO₂. The total volume is 3 ml. (b) Photocatalytic oxidation of toluene over blank TiO₂, CPB/TiO₂ composite and blank CsPbBr₃. (c) Performance comparison with reported photocatalysts for UV and visible-light-driven selective oxidation of toluene.

Furthermore, the broad applicability of the CPB/TiO $_2$ photocatalyst is investigated for photocatalytic selective oxidation of C(sp 3)–H of toluene derivatives with different substituents. As shown in **Table 1**, these aromatics are efficiently converted into corresponding aldehydes and alcohols. The selectivity for the aldehyde product is higher than 70%. Notably, the substrate with electron-withdrawing substituents (-F, -Cl, -Br) displays lower photocatalytic activity. This can be attributed to that the electron-withdrawing groups on benzene ring inhibit the abstraction of hydrogen from the methyl group. 49 50 In addition, p-xylene shows a higher toluene conversion rate (12746 μ mol g^{-1} h^{-1}) than its isomers of o-xylene (9900 μ mol

 $g^{-1}\ h^{-1})$ and m-xylene (10930 $\mu mol\ g^{-1}\ h^{-1}),$ which can be attributed to the steric hindrance of the methyl groups hindering the reactant adsorption and activation on the catalyst surface. 51,52

Moreover, the cycle test of the 20%CsPbBr₃/TiO₂ has been carried out. After repeating the photoactivity test for 4 cycles (Fig. S16†), the catalyst still maintains a high activity with negligible decrease in the conversion rate of toluene. In addition, the used 20%CsPbBr₃/TiO₂ has been further characterized by XRD and XPS (Fig. S17†-S18†). No obvious change in the crystal structure and surface chemical state is

observed for the composite before and after reaction. These results validate the high stability of the CsPbBr₃/TiO₂ composite.

Photoelectric properties

In order to better understand the reasons for the improved photocatalytic performance, the band structures of the CsPbBr₃ and the TiO₂ are investigated by Mott-Schottky (M-S) measurement and DRS analysis. As shown in Fig. 6a and b, the positive slopes indicate that $CsPbBr_3$ and TiO_2 are typical n-type semiconductors.⁵³ The flat band potential (E_{FB}) are calculated to be -0.86 V and -0.34 V (vs. NHE) for CsPbBr₃ and TiO₂, respectively. Usually, the conduction band potential (ECB) for ntype semiconductor is more negative of about 0.1 eV than E_{FB}.⁵⁴ Thus, the E_{CB} of $CsPbBr_3$ and TiO_2 are concluded to -0.96 V and -0.44 V (vs. NHE), respectively. In addition, the corresponding bandgaps of TiO2 and CsPbBr3 are estimated by Tauc plots transformed from the DRS spectra (Fig. S9†), which are 3.20 eV and 2.28 eV, respectively. Based on these, the valance band positions (E_{VB}) of CsPbBr₃ and TiO₂ can be calculated as 1.32 V and 2.76 V. As a result, a type-II heterojunction is formed between the CsPbBr3 and the TiO2 because of the staggered band structures.

Table 1. Photocatalytic oxidation of $C(sp^3)$ -H in substituted toluene over $20\%CPB/TiO_2$.

$R = 0_2$	visible light photocatalytic	R = 0 +	ROH
		A	В

		A	В	
Entry		Conversion rate	Selectivity (%)	
	Substrates	(μmol g ⁻¹ h ⁻¹)	Α	В
1		10200	85	15
2	F	5950	83	17
3	CI	9040	88	12
4	Br	9770	87	13
5	α	9900	76	24
6		10930	72	28
7		12746	71	29

 $^{^{}a}$ Reaction conditions: catalyst (10 mg 20%CPB/TiO2), substrate (1 mL), MeCN (2 mL),1 atm of O2, 2 h irradiation with visible light (λ > 420 nm).

To study the influence of the heterojunction structure on the transfer behavior of photogenerated charge carriers, transient photocurrent and electrochemical impedance spectra (EIS) tests are performed. As shown in Fig. 6c, under visible light irradiation, both CsPbBr₃ and CPB/TiO₂ show rapid and stable photocurrent responses, while TiO2 does not. This can be attributed to the inability of TiO2 to be excited by visible light (Fig. 1d). In addition, the photocurrent intensity of blank CsPbBr₃ is markedly lower than that of 20% CPB/TiO₂. This should be due to the agglomerated large particle size of the blank CsPbBr3, which leads to a severe recombination of photogenerated charge carriers.⁵⁴ Moreover, Fig. 6d shows the Nyquist plots of the samples, which is employed to investigate the interfacial charge transfer efficiency.55 In general, the smaller diameter of the semicircular arc in the Nyquist plots reflects the lower electron transfer resistance. It can be found that the 20%CPB/TiO₂ sample has the minimum arc radius, which means the best electronic conductivity and charge ability.56,57 Furthermore, the steady-state separation photoluminescence (PL) spectra are also used to examine the charge separation efficiency. As shown in Fig. S19 †, the 20%CsPbBr₃/TiO₂ composite shows a much lower PL intensity than CsPbBr3, revealing that the charge recombination is significantly suppressed in the composite. In addition, the TiO₂ shows no obvious PL signal. This is in accordance with the photocurrent analysis that the TiO₂ is unable to be excited to charge carriers visible light. generate by photoelectrochemical findings highlight that the construction of the type-II heterojunction between CsPbBr3 and TiO2 could effectively accelerate charge transfer, thus contributing to improving the photocatalytic performance.

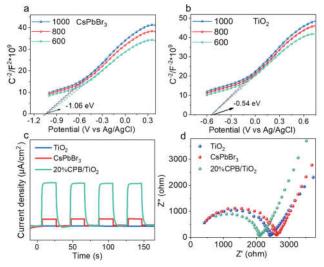
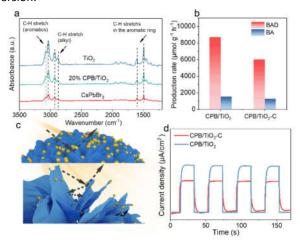



Fig. 6. (a, b) M-S plots of CsPbBr₃ and TiO₂. (c) Transient photocurrent responses, and (d) EIS Nyquist plots of blank TiO₂, CsPbBr₃ and CPB/TiO₂ composite.

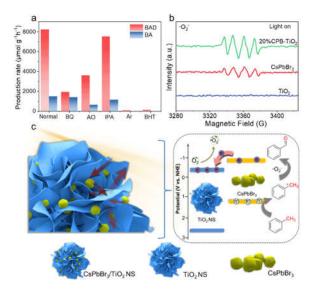
Furthermore, for heterogeneous photocatalytic reactions, the effective adsorption of reactant on the catalyst surface is another requisite for the ignition of the redox reaction.^{23, 58-60} The BET surface area and porous structure analyses of the TiO₂, CsPbBr₃ and 20%CPB/TiO₂ samples have shown that the

introduction of TiO₂ nanoflower significantly improves the specific surface area and pore volume of 20%CPB/TiO2 in comparison with that of blank TiO₂ (Fig. S6† and Table S1†). Generally, larger specific surface area and porous structure enables better adsorption capacity, and exposure of more active sites of catalysts. To further reveal the contribution of the heterostructure for the reactant adsorption, Fourier transform infrared (FTIR) spectroscopy is used to identify the adsorbed toluene species on the CsPbBr₃, TiO₂ and 20%CPB/TiO₂ surface. As shown in Fig. 7a, for all the three samples after adsorption equilibrium, the typical absorption peaks of toluene are observed, including the C–H stretching vibration of the aromatic ring at 3083 and 3038 cm⁻¹, the skeleton vibration of aromatic ring at 1606 and 1495 cm⁻¹, and the C-H symmetric and asymmetric stretching of methylene group at 2934 and 2875 cm⁻¹.61-62 Notably, the signal of toluene molecules of 20%CPB/TiO₂ is obviously higher than that of blank CsPbBr₃, yet is lower than blank TiO2. The result indicates that the introduction of TiO₂ can promote the toluene adsorption capacity of CPB/TiO2, which is conducive to the catalytic conversion.

Fig. 7. (a) FTIR spectra of 20%CPB/TiO₂. TiO₂ and CsPbBr₃ after adsorption of saturated toluene. (b) Photoactivity comparison between CPB/TiO₂ and CPB/TiO₂-C. (c) Schematic diagram of light absorption over CPB/TiO₂ and CPB/TiO₂-C. (d) Transient photocurrent responses of CPB/TiO₂ and CPB/TiO₂-C.

Finally, to investigate the influence of the hierarchical flower-like nanostructure constructed by 2D nanoflakes subunits on the photocatalytic performance, a collapsed 20%CPB/TiO₂ catalyst (marked as 20%CPB/TiO₂-C) without such structure has been fabricated for comparison. As shown in **Fig. 7b**, the photoactivity test reveals that the 20%CPB/TiO₂-C has a BAD generation rate of 6000 μ mol g⁻¹ h⁻¹ and a BA production rate of 1250 μ mol g⁻¹ h⁻¹, which is notably lower than the CPB/TiO₂-C **Fig. S10** shows the morphology analysis of the 20%CPB/TiO₂-C, which reveals a bulky grain structure with a rough surface. CsPbBr₃ nanoparticles are dispersed on the surface of the massive TiO₂. The size of the CsPbBr₃ particles in the composite is also much smaller than that of blank CsPbBr₃, which once again proves that TiO₂ plays a critical role in inhibiting the growth of CsPbBr₃. Nevertheless, compared with 20%CPB/TiO₂,

the size of the $CsPbBr_3$ particles is much larger in the $20\%CPB/TiO_2$ -C. The result validates that the TiO_2 nanoflakes are more beneficial in preventing the agglomeration of the $CsPbBr_3$ particles.


In addition, UV-vis DRS is performed to study the optical absorption property of the 20%CPB/TiO₂-C. The sample shows a similar absorption edge as that of 20%CPB/TiO2, but the light absorption intensity in the range of 200-550 nm is lower (Fig. \$11†). The result indicates that the 3D hierarchical CPB/TiO₂ structure is more efficient for solar energy collection, which can be attributed to the multiple light reflection and refraction caused by the vertical nanoflakes, as schematically illustrated in Fig. 7c. Meanwhile, the transient photocurrent response test displays that the 20%CPB/TiO₂ exhibits a higher photocurrent density than that of CPB/TiO₂-C under visible light irradiation, indicating more efficient charge transfer (Fig. 7d). This can be related to the fact that TiO₂ nanoflakes facilitates the formation of smaller CsPbBr₃ particle, which could shorten the charge transfer distance to the surface and promote the interfacial charge separation. Hence, to sum up, the construction of the unique hierarchical CPB/TiO2 structure greatly enhances the photocatalytic performance due to the existence of TiO₂ nanoflakes, which (1) greatly prohibits the aggregation of the CsPbBr₃, forming much smaller perovskite particles that shorten the charge transfer distance; (2) heightens light absorption by the multiple reflection and scattering between the nanoflakes structure that benefits the solar energy harvesting and conversion; (3) enhances the adsorption of toluene molecules and promotes the surface reaction rates.

Photocatalytic Mechanism

To elucidate the photocatalytic mechanism of toluene oxidation over the CPB/TiO₂ photocatalyst, a series of control experiments have been conducted in the absence of O₂ or with the addition of specific radical scavengers. As shown in Fig. 8a, the toluene oxidation is almost completely suppressed when O2 is replaced by Ar, indicating that O2 is indispensable. When isopropanol (IPA) is added into the reaction system as a scavenger of hydroxyl radicals (•OH), it has almost no effect on toluene conversion, suggesting that •OH is rarely involved in the reaction. In contrast, whether adding ammonium oxalate (AO) to eliminate holes (h+) or butylated hydroxytoluene (BHT) to capture carbon-centered radicals, the reaction rate significantly reduces. Besides, the toluene conversion is also significantly decreased when BQ is added as superoxide free radical (•O2-) scavenger. The above results clearly indicate that •O₂-, h+, and carbon-centered radicals play key roles in the photocatalytic selective oxidation of toluene.

Subsequently, to further identify the existence of $\bullet O_2$ -, electron paramagnetic resonance (EPR) spectroscopy was employed using 5,5-dimethyl-pyrroline-N-oxide (DMPO) as a trapping agent. As shown in **Fig. S12**† and **Fig. 8b**, no DMPO- $\bullet O_2$ - signal is detected in dark condition. After visible light irradiation, distinct signals of DMPO- $\bullet O_2$ - are observed for both CsPbBr₃ and CPB/TiO₂, while no signals are detected from TiO₂. The CPB/TiO₂ catalyst exhibits a higher ability to generate more $\bullet O_2$ - radicals than pure CsPbBr₃, which is important to promote

the oxidation of toluene. Moreover, no DMPO-•OH signal is observed under the same conditions, demonstrating that •OH is absent in the reaction process (Fig. S13† and S15†).

Fig. 8. (a) Photocatalytic toluene oxidation in the absence or presence of various radical scavengers. (b) EPR spectra of DMPO-•O₂. (c) Schematic illustration of the proposed mechanism of photocatalytic oxidation of toluene over the CPB/TiO₂ composite.

Based on the above analyses, a possible photocatalytic reaction mechanism over the hierarchical CPB/TiO₂ heterojunction is proposed. As schematically illustrated in **Fig. 8c**, Upon the photoexcitation, electrons and holes are generated in the conduction band (CB) and the valence band (VB) of CsPbBr₃. Due to the staggered energy bands, the photogenerated electrons in the CB of CsPbBr₃ can efficiently migrate to the CB of TiO₂ and left holes on the VB of CsPbBr₃, which prolongs the lifetime of the photogenerated charge carriers. After that, molecular O₂ can be activated by electron on the CB of TiO₂. Meanwhile, photogenerated holes oxidize the toluene to produce benzyl radicals (·CH₂-R) on the VB of CsPbBr₃. Then, the \bullet O₂⁻ radical reacts with the benzyl radicals to produce benzaldehyde.

Conclusions

In summary, we have designed and synthesized a hierarchical CPB/TiO₂ heterojunction as advanced photocatalyst for efficient visible-light-driven toluene oxidation by assembling CsPbBr₃ nanoparticles onto nanoflower-shaped TiO₂ with 2D nanoflakes subunits. The formed CPB/TiO₂ composite integrates the structural and electronical merits of the nanoflower-shaped TiO₂ and halide perovskite CsPbBr₃, which not only enhances the solar light utilization, but also enhances the adsorption of toluene reactant, and boosts the separation and transportation of photogenerated carriers. A high toluene oxidation rate of 10200 μ mol g⁻¹ h⁻¹ is achieved over the optimal CPB/TiO₂ composite, which is about 20-fold higher than that of blank CsPbBr₃. The study demonstrates the significance of rational

design of well-defined hierarchical heterojunction catalysts over metal halide perovskites for efficient photocatalytic redox reaction.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2019YFC1908203), the National Natural Science Foundation of China (22178057 and 21905049), the Natural Science Foundation of Fujian Province (2020J01201 and 2021J01197), the Research Foundation of the Academy of Carbon Neutrality of Fujian Normal University (TZH2022-07), and the Award Program for Minjiang Scholar Professorship.

Notes and references

- W. Wu, G. Zhang, J. Zhang, G. Wang, C.-H. Tung and Y. Wang, Chem. Eng. J., 2021, 404, 126433.
- 2 X. Li, T. Wang, X. Tao, G. Qiu, C. Li and B. Li, *J. Mater. Chem. A*, 2020, **8**, 17657-17669.
- S. Okunaka, H. Tokudome and Y. Hitomi, J. Catal., 2020, 391, 480-484.
- 4 S. Zhang, W. Huang, X. Fu, X. Zheng, S. Meng, X. Ye and S. Chen, *Appl. Catal., B*, 2018, **233**, 1-10.
- 5 J. Li, B. Ren, X. Yan, P. Li, S. Gao and R. Cao, J. Catal., 2021, 395, 227-235.
- 6 C. Xu, F. Yang, B. Deng, Y. Zhuang, D. Li, B. Liu, W. Yang and Y. Li, J. Catal., 2020, 383, 1-12.
- 7 J. Li, S. Zhang, S. Gui, G. Chen, Y. Wang, Z. Wang, X. Zheng, S. Meng, C. Ruan and S. Chen, *Appl. Surf. Sci.*, 2023, **611**, 155616.
- 8 Q. Zhang, J. Wang, X. Ye, Z. Hui, L. Ye, X. Wang and S. Chen, *ACS Appl. Mater. Interfaces*, 2019, **11**, 46735-46745.
- 9 Y. Liu, L. Chen, Q. Yuan, J. He, C. T. Au and S. F. Yin, *Chem. Commun.*, 2016, **52**, 1274-1277.
- 10 M. Zhou, S. Li, S. Wang, Z. Jiang, C. Yang, F. Guo, X. Wang and W.-k. Ho, *Appl. Surf. Sci.*, 2022, **599**, 153985.
- 11 M. Zhang, W. Sun, H. Lv and Z.-H. Zhang, *Curr. Opin. Green Sustain. Chem.*, 2021, **27**,100390.
- 12 Z. Zhang, Y. Liang, H. Huang, X. Liu, Q. Li, L. Chen and D. Xu, *Angew. Chem. Int. Ed. Engl.*, 2019, **58**, 7263-7267.
- 13 M. Zhang, Z. Li, X. Xin, J. Zhang, Y. Feng and H. Lv, *ACS Catal.*, 2020, **10**, 14793-14800.
- 14 T. Chen, B. Weng, S. Lu, H. Zhu, Z. Chen, L. Shen, M. B. J. Roeffaers and M. Q. Yang, J. Phys. Chem. Lett., 2022, 13, 6559-6565.
- 15 R. Cheng, J. A. Steele, M. B. J. Roeffaers, J. Hofkens and E. Debroye, ACS Appl. Energy Mater., 2021, 4, 3460-3468.
- 16 H. Huang, J. Zhao, Y. Du, C. Zhou, M. Zhang, Z. Wang, Y. Weng, J. Long, J. Hofkens, J. A. Steele and M. B. J. Roeffaers, ACS Nano, 2020, 14, 16689-16697.
- 17 H. Huang, H. Yuan, J. Zhao, G. Solís-Fernández, C. Zhou, J. W. Seo, J. Hendrix, E. Debroye, J. A. Steele, J. Hofkens, J. Long and M. B. J. Roeffaers, *ACS Energy Lett.*, 2018, **4**, 203-208.

- 18 H. Huang, H. Yuan, K. P. F. Janssen, G. Solís-Fernández, Y. Wang, C. Y. X. Tan, D. Jonckheere, E. Debroye, J. Long, J. Hendrix, J. Hofkens, J. A. Steele and M. B. J. Roeffaers, ACS Energy Lett., 2018, 3, 755-759.
- 19 C. Chen, J. Zhou, J. Geng, R. Bao, Z. Wang, J. Xia and H. Li, *Appl. Surf. Sci.*, 2020, **503**, 144287.
- 20 Y. Dai, C. Poidevin, C. Ochoa-Hernandez, A. A. Auer and H. Tuysuz, *Angew. Chem. Int. Ed.*, 2020, **59**, 5788-5796.
- 21 F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu and J. Yu, *Nat. Commun.*, 2020, **11**, 4613.
- 22 M.-Q. Yang, J. Dan, S. J. Pennycook, X. Lu, H. Zhu, Q.-H. Xu, H. J. Fan and G. W. Ho, *Mater. Horiz.*, 2017, 4, 885-894.
- 23 X. Lin, Z. Xie, B. Su, M. Zheng, W. Dai, Y. Hou, Z. Ding, W. Lin, Y. Fang and S. Wang, *Nanoscale*, 2021, **13**, 18070-18076.
- 24 S. Wang, B. Y. Guan and X. W. Lou, *Energy Environ. Sci.*, 2018, 11, 306-310.
- 25 L. Zhu, M. Hong and G. W. Ho, Nano Energy, 2015, 11, 28-37.
- 26 L. He, W. Zhang, K. Zhao, S. Liu and Y. Zhao, J. Mater. Chem. A, 2022, 10, 4758-4769.
- 27 Q. Shen, S. Zhou, F.-L. Yang, X. Wang and X. Han, *J. Mater. Chem. A*, 2022, **10**, 4974-4980.
- 28 S. Wang, B. Y. Guan, X. Wang and X. W. D. Lou, *J. Am. Chem. Soc.*, 2018, **140**, 15145-15148.
- 29 S. Wang, B. Y. Guan and X. W. D. Lou, J. Am. Chem. Soc., 2018, 140, 5037-5040.
- 30 T. Zhu, L. Zhu, J. Wang and G. W. Ho, *J. Mater. Chem. A*, 2016, **4**, 13916-13922.
- 31 Z. Chen, F. Guo, H. Sun, Y. Shi and W. Shi, *J. Colloid Interface Sci.*, 2022, **607**, 1391-1401.
- 32 K. Lan, Y. Liu, W. Zhang, Y. Liu, A. Elzatahry, R. Wang, Y. Xia, D. Al-Dhayan, N. Zheng and D. Zhao, *J. Am. Chem. Soc.*, 2018, **140**, 4135-4143.
- 33 Q. Sun, W. Ye, J. Wei, L. Li, J. Wang, J.-H. He and J.-M. Lu, *J. Alloys Compd.*, 2022, **893**, 162326.
- 34 J. Hafner, J. Comput. Chem., 2008, 29, 2044-2078.
- 35 G. Kresse and J. Hafner, *Phys. Rev. B Condens. Matter*, 1993, **48**. 13115-13118.
- 36 L. Rao, Y. Tang, C. Yan, J. Li, G. Zhong, K. Tang, B. Yu, Z. Li and J. Z. Zhang, *J. Mater. Chem. C*, 2018, **6**, 5375-5383.
- 37 J. Liu, L. Zhu, S. Xiang, Y. Wei, M. Xie, H. Liu, W. Li and H. Chen, *Sustain. Energy Fuels*, 2019, **3**, 184-194.
- 38 G. Gao, Q. Xi, H. Zhou, Y. Zhao, C. Wu, L. Wang, P. Guo and J. Xu, *Nanoscale*, 2017, **9**, 12032-12038.
- 39 L. Zhang, Q. Zeng and K. Wang, J Phys Chem Lett, 2017, 8, 3752-3758.
- 40 X. Mo, X. Li, G. Dai, P. He, J. Sun, H. Huang and J. Yang, Nanoscale, 2019, 11, 21386-21393.
- 41 D. M. Calistru, L. Mihut, S. Lefrant and I. Baltog, *J. Appl. Phys.*, 1997, **82**, 5391-5395.
- 42 H. J. Kong, D. H. Won, J. Kim and S. I. Woo, *Chem. Mater.*, 2016, 28, 1318-1324.
- 43 I.-S. Cho, D. W. Kim, S. Lee, C. H. Kwak, S.-T. Bae, J. H. Noh, S. H. Yoon, H. S. Jung, D.-W. Kim and K. S. Hong, Adv. Funct. Mater., 2008, 18, 2154-2162.
- 44 S. K. Lakhera, H. Y. Hafeez, R. Venkataramana, P. Veluswamy, H. Choi and B. Neppolian, *Appl. Surf. Sci.*, 2019, **487**, 1289-1300.
- 45 J. Yu and A. Kudo, Adv. Funct. Mater., 2006, 16, 2163-2169.
- 46 C. Q. Li, X. Du, S. Jiang, Y. Liu, Z. L. Niu, Z. Y. Liu, S. S. Yi and X. Z. Yue, Adv. Sci., 2022, 9, e2201773.
- 47 J. Kou, C. Lu, J. Wang, Y. Chen, Z. Xu and R. S. Varma, *Chem. Rev.*, 2017, **117**, 1445-1514.

- 48 J. Wu, Y. Wang, S. Zhang, Y. Liu and F. Wang, *Appl. Catal., B*, 2023, **332**, 122741.
- 49 H. Han, X. Zheng, C. Qiao, Z. Xia, Q. Yang, L. Di, Y. Xing, G. Xie, C. Zhou, W. Wang and S. Chen, ACS Catal., 2022, 12, 10668-10679.
- 50 R. Yuan, S. Fan, H. Zhou, Z. Ding, S. Lin, Z. Li, Z. Zhang, C. Xu, L. Wu, X. Wang and X. Fu, *Angew. Chem. Int. Ed. Engl.*, 2013, 52, 1035-1039.
- 51 W. Sheng, X. Wang, Y. Wang, S. Chen and X. Lang, ACS Catal., 2022, 12, 11078-11088.
- 52 X. Li, S. Lyu and X. Lang, Environ. Res., 2021, 195, 110851.
- 53 Z. Dong, Z. Zhang, Y. Jiang, Y. Chu and J. Xu, Chem. Eng. J., 2022, 433, 133762.
- 54 X. Li, S. Lu, J. Yi, L. Shen, Z. Chen, H. Xue, Q. Qian and M. Q. Yang, *ACS Appl. Mater. Interfaces*, 2022, **14**, 25297-25307.
- 55 W. Liao, W. Chen, S. Lu, S. Zhu, Y. Xia, L. Qi, M. Q. Yang and S. Liang, *ACS Appl. Mater. Interfaces*, 2021, **13**, 38239-38247.
- 56 T. Shan, L. Luo, T. Chen, L. Deng, M. Li, X. Yang, L. Shen and M.-Q. Yang, *Green Chem.*, 2023, **25**, 2745-2756.
- 57 M. Q. Yang, C. F. Tan, W. Lu, K. Zeng and G. W. Ho, *Adv. Funct. Mater.*, 2020, **30**, 2004460.
- 58 J. Wang, Z. Wang, J. Zhang, S. P. Chai, K. Dai and J. Low, *Nanoscale*, 2022, **14**, 18087-18093.
- 59 L. Liu, Z. Wang, J. Zhang, O. Ruzimuradov, K. Dai and J. Low, *Adv. Mater.*, 2023, DOI: 10.1002/adma.202300643, e2300643.
- 60 S. Lu, B. Weng, A. Chen, X. Li, H. Huang, X. Sun, W. Feng, Y. Lei, Q. Qian, M.-Q. Yang, ACS Appl. Mater. Interfaces, 2021, 13, 13044-13054.
- 61 J. Wang, J. Li, W. Yang, Y. Liu, H. Wang, Q. Geng and F. Dong, Appl. Catal., B, 2021, 297, 120489.
- 62 X. Zhao, B. Deng, F. Li, M. Huang, Y. Sun, J. Li and F. Dong, *J. Hazard. Mater.*, 2021, **420**, 126577.