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1. Introduction 
In the field of radiation therapy (RT), adaptive RT (ART) has been a major research topic for many 
years [1-3]. Unlike conventional radiation therapy that relies on single computed tomography scans 
(CT) acquired prior to treatment, ART aims at accounting for anatomical changes that can occur in 
the tumor (shrinkage, progression) and organs at risk (OAR) (weight loss, air cavity filling, organs 
deformation, …), over the course of a treatment. In practice, ART requires repeated image 
acquisitions to capture the daily anatomy, to delineate the updated patient volumes, and to re-
optimize the dose based on the current snapshot of the patient anatomy.  

Varian®(Varian Medical system, Palo Alto, USA) has recently released a new generation of linear 
accelerator: Ethos, which proposes a commercial implementation of Online-ART (OART) guided by 
cone beam computed tomography (CBCT) [4]. With CBCT iterative reconstruction, daily automatic 
organ segmentation, and automatic dose optimization, Ethos allows the treatment plan to be 
adapted within a time frame of 20 minutes [5-9]. Ethos OART approach has already proven its 
efficiency and utility in several contexts and setups [6-11]. 

The automatic plan optimization enabled in Ethos uses an “Intelligent Optimization Engine” (IOE), an 
algorithm that optimizes objectives directly coming from a list of clinical goals, ordered by 
importance and created by the user prior to the treatment. Any list of clinical goals can be saved as a 
template of objectives and constraints to be used for other patients requiring the same treatment 
intent. Preliminary studies have shown that Ethos generated plans quality was globally satisfying and, 
when compared to manually generated plans, dose metrics differences were quite small [5-7, 12, 13]. 
However, this general perspective does not point out specific cases where optimization difficulties 
can arise from more challenging anatomies: although the template-based optimization of Ethos can 
produce clinically acceptable plans at the patient population level, it might encounter difficulties to 
generate the optimal dose distribution for any given patient.  

Concurrently to Ethos, various other automatic planning methods have arisen [14, 15], some of 
which might intrinsically better integrate patient features to produce anatomy-specific optimal plans. 
Notably, the recently popular dose prediction (DP) approach, based on deep convolutional neural 
networks, has demonstrated the ability to predict optimal, patient-specific three-dimensional dose 
distribution [16-19]. Following this dose prediction, a subsequent step of inverse planning, also called 
"dose mimicking" (DM), allows machine parameters to be determined such that the predicted dose 
can actually be delivered [16, 20]. Such a sequence of steps is meant to generate anatomy-specific 
plans, which might turn out to be more tailored to individual patients than template-based plans. 

Therefore, the goal of this study is twofold. On the one hand, we aim at assessing the general 
performance of the Ethos solution (i.e., the template-based IOE), by analyzing the global quality of 
the Ethos generated plans (EG) with respect to our clinical standards. On the other hand, we aim at 
investigating the capability of Ethos solution to produce patient-optimal plans and compare it to the 
aforementioned sequence “dose prediction & mimicking” (DP+DM) workflow. These two state-of-
the-art automatic treatment planning approaches are compared by looking at their performance on 
selected challenging plans and their capability of generating specific dose trade-off when necessary.   

Notice that this study looks only at the quality of the initial treatment plans and does not analyze the 
quality of the per-fraction plans. 
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2. Materials and methods 
To achieve the goals of this study, 2 planning studies using 4 different planning methods were 
designed. These will be presented in the following sections. Figure 1 illustrates the schematic study 
design and data distribution. 

2.1. Data  
A database of 45 prostate cancer patients, without pelvic nodal irradiation, was used in this study. All 
patients were previously treated on our Halcyon (Varian Medical system, Palo Alto, USA) and initially 
planned on the Eclipse treatment planning system (TPS). CT images were acquired on a Toshiba 
Acquilion CT scanner with a slice thickness of 2mm. The dose prescription was 60Gy in 20 fractions, 
with a CTV-to-PTV isotropic expansion of 7mm.  

Local ethics committee approval was obtained for the use of all patient data under the agreement 
"Learning from the past: the MIRO treatment planning database" which received the ethical approval 
by the CEHF (Comité d'Ethique hospitalo-facultaire). 

2.2. Treatment planning  
For this study, new treatment plans were retrospectively generated on the planning CT using the 
different dose optimizations methods described in this section. All planning methods used the 9-
fields IMRT configuration and isocenters from Ethos TPS. Concerning automatic methods, they were 
assessed without any further manual optimization: no other operations than loading the CT scans, 
the contours, and optimization goals were performed. 

2.2.1. Ethos planning with initial template (EG_init plans) 
As previously mentioned, the Ethos IOE solution generates a plan by using a set of optimization 
objectives that are directly coming from a template of clinical goals. Within a given template, the 
clinical goals have priorities ranking from 1 (most important) to 4 (less important), and internal 
priorities within their own group between each other. The IOE converts this list into objective 
functions for the photon optimizer and then monitors the optimization process: it initializes weights 
for all objective functions and regularly adapts them with respect to the established priorities. It also 
resolves the possible conflicts between the target volumes and nearby or overlapping organs at risk, 
and it generates optimization structures to decrease dose to normal tissues [4]. 

All 45 patients were retrospectively planned using Ethos IOE based on our 60Gy prostate template 
(Table 1). The CT scans and the planning contours were exported from Eclipse TPS V16.01.10 to a 
remote Ethos emulator TPS (V02.01.00).   

The Ethos TPS typically generates several plans with different IMRT and VMAT configurations. Nine-
fields IMRT configuration was selected for this study, because VMAT has been reported to achieve 
lower plan quality in the early version of the Ethos TPS [6, 12, 13]. 

Table 1: IOE initial clinical goals template. Each line refers to an optimization goal for a defined volume with a defined 
optimization priority. Femur_L = left femoral head, Femur_R = right femoral head. 

Priority Volume Goal 
1: Most Important PTV D95% >= 95% 
1: Most Important PTV D2% < 104% 
1: Most Important CTV D98% >= 98% 
2: Very Important Rectum V60Gy < 1% 
2: Very Important Bowel D0.1cm³ < 60Gy 
2: Very Important Anal canal V60Gy < 1% 
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2: Very Important Bladder V60Gy < 3% 
2: Very Important Rectum V52.8Gy < 15% 
2: Very Important Rectum V30Gy < 35% 
2: Very Important Bladder V50Gy < 20% 
2: Very Important Bladder V40.8Gy < 20% 
3: Important PTV D50% >= 99% 
3: Important PTV D50% <= 101% 
3: Important Anal canal V35Gy <25% 
3: Important Anal canal V20Gy < 50% 
3: Important Bowel V55Gy <3% 
3: Important Bowel V20Gy <300cm³ 
4: Less Important Femur_L V40Gy <20% 
4: Less Important Femur_L V35Gy < 5% 
4: Less Important Femur_R V40Gy <20% 
4: Less Important Femur_R V35Gy < 5% 
4: Less Important Penile bulb V42.5Gy < 50% 
4: Less Important Penile bulb V54.1Gy < 10% 

 

2.2.2. Manually-generated planning (MG plans) 
A single planner manually generated plans for the 45 patients, with the goal of achieving the optimal 
clinical trade-offs. The beam configuration is the same as Ethos 9 fields IMRT. The plans were 
specifically re-optimized with this configuration for this study. For this reason, MG plans are 
considered as the gold standard, that is, benchmark plans for the dose comparisons that are 
reported in Section 2.3. The Eclipse Photon Optimizer algorithm was used for plan optimization and 
the Acuros External Beam 16.1.0 algorithm for the final volumetric dose calculation with a 2.5mm 
calculation resolution. 

2.2.3. Ethos planning with updated template  
Based on the acquired experience from manual planning and Ethos TPS, we updated the initial 
template from Table 1. The V20Gy constraints for the anal canal was decreased to 40% and 
optimization goals “V20Gy<40%” were added for rectum, bladder, and penile bulb with priority 4: 
“less important”. Later in our experimentations (see section 2.3), 10 challenging patients were 
selected, and the updated template was applied in order to investigate whether the plan clinical 
quality could be improved for these 10 specific patients. Those are the 10 testing patients mentioned 
in Figure 1. 

2.2.4. Dose prediction and dose mimicking planning (DP+DM plans) 
The dose prediction model used in this work is a hierarchically densely connected U-Net (HD-UNET). 
The in-house implementation of the architecture is publicly available in 
https://gitlab.com/ai4miro/ntcp_predicted_dose [21]. Dose prediction with U-net architectures has 
already been studied over many treatment locations [22-26] and demonstrated good performances 
across several architecture variations including the HD-UNET version [27-29]. Our HD-UNET model 
contains 11 input channels: one channel for the CT-scan; one for the dose prescription mask, which 
consists of the prescription dose (60Gy) for the voxels inside the PTV and 0 for voxels outside; and 9 
channels for the masks corresponding to the organs at risk, namely, the anal canal, bladder, rectum, 
left femoral head (Femur_L), right femoral head (Femur_R), colon, sigmoid, small bowel, and penile 
bulb.  
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To prevent exceeding the GPU (Nvidia A100 40GB) memory limit, the CT scan, masks, and dose were 
resampled at a resolution of [3x3x3 mm³] and model training with image patches size of [176 x 176 x 
96] was used. Data were augmented by flipping training data in the left-right direction to double the 
dataset size.  The model was trained, validated, and tested using the 45 MG plans, with a 5 folds 
cross-validation. The mean squared error between the predicted and ground-truth doses (from MG 
plans) was used as a loss function. The training set included 30 patients, and the validation set 5 
patients (those are the “training patients” on Figure 1). The test set contained the 10 selected 
patients. The model was trained for 300 epochs for each fold. After model training, the weights 
yielding the lowest mean squared error on the validation set were kept. This was done for all 5 folds, 
which resulted in 5 different models. For each test patient, the dose was predicted with these 5 
different models, producing 5 different dose maps. A final dose map was then computed from the 
mean of these 5 dose maps. This way of aggregating the different dose maps over several folds is 
somehow analogous to bootstrap aggregation (bagging), which has already been reported as 
increasing the accuracy of dose prediction [30]. The test patients were implicated in neither the 
model training nor the model selection process. 

Concerning dose mimicking, the goal is to optimize machine parameters that best achieve the 
predicted dose. For that purpose, a template was devised in the Ethos TPS to reproduce closely the 
dose prediction into a deliverable plan (see Table 2). This mimicking template sets up an isodose-
based optimization (IBO) [31]. This template consists in requiring a classical target coverage 
(PTV:D95%>95% ; CTV:D98%>98% ; PTV:D2%<=104%), to then apply maximum dose constraints on 
the predicted isodose levels. Isodose volumes were computed from 57-60Gy (95% and 100% of the 
prescription dose) to 0Gy by steps of 10 Gy (60, 57, 47, 37, 27, 17, 7, 0) with an in-house Python 
script. The isodose template was refined by including maximum dose constraints on the intersection 
of some close OARs and isodose levels, to enable a more accurate mimicking on these specific 
anatomical regions. This mimicking template was set-up and tested on prostate plans that were not 
part of this study.  

Table 2: Dose mimicking template for Ethos IOE. “AnoRectum” refers to the merging volume of anal canal and rectum 
contours. “Dose[D1-D2 Gy]” refers to the predicted dose volume ranging from dose D1 to dose D2 . AnoRectum, bladder, or 
bowel followed by values in square brackets [D1,D2 Gy] refers to the intersection volume between the anatomical volume 
and  the predicted dose volume ranging from dose D1 to dose D2. 

PRIORITY VOLUME GOAL 
1: Most important PTV D95%>= 95% 
1: Most important CTV D98%>=98% 
1: Most important AnoRectum[60-57Gy] D0.1cm³<60Gy 
1: Most important Bladder[60-57Gy] D0.1cm³<60Gy 
1: Most important PTV D2%<=104% 
2: Very Important AnoRectum[47-57Gy] D0.1cm³<57Gy 
2: Very Important Bladder[47-57Gy] D0.1cm³<57Gy 
2: Very Important Bowel[+57Gy] D0.1cm³<60Gy 
2: Very Important AnoRectum[37-47Gy] D0.1cm³<47Gy 
2: Very Important Bladder[37-47Gy] D0.1cm³<47Gy 
2: Very Important AnoRectum[27-37Gy] D0.1cm³<37Gy 
2: Very Important Bladder[27-37Gy] D0.1cm³<37Gy 
2: Very Important AnoRectum[17-27Gy] D0.1cm³<27Gy 
2: Very Important Bladder[17-27Gy] D0.1cm³<27Gy 
2: Very Important AnoRectum[7-17Gy] D0.1cm³<17Gy 
2: Very Important Bladder[7-17Gy] D0.1cm³<17Gy 
2: Very Important AnoRectum[0-7Gy] D0.1cm³<7Gy 
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2: Very Important Bladder[0-7Gy] D0.1cm³<7Gy 
3: Important Dose[+57Gy] D0.1cm³<60Gy 
3: Important Dose[47-57Gy] D0.1cm³<57Gy 
3: Important Dose[37-47Gy] D0.1cm³<47Gy 
3: Important Dose[27-37Gy] D0.1cm³<37Gy 
3: Important Dose[17-27Gy] D0.1cm³<27Gy 
3: Important Dose[7-17Gy] D0.1cm³<17Gy 
3: Important Dose[0-7Gy] D0.1cm³<7Gy 

 
 

2.3. Planning studies 
Two planning studies were performed, in order to investigate the general performance of the Ethos 
template-based and its patient-optimality (i.e., the capability to produce plans that achieve the best 
possible dose distribution for a patient, with the highest number of met clinical goals) against DP+DM 
plans, with respect to reference MG plans. All plans were scaled either to D95=57Gy on the PTV or 
D98=58.8Gy on the CTV so that both PTV and CTV coverage constraints could be met. 

Study S1 -Performance of ETHOS using initial template 
This first study evaluates the global performance of Ethos planning with our initial clinical template 
(EG_init) against conventional manual planning (MG) over the 45 patients. 

The 45 EG_init plans and MG plans were compared through the OAR clinical metrics used in our 
Ethos template goals and on the mean doses to the OARs. Metrics were extracted from Ethos TPS for 
EG_init plans and from Eclipse TPS for MG plans. Homogeneity index (HI) and conformity number 
(CN) were also computed to provide supplementary information about quality of the dose 
distribution. HI and CN were computed with the following formulas: 𝐻𝐼 = !!%"!#$%

!%&%
,  𝐶𝑁 =

##%%,()*
!

#()*	×	##%%,+,-.
 where 𝑉&'%,*+#  and 𝑉&'%,,-./ are the volume receiving 95% or more of the 

prescribed dose for the PTV and the body, respectively. 

Statistical significance between MG and EG_init plans is reported for the clinical goals and mean dose 
to OARs with a Wilcoxon signed rank test. All the statistical tests are operated with the 
“stats.Wilcoxon” function from the scipy Python package. 

From the results of this comparison, we noticed 10 EG_init plans showing specific difficulties 
compared to MG plans, either they did not meet some clinical goals that were met with manual 
planning or the dose to OARs could be overall further improved.  

Study S2 - Performance of ETHOS using an updated template for a selected set of patients 
and comparison with deep learning-based auto-planning  
The second study highlights the 10 patients from previous study where Ethos IOE shows optimization 
difficulties with generic clinical constraints typically used in template-based optimization. 
Consequently, a second template which has been updated on basis of results of the first study is used 
to evaluate if clinical plan quality might be substantially increased. The 10 EG_init plans were kept 
(EG_init_selected) and corresponding patients were re-planned with the updated template 
(EG_upd_selected). Moreover, these 10 test patients were also planned with the alternative DP+DM 
approach. The 10 EG_init_selected, EG_upd_selected and DP+DM plans were compared using 
homologous MG plans as benchmark. Clinical metric and mean dose to OAR for EG_init_selected 
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plans, EG_upd_selected plans and DP+DM plans were compared. In addition, the numbers of clinical 
goals that are met were also provided for each approach.  

HI and CN are also provided following the same formulas than for Study S1. Modulation complexity 
score (MCS) was computed for each Ethos multileaf collimator (MLC) with an in-house python script. 
Details about MCS computation can be found in supplementary materials S1 and in the original MCS 
article [32]. Deliverability was reported with Mobius gamma index. Recent studies have 
demonstrated and used the capability of Mobius to serve as a reliable indicator of plan failure [33, 
34]. 

Statistical significance between EG_init_selected and DP+DM as well as between EG_upd_selected 
and DP+DM is reported for the clinical goals, mean doses to OARs, monitor unit (MU), MCS, and 
gamma index with a Wilcoxon signed rank test.  Statistical tests are operated with the 
“stats.Wilcoxon” function from the scipy Python package. 

 

Figure 1:  Workflow of the planning studies and data distribution. The patients used in the study 2 come from a manual 
selection of 10 patients from study 1. The 10 EG_init_selected plans did not undergo any modifications between study 1 and 
study 2 as for the 10 MG plans used as benchmark in the specific comparison. The 10 EG_upd_selected plans were 
generated the same way as the 10 EG_init_selected, excepted that the updated goals template was used. 

 

3. Results 
Study S1 - Performance of ETHOS using initial template 
Comparison of the metrics between MG plans and EG_init plans are reported in Table 3. For metrics 
close to prescription dose (50Gy and higher), EG_init plans achieved similar mean values than MG 
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plans, absolute differences (|EG_init minus MG|) never exceeding 0.6%. Some of them are 
established as statistically significant, however, we consider these differences of less than 1% to be 
clinically insignificant. 

For Lower dose levels, EG_init plans tend to show larger dose differences with MG plans: 13%, 6.6%, 
and 5.3% more, for V20Gy the anal canal, V30Gy to rectum and V42.5Gy to penile bulb, respectively. 
For the rest of the considered metrics, results achieved by EG_init plans were deemed satisfactory. 

The previously observed trend about lower dose levels seems to be confirmed when looking at the 
mean dose distribution for each OAR in Figure 2. Again, OARs that show noticeable differences are 
the anal canal, bladder, rectum, and penile bulb with median mean dose difference of 5.0Gy, 3.7Gy, 
4.9Gy, and 5.8Gy, respectively. 

Table 4, reports the HI and CN for both planning approaches. We can notice that the mean HI for MG 
plans is slightly better than for EG_init plans. Mean CN looks comparable between the two 
approaches. 

The V20Gy<40% constraints for the updated template were chosen because precise mean V20Gy for 
the anal canal, bladder, rectum, and penile bulb are, respectively, 21.3%, 28.1%, 35.6%, and 23.2% 
over the 45 MG plans. These values over the 10 MG plans for the selected patients rise to 30.0%, 
32.9%, 42.5%, and 23.4% for the anal canal, bladder, rectum, and penile bulb, respectively. Such 
additional V20Gy constraints, aim at reasonably reducing the most extreme differences for lower 
dose levels of EG_init plans. Results of this template update can be found in the following section for 
the 10 selected patients. 

Table 3: Mean metrics achieved for EG_init plans and MG plans over the 45 patients. Differences (EG_init minus MG) are 
also provided. The p-values are extracted from the comparison of EG_init plans and MG plans. Those presented in bold font 
are deemed statistically significant (p < 0.05). EG_init = Ethos generated plan (using initial template), MG = Manually 
generated plan. 

Volume Constraint EG_init plans MG plans EG_init – MG P-value 
Anal 
canal 

V60Gy (%) 0.3 ± 0.7 0.5 ± 0.6 -0.2 0.006 
V35Gy (%) 17.4 ± 9.3  14.3 ± 10.2 3.1 <10-3 
V20Gy (%) 34.3 ± 14.5 21.3 ± 13.2 13.0 <10-3 

Bladder V60Gy (%) 0.8 ± 1.7 1.0 ± 0.8 -0.2 <10-3 
V50Gy (%) 10.8 ± 4.0 10.3 ± 4.6 0.5 0.002 
V40.8Gy (%) 15.8 ± 5.3 14.1 ± 6.0 1.7 <10-3 

Bowel D0.1cm³ (Gy) 23.0 ± 24.1 21.4 ± 23.8 1.6 0.020 
V55Gy (%) 0.2 ± 0.7 0.2 ± 0.6 0.0 0.020 
V20Gy (cm³) 5.0 ± 9.7 3.7 ± 7.8 1.3 0.002 

Rectum V60Gy (%) 0.7 ± 1.6 0.7 ± 0.7 0.0 0.040 
V52.8Gy (%) 14.1 ± 2.8 14.3 ± 3.9 -0.2 0.780 
V30Gy (%) 34.1 ± 2.9 27.5 ± 6.5 6.6 <10-3 

Femur_L V40Gy (%) 0.0 ± 0.1 0.1 ± 0.1 -0.1 0.009 
V35Gy (%) 0.0 ± 0.2 0.5 ± 1.0 -0.5 <10-3 

Femur_R V40Gy (%) 0.0 ± 0.1 0.1 ± 0.2 -0.1 0.004 
V35Gy (%) 0.0 ± 0.3 0.4 ± 1.0 -0.4 <10-3 

Penile 
Bulb 

V54.1Gy (%) 3.8 ± 5.5 4.4 ± 7.7 -0.6 <10-3 
V42.5Gy (%) 15.5 ± 12.8 10.2 ± 11.4 5.3 0.120 
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Figure 2: Difference of mean dose to OAR between EG_init and MG plans over the 45 patients. The inner line represents the 
median of the dataset, the box are the quartiles, the whiskers show the range of the distribution without outliers which are 
denoted by a diamond. Outliers are determined by the boxplot function of the seaborn Python package. All mean dose 
differences are statistically significant. 

Table 4: Mean homogeneity index (HI) and conformity number (CN) for Ethos generated (EG_init) and manually generated 
(MG) plans 

 EG_init MG 
HI 0.12 ± 0.02 0.10 ± 0.02 
CN 0.89 ± 0.01 0.89 ± 0.03 

 

Study S2 - Performance of ETHOS using an updated template for a selected set of patients 
and comparison with deep learning-based auto-planning  
Metric differences for DP+DM, EG_init_selected and EG_upd_selected are reported in Table 5. 
Concerning dose levels above 50Gy, several of these metrics are now above 1% difference for 
EG_init_selected plans: V50Gy to bladder, V60Gy and V52.8Gy to rectum and V54.1Gy to penile bulb. 
As for S1, large mean differences can be observed for lower dose levels such as 16.9%, 8.5%, and 
11.2%, for V20Gy to the anal canal, V30Gy to the rectum, and V42.5Gy to the penile bulb, 
respectively. This repeats the same trends as for S1, although the differences with MG plans get 
amplified due to patient selection.   

Concerning EG_upd_selected plans, we noticed a slight increase of the V60Gy to rectum compared to 
EG_init_selected, while lower dose levels differences with MG dropped:  from 16.9% to 11.5% for the 
anal canal V20Gy, from 8.5% to 5.7% for the rectum V30Gy, and from 11.2% to 3.4% for the penile 
bulb V42.5Gy. 

The DP+DM approach overall achieved metrics closer to those from MG, in comparison with 
EG_init_selected and EG_upd_selected. Noticeable exceptions are the penile bulb V54.1Gy of 4.6% 
instead of 1.9% and 0.5% for EG_init_selected and EG_upd_selected, respectively. However, these 
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differences did not reach statistical significance between DP+DM and EG_init_selected and between 
DP+DM and EG_upd_selected.  

Figure 3 illustrates the difference of mean dose to OARs with regards to MG plans for the three 
automatic approaches. As previously observed, the updated template reduced the dose difference 
for the low dose levels, and consequently for the mean dose to OAR. However, DP+DM 
outperformed the other automatic methods, and achieved the closest dose metrics to the MG 
method.  Statistical difference between EG_upd_selected and DP+DM plans is moreover established 
for the anal canal and bladder.  

Table 6 depicts when clinical goals were met or not for each approach. While the 10 MG plans could 
not meet all clinical goals, they were deemed clinically acceptable by our physicians. As to the 
automatic approaches, DP+DM succeeds in meeting the largest number of “most important” and 
“important” goals, followed by EG_init_selected and EG_upd_selected. The 10 DP+DM plans were 
also deemed clinically acceptable, but 1 EG_init_selected plan and 3 EG_upd_selected plans were 
not, due to critical unmet goals. Among these unmet goals, there is notably the “V60Gy<1%” to 
rectum that could not be met for 2 EG_init_selected and 4 EG_upd_selected plans. Figure 4 
illustrates the distribution of V60Gy to rectum for each approach. We can notice that V60Gy of 2 
EG_init_selected plans were significantly above 1% constraint and that template update resulted in a 
noticeable increase of V60Gy for 2 other patients, compromising the clinical quality of these 
EG_upd_selected plan. 

Table 7 reports the HI and CN for the different planning methods, it can be noticed that MG and 
DP+DM achieved a better homogeneity while their conformity number is slightly lower than for 
EG_init_selected and EG_upd_selected plans. 

Table 8 reports the mean total MU, MCS and Mobius gamma index for each approach. There are 
statistically significant differences between MU for MG plans and EG as well as for DP+DM and EG 
plans. MCS for both Ethos MLCs confirmed the higher complexity of DP+DM plans. This is expected 
since the dose metrics are probably more demanding for some constraints than the general Ethos 
template. However, no prostate plans were flagged as problematic while the mean gamma index is 
slightly lower for the MG plans than for other approaches. 

Figure 5 illustrates the dose distribution for the different optimization methods for a specific patient 
where the V60Gy constraint to rectum was difficult to meet. Some facts already mentioned above 
can be observed: the DP+DM and MG methods reduce at best the V60Gy to rectum while ensuring 
PTV coverage. Such rectum sparing seems to have a cost in terms of dose conformity when 
compared to EG_init_selected and EG_upd_selected. 

Table 5: Mean difference of dose metric between automatic plans (EG_init_selected, EG_upd_selected; and DP+DM) and 
MG plans for the 10 selected patients. P-values between DP+DM and EG_init_selected metrics distribution as well as 
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between DP+DM and EG_upd_selected are provided. Those presented in bold font are deemed statistically significant (p < 
0.05).  

 

Table 6: The total number of met OAR goal for the 10 patients are reported for each method. For each of the 10 testing 
plans there are 8 “very important” goals, 4 “Important” goals and 6 “less important” OAR goals to satisfy. Highest number 
of met goals per importance for automatic planning methods are bolded. EG_init_selected = Ethos generated (using initial 
template) for patient manually selected among 45 initial patients, EG_upd_selected = Ethos generated (using updated 
template) for patient manually selected among 45 initial patients, DP+DM = dose prediction followed by dose mimicking, 
MG = manually generated. 

 

O
AR 

Constraint 

DP+DM
 - M

G
 

 EG_init_selected  -  
M

G
 

P-value 
D
P+D

M
;EG

_init_selected 

EG_upd_selected - 
M

G
 

P -value 
D
P+D

M
;EG

_upd_selected 

Anal 
canal 

V60Gy (%) 0.3 ± 1.0 0.1 ± 0.7 0.079 0.4 ± 1.3 0.500 
V35Gy (%) 1.2 ± 3.1 6.0 ± 5.9 0.006 4.8 ± 4.8 0.004 
V20Gy (%) 4.6 ± 4.7 16.9 ± 11.4 0.004 11.5 ± 7.9 0.006 

Bladder V60Gy (%) -0.3 ± 0.5 0.1 ± 0.6 0.062 0.4 ± 1.0 0.028 
V50Gy (%) 0.6 ± 1.2 1.4 ± 0.9 0.130 1.3 ± 0.8 0.014 
V40.8Gy (%) 0.6 ± 1.8 2.9 ± 2.9 0.010 2.2 ± 1.3 0.004 

Rectum V60Gy (%) -0.2± 0.3 1.4 ± 3.1 0.058 1.9 ± 3.1 0.034 
V52.8Gy (%) 0.0 ± 1.2 1.0 ± 2.6 0.193 0.7 ± 2.5 0.275 
V30Gy (%) 3.4 ± 2.8 8.5 ± 5.1 0.027 5.7 ± 5.0 0.375 

Bowel V55Gy (%) -0.1± 0.8 -0.2 ± 0.8 0.625 -0.2 ± 0.8 0.769 
V20Gy (cm³) -1.3± 5.6 0.8 ± 5.8 0.180 -0.6 ± 5.9 0.102 
D0.1cm³(Gy) 0.5 ± 2.8 1.0 ± 2.5 0.109 0.1 ± 1.8 0.108 

Femur_L V40Gy (%) 0.0 ± 0.2 -0.1 ± 0.2 0.180 -0.1 ± 0.2 0.180 
V35Gy (%) 0.0 ± 1.1 -0.6 ± 1.1 0.028 -0.4 ± 0.9 0.043 

Femur_R V40Gy (%) 0.0 ± 0.1 0.0 ± 0.1 0.157 0.0 ± 0.1 0.157 
V35Gy (%) 0.0 ± 0.6 -0.3 ± 0.5 0.043 -0.2 ± 0.5 0.043 

Penile 
Bulb 

V54.1Gy (%) 4.6 ± 7.7 1.9 ± 4.4 0.080 0.5 ± 5.5 0.080 
V42.5Gy (%) 6.6 ± 9.0 11.2 ± 11.8 0.028 3.4 ± 9.4 0.068 

Priority 2: Very important 3: Important 4: Less Important 
EG_Init_selected 66/80 37/40 59/60 
EG_upd_selected 62/80 38/40 59/60 
DP+DM 70/80 39/40 58/60 
MG 74/80 40/40 60/60 
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Figure 3: Difference of mean dose to OAR between automatic planning methods and manual ground truth planning. The 
horizontal links between boxes denote a statistically significant mean dose difference between the 2 linked boxes (p-values 
lower than 5% are denoted by *; p-values lower than 1% are denoted by **).  The inner line represents the median of the 
dataset, the box are the quartiles, the whiskers show the range of the distribution without outliers which are denoted by a 
diamond. Outliers are determined by the boxplot function of the seaborn Python package.  EG_init_selected = Ethos 
generated (using initial template) for patient manually selected among 45 initial patients, EG_upd_selected = Ethos 
generated (using updated template) for patient manually selected among 45 initial patients, DP+DM = dose prediction 
followed by dose mimicking. 
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Figure 4: Rectum V60Gy for each optimization method over the 10 selected patients, individual values are denoted by a dot. 
The inner line represents the median of the dataset, the box are the quartiles, the whiskers show the range of the 
distribution without outliers. We can notice two patients having their V60Gy noticeably increasing above 1% when using the 
updated template instead of the initial one. EG_init_selected = Ethos generated (using initial template) for patient manually 
selected among 45 initial patients, EG_upd_selected = Ethos generated (using updated template) for patient manually 
selected among 45 initial patients, DP+DM = dose prediction followed by dose mimicking, MG = manually generated. 
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Figure 5: Dose distribution of each optimization method for a patient where the V60Gy constraint to the rectum was difficult 
to meet. Black contour: PTV; green contour: rectum. Red isodose: dose ⩾	60Gy; yellow isodose: 57Gy⩽dose<60Gy; purple 
isodose: 48Gy⩽dose<57Gy; light green isodose: 36Gy⩽ dose<48Gy; light blue isodose: 24Gy⩽dose<36Gy.Top left: 
EG_init_selected ; bottom left: EG_upd_selected ; top right: DP+DM ; bottom right : MG. EG_init_selected = Ethos generated 
(using initial template) for a patient manually selected among 45 initial patients, EG_upd_selected = Ethos generated (using 
updated template) for a patient manually selected among 45 initial patients, DP+DM = dose prediction followed by dose 
mimicking, MG = manually generated. 

Table 7: Mean homogeneity index (HI) and conformity number (CN) for the different planning methods over the 10 selected 
patients. EG_init_selected = Ethos generated (using initial template) for a patient manually selected among 45 initial 
patients, EG_upd_selected = Ethos generated (using updated template) for patient manually selected among 45 initial 
patients, DP+DM = dose prediction followed by dose mimicking, MG = manually generated. 

 EG_init_selected EG_upd_selected DP+DM MG 
HI 0.12 ± 0.02 0.12 ± 0.02 0.08 ± 0.01 0.09 ± 0.02 
CN 0.89 ± 0.01 0.89 ± 0.01 0.88 ± 0.02 0.87 ± 0.02 

 

Table 8: Mean total monitor unit (MU), modulation complexity score (MCS) for the two Ethos multileaf collimators and 
Gamma index (Mobius γ). EG_init_selected = Ethos generated (using initial template) for a patient manually selected among 
45 initial patients, EG_upd_selected = Ethos generated (using updated template) for a patient manually selected among 45 
initial patients, DP+DM = dose prediction followed by dose mimicking, MG = manually generated. 
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Total MU 1947.83 ± 
434.07 

0.010 1940.96 ± 
301.85 

0.002 2397.48 ± 
332.56 

0.002 2920.03 ± 
564.37 

MCS 1 0.26 ± 0.04 0.049 0.26 ± 0.04  0.002 0.23 ± 
0.03 

0.014 0.20 ± 
0.03 

MCS 2 0.27 ± 0.05 0.020 0.28 ± 0.04 0.002 0.24 ± 
0.02 

0.014 0.21 ± 
0.03 

Mobius γ 
(%) 

99.9 ± 0.00 0.020 99.9 ± 0.00 0.020 99.8 ± 
0.06 

0.008 99.4 ± 
0.43 

 

4. Discussion 
This work consisted in 2 planning studies aiming at evaluating the general performance of Ethos 
template-based automatic plan optimization and its patient-optimality against another popular 
approach: deep-learning dose prediction followed by dose mimicking. For study S1, we generated 
plans for 45 patients using our initial Ethos clinical goals template (EG_init), and compared them to 
manually generated plans (MG). Study S2 used 10 specific patients from S1 where IOE with initial 
goals template faced optimization difficulties when compared to MG plans. For these 10 selected 
patients, plans were generated with 3 different automatic approaches: Ethos IOE with initial 
template (EG_init_selected), Ethos IOE with updated template (EG_upd_selected) and DP+DM. The 
plans from these 3 automatic approaches were then compared to their homologous manual plan. 

We first showed that the performance of the Ethos template-based approach over our database of 
45 patients, using our initial clinical template (EG_init), was globally satisfactory for dose levels close 
to the prescription dose, although lower levels looked loosely optimized, especially for the anal canal, 
rectum, bladder, and penile bulb. We then compared the Ethos template-based approach to the 
DP+DM approach on 10 selected challenging patients and showed that while most EG_init_selected 
plans were still clinically acceptable, the DP+DM plans outperformed them. Number of clinical goals 
that were met, doses to OARs, homogeneity index and clinical acceptability were favorable to our 
DP+DM method while the deliverability did not seem to be impacted according to our results. MG 
plans performance suggested that quality of EG_init plans might be enhanced by updating our Ethos 
template. We investigated that hypothesis by adding low priorities constraints to the clinical 
template. While this enhanced some clinical metrics, this also deteriorated some other high-priority 
metrics, such as the V60Gy to the rectum. EG_upd_selected plans unfortunately resulted in fewer 
clinically acceptable plans and highlighted the limitation of using generic constraints from a template 
when optimizing plans with IOE. 

The V60Gy to rectum that were noticeably above 1% for 2 EG_init_selected and 4 EG_upd_selected 
plans might stem from the limited number of iterations allotted for the dose optimization process for 
such challenging plans. During dose optimization, even if the IOE sequentially updates the weights of 
goals from higher to lower priority [4], low-priority goals still affect the global solution convergence, 
just due to their simple presence in the objective function from its initialization. Considering that the 
more complex the goals are to achieve, the more iterations are necessary, lower-priority goals might 
make the objective function very complex and prevent its convergence from occurring within the 
iteration budget allotted by the manufacturer [35]. This would explain why 2 plans that were initially 
clinically deliverable were no longer acceptable after the update: adding an extra dose objective 
likely required more iterations, which in turn exceeded the preset default limit for some plans. Such 
assumption about an insufficient number of iterations might also lead to additional conclusions 
related to our DP+DM approach. DM consists in optimizing constraints derived from predicted dose 
volumes through IOE. It might thus be supposed that with unrealistic predicted doses and 
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optimization objectives, the IOE would naturally have needed an extremely high number of iterations 
to try fulfilling conflicting goals. However, it seems that DP+DM plans were not much affected by this 
iteration limit, which tends to confirm the reliability of the predictions made by our HD-UNET 
models. Moreover, this would also highlight the capability of the IOE to produce qualitative plans for 
challenging cases within the iteration budget when patient-specific dose constraints are used instead 
of generic ones.  

From these results, DP+DM seems to better approximate optimality for a wider range of patients 
than the Ethos template. The overall quality of Ethos plans is not questioned, but this study 
illustrates the difficulty of having an Ethos template that can both deliver clinically acceptable plans 
for a vast population of patients and spare OARs as much as possible for every individual case. 
Nonetheless, it is important to analyze from a broad perspective the potential and limitations of both 
automatic planning approaches (Ethos template and DP+DM):  

First, DP+DM requires some time to set up. It is necessary to have access to a database of 
clinical plans large enough to be able to train the model, this can take several weeks of data 
collection or generation, as well as model testing. Dose mimicking can also consume time to 
best reproduce the predictions. From our experience, mimicking set-up and testing can take 
from days to weeks. Moreover, it is noteworthy that our model was exclusively trained for 
Ethos 9 fields IMRT configuration, while if 12 fields IMRT or VMAT plans were to be also 
considered, then new dose prediction models should be trained for each new beam 
configuration. In contrast, a single IOE template can be used for all beam configurations. 
Even using transfer learning from 9 fields IMRT model to a new configuration model, this 
would require additional plans with the new beam configuration [23]. These processes lead 
to an even longer implementation and contrast with the Ethos template solution designed to 
be fast and easy to implement.   

Second, the DP+DM workflow is inherently longer than Ethos initial planning workflow. Both 
methods lead to a deliverable plan through the Ethos IOE, however, DP+DM necessitates 
firstly to load CT and contours in a trained HD-UNET to then predict the dose. This prediction 
step in our case takes approximately 50 to 60 seconds per plan (this accounts for the 5 
predictions from the cross-validation models on a single GPU used to produce the final 
prediction of the dose map). Then, the generated isodose volumes are computed with our in-
house script and uploaded to Ethos server in less than 10 seconds. Last, the dose mimicking 
step needs to be performed, which takes a time similar to the optimization with a template 
for EG plans. This results in a plan generation for our DP+DM method that is about 1 min 
longer than the EG approach in our case. However, such additional time might probably be 
optimized, for example by computing the 5 predictions in parallel.  

Third, DP+DM was not evaluated over the whole patient database. In order to demonstrate 
the global superiority of DP+DM over Ethos template approach, it would require proving 
superiority over a larger dataset and not only on plans were Ethos IOE templates faced 
difficulties. Nevertheless, this does not detract from the conclusion that with an approach 
such as DP+DM, a more optimal automatic dose optimization seems possible at the cost of a 
longer and more demanding (in terms of training database generation) implementation of 
the workflow. 

Concerning the adaptive workflow, clinical goals defined at initial planning are then further used for 
dose optimization at each adaptive session, consequently a question arises: “Are challenging plans 
suited for the Ethos adaptive workflow?”. In the case where dose optimization would fail to converge 
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to an acceptable solution for initial planning, we can suppose that results would not be substantially 
better during the adaptive session and that there is a need for specific tuning of clinical objectives. 
However, excessive specific tuning of clinical goals during initial planning step might be risky later in 
adaptive workflow since patient anatomy changes over time. Passed a tipping point of tuning, IOE 
could no longer converge to a satisfying dose distribution for each plan of the day before reaching 
the supposed-critical number of iterations.  

To prevent scenarios where dose would not converge for adaptive sessions, a recommendation 
based on our results would be to stick to general constraints when setting-up Ethos clinical goal 
templates. If even with a generic template, dose optimization during initial planning proves to be 
challenging, clinicians should consider excluding these patients from Ethos adaptive workflow. If the 
IOE cannot converge towards a dose optimum for most fractions, it is likely that the adaptive 
workflow will increase treatment time without clear benefits from plan adaptation. Keeping general 
constraints would, however, mean that some plans will inevitably be sub-optimal in comparison with 
what is manually achievable. 

Note that the adaptive workflow in Ethos needs to be selected before the first fraction and is then 
maintained throughout the entire treatment. Considering the current limitations of the template-
based approach, an interesting option could be to allow for a switch-up or switch-down of the 
adaptive workflow during the treatment course, based on the observed evolution of patient 
anatomy. This flexibility could address the cases where Ethos plan adaptation may not necessarily 
provide a clear added value for a specific patient. Alternatively, it could also be beneficial to directly 
visualize and select the initial plan recomputed on the daily image without having to wait for the re-
optimized plan.  

In the end, this is likely to be one of the keys to exploit the full potential of OART on Ethos: getting as 
patient-optimal as possible in a robust way. Although there seems to be room for improvement, and 
even if added value of treatment adaption cannot be ensured for every patient, recent studies have 
shown promising results in demonstrating the added value of Ethos plan adaptation for the global 
patients’ cohort [6-11].  To achieve further value for adaptive treatments, future steps could involve 
utilizing DP as a reference of specific achievable metrics similarly to the DVH prediction of RapidPlan 
(Varian Medical system, Palo Alto, USA) but with extra-information such as the predicted 3D dose 
map. Also, having an indicator of how close to the iteration limit the optimizer gets during the initial 
planning could convey an interesting and complementary piece of information when trying to fine-
tune dose constraints or when considering whether a patient should enter in the adaptive workflow 
or not. 

Conclusion 
This study has analyzed the general performances and capability to produce patient-optimal plans for 
Ethos template-based optimization in comparison with deep-learning dose prediction followed by 
dose mimicking (DP+DM). Our results suggest the existence of a limitation of the Ethos template-
based optimization with increasing complexity of the template (i.e. higher number and more 
aggressive clinical goals). This limitation might be related to a limit in the number of iterations. 
Consequently, the clinical goals in the Ethos template must be defined very carefully: too restrictive 
or too stringent goals might lead to a significant proportion of plans that will not have time to 
converge to an optimal dose distribution; conversely, too lenient goals will lead to an important 
proportion of loosely optimized plans. Concerning DP+DM, this approach outperformed the classical 
template-based approach of Ethos for initial and updated template of clinical goals, showing that a 
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more patient-optimal automatic dose optimization seems possible at cost of a longer and more 
demanding implementation workflow.  

To some extent, these investigations reflect the antagonism between explicit formulation of 
objectives using human expertise and brute-force connectionism relying on big data to blindly reach 
similar objectives. Although the first approach might be more interpretable and thus reassuring for 
users, the second approach raises more and more interest due to its flexibility and capability to cover 
very specific or rare cases, although it might struggle to gain the experts’ trust [36]. Considering 
these advantages and shortcomings, as well as the clinical convenience of a template-based 
approach, the choice of such approach in the Ethos automatic optimization appears to be rational 
and relevant, until AI systems further progress with, for instance, the capability to interact with 
natural language. 
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Supplementary materials 
S1 
The modulation complexity score was calculated following the same formula than the original article: 

Pos is the leaf positions, N is the number of open leaves. 

𝑝𝑜𝑠012 = ⟨max(posN∈n) −min(posN∈n)⟩leaf	bank 
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S2 
Table A1: Study-S2, detailed met goals for each approach. EG_init_selected = Ethos generated (using initial template) for 
patient manually selected among 45 initial patients, EG_upd_selected = Ethos generated (using updated template) for 
patient manually selected among 45 initial patients, DP+DM = dose prediction followed by dose mimicking, MG = manually 
generated. 

Volume Constraint EG_init plans 
/10 

EG_upd_selected
/10 

DP+DM /10 MG /10 

Anal 
canal 

V60Gy (%) 9 8 9 10 
V35Gy (%) 8 8 9 10 
V20Gy (%) 9 10 10 10 

Bladder V60Gy (%) 10 9 10 10 
V50Gy (%) 10 10 10 10 
V40.8Gy (%) 6 6 7 9 

Bowel D0.1cm³ (Gy) 9 9 10 10 
V55Gy (%) 10 10 10 10 
V20Gy (cm³) 10 10 10 10 

Rectum V60Gy (%) 8 6 10 10 
V52.8Gy (%) 7 7 7 7 
V30Gy (%) 7 7 7 8 

Femur_L V40Gy (%) 10 10 10 10 
V35Gy (%) 10 10 10 10 

Femur_R V40Gy (%) 10 10 10 10 
V35Gy (%) 10 10 10 10 
V54.1Gy (%) 9 9 8 10 
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Penile 
Bulb 

V42.5Gy (%) 10 10 10 10 

 

 


