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Abstract 

Monitoring the microstructure and damage development of fibre-reinforced composites during loading is crucial 
to understanding their mechanical properties. Time-resolved X-ray computed tomography enables such an in-situ, 
non-destructive study. However, the photon flux and fibre-matrix contrast limit its achievable spatial and temporal 
resolution. In this paper, we push the limits of temporal and spatial resolution for the microstructural analysis of 
unidirectional continuous carbon fibre-reinforced epoxy composites by establishing a new pipeline based on Cy-
cleGAN for unsupervised super-resolution and denoising and U-Net-id for individual fibre segmentation. After 
illustrating the benefits of a 3D CycleGAN over a 2D one, we show that data enhanced by this pipeline can yield 
similar segmentation quality to that of a slow-acquisition, high-quality scan that took up to 200 times longer to 
acquire. This pipeline, therefore, enables more robust data extraction from fast time-resolved X-ray tomography, 
removing a critical stumbling block for this technique. 

Keywords: A. Polymer-matrix composites, A. Carbon fibre, D. X-ray computed tomography, D. Non-destruc-
tive testing, Deep learning 

1 Introduction 

Fibre-reinforced composites (FRCs) are widely used in engineering for their excellent mechanical properties and 
low density. The damage development in FRCs is often a complex interplay between fibre breaks, matrix plastic-
ity, fibre/matrix debonding at the microscale, and off-axis cracking and delaminations at the mesoscale. Monitor-
ing the damage during loading is key to better understanding the mechanical properties and, eventually, develop-
ing improved materials [1]. Such non-destructive analyses are enabled through X-ray computed tomography (CT). 
Due to the much higher flux compared to lab-scale CT, synchrotron radiation CT (SRCT) is particularly suited 
for time-resolved analyses, as the typical SRCT scan times per volume range from 1 s to 5 min. 

Despite the benefits in terms of time resolution, SRCT at scan times in the order of seconds comes with significant 
compromises in terms of image quality. The resulting images are often noisy, with limited spatial resolution and 
low contrast between fibre and matrix, especially for carbon FRCs. FRCs also have both high average (55-67% 
[2]) and local fibre volume fractions (up to ~85% within longitudinal fibre bundles [3]), making the fibres chal-
lenging to separate from the matrix with traditional segmentation methods like greyscale thresholding (Otsu’s 
method [4]). Emerson et al. [5] developed a machine-learning-based tool called Insegt Fibre, which can accurately 
extract the centre of each fibre. This method is robust for relatively low-resolution images but still has some 
limitations [6, 7]. For example, when a fibre cross section in a CT slice is not fully circular, the extracted fibre 
centre can have multiple locations [6]. 

Deep-learning-based segmentation methods have gained popularity in recent years. Recently, they have been used 
to segment cracks [8] and textile structures for woven composites [9, 10]. Badran et al. [11] used FCDenseNet 
[12] based on Dragonfly software to successfully segment fibres, matrix and an environmental barrier coating, 
despite having minimal contrast between fibres and matrix. Their method, belonging to the class of semantic 
segmentation techniques, struggles with separating adjacent fibres from each other. Instance segmentation, how-
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ever, can distinguish each object, making it an attractive method for individual fibre segmentation. Standard in-
stance segmentation methods can be either i) two-stage segmentation, like U-Net plus Watershed [13], or ii) sin-
gle-stage segmentation, like Mask R-CNN [14], Deep Watershed Transform [15]. Compared to Mask R-CNN, U-
Net can obtain better results on the same datasets (higher Dice score) [16]. In contrast with these methods, U-Net-
id [17], which is also an instance segmentation method based on the U-Net network, does not require further 
decision-making by the user. These deep-learning-based segmentation methods require the manual labelling of 
fibres as training data. However, in low-resolution and noisy images, it is difficult to label the pixels that belong 
to a fibre accurately. This results in flawed segmentation models for low-quality data. Therefore, high-quality and 
high-resolution images are required.  

Deep-learning approaches have also demonstrated an unprecedented capability to enhance image quality by de-
noising [18] and retrieving super-resolution [19]. Most of these approaches require supervision [20], meaning that 
they expect paired datasets: each noisy or low-resolution image should have a corresponding low-noise and high-
resolution image. However, obtaining these paired datasets for time-resolved experiments is almost impossible as 
most of the specimens are not reproducible, and the damage mechanisms have a stochastic nature. This is also the 
case for fibre-reinforced composites during loading. 

Therefore, image enhancement approaches that do not require supervision or paired datasets are needed. An ex-
ample of a deep-learning approach that does not require paired datasets is CycleGAN [21]. It provides models to 
translate image domains in an unsupervised manner by training or optimising between source and target domains 
without those images being paired. Thus, CycleGAN offers the opportunity to expand the temporal and spatial 
boundaries of time-resolved tomography by applying the image quality of slow-acquisition tomograms with low 
noise and high resolution to noisy and low-resolution fast-acquisition tomograms. 

In this work, we explore how super-resolution and denoising can be exploited to improve the segmentation of 
individual fibres in SRCT images of unidirectional fibre-reinforced composites. We propose a new pipeline for 
high-quality segmentation based on CycleGAN and U-Net-id. We investigate the benefits of 3D CycleGAN over 
its 2D counterpart to generate high-resolution and denoised images from low-resolution and fast-acquisition da-
tasets. Then, we compare the segmentation quality of the 2D U-Net-id for a slow-acquisition dataset, a fast-ac-
quisition dataset, and a CycleGAN-enhanced dataset. The results show that our pipeline can extract the actual 
fibre microstructure information, which was impossible from the original low-resolution and noisy datasets. 

2 Materials and methods 
2.1 Materials and specimen preparation 
TORAYCA T700SC-12K carbon fibres with 7 µm nominal diameter were sourced from Toray Carbon Fibre 
Europe. Manufacturing started by making pre-impregnated unidirectional sheets using drum winding. Beginning 
with dry rovings, which soak up resin while being guided through a resin bath, the fibres were wound onto a 
translating and rotating drum. We used the epoxy resin Sicomin SR8500 KTA313, which has a glass transition 
temperature of 120 °C and an E-modulus of 3.36 GPa [1]. The resulting 1 mm thick prepreg sheets of ~300 × 
1900 mm² were then cut into smaller pieces of 300 × 300 mm² and stacked in a 90°/0°/90° layup. The layups were 
cured using a computerised autoclave under a combination of -0.7 bar vacuum pressure and 5 bar of overpressure. 
The curing cycle corresponded to the resin manufacturer’s specification: a pre-curing stage of 60 min at 70 °C 
before the temperature was increased to the curing level of 120 °C for 90 min. After curing, 1 mm thick aluminium 
2014-T6 end tab panels were bonded to the composites using 3M Scotch-Weld EC-9323 B/A structural adhesive. 
The adhesive was cured at 60 °C for 60 min. From these panels, specimens with a double T-shape at their ends 
and a double, circular notch in the middle were water jet cut [1]. 

2.2 Methods 
2.2.1 Time-resolved computed tomography 
We performed static and time-resolved dynamic tomography at a synchrotron radiation facility on the fibre-rein-
forced composite specimens during static mechanical loading. The experiments were conducted at the TOMCAT 
beamline of the Swiss Light Source (SLS) in Switzerland [22]. A Deben CT500 loading rig with a 500N load cell 
and poly(methyl methacrylate) protective tube was used. The rig was modified to be able to mount the T-shaped 
specimen ends. A small 10N load was applied after mounting the specimens to ensure stability during rotation. 
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Static tomography was used to obtain slow-acquisition tomograms, yielding high-quality images under static con-
ditions. For that, we used X-rays at 15 keV from a multi-layer monochromator. The monochromatic X-rays illu-
minated our specimen, and its signal was detected by an indirect detector, which used a 20 μm thick LuAG: Ce 
scintillator to transform X-rays into visible light. We used a PCO.edge 5.5 camera with a square pixel size of 6.5 
μm. The pixel size was demagnified using a 20× microscope, which provided an effective pixel size of 0.325 μm. 
Each tomographic acquisition with this system consisted of 2000 projections between 0 and 180 degrees and 0.25 
s acquisition time per projection. Before tomographic reconstruction, we performed flat-field corrections to re-
move pixel-to-pixel noise due to systematic errors caused by the illumination and imaging setup. For that purpose, 
we collected: i) 30 dark current images, which are images without X-rays, and ii) 100 flat images, which are 
images with X-rays but without the specimen. 50 of the flat images were collected right before the tomographic 
acquisition and the rest right after. The tomographic reconstructions were performed using GridRec [23] together 
with a Parzen window. The obtained tomographic reconstructions were used for either reference or training the 
high-quality slow-acquisition tomograms. We refer to this as the slow-acquisition dataset. 

Time-resolved dynamic tomography was used to acquire in-situ tomograms, yielding a high temporal resolution 
but also a high noise level and poor image resolution. For such acquisitions, we used the high flux provided by 
the white beam, which is the polychromatic radiation produced by the superbending magnet of TOMCAT. To 
increase the temporal resolution, we used the GigaFRoST detector [24] coupled to a high numerical aperture 
microscope by Optique Peter and a 100 μm thick LuAG: Ce scintillator. The effective pixel size of this system 
was 0.81 and 1.62 μm (compared to 0.325 μm for the slow-acquisition tomograms). Each tomogram was acquired 
with 500 projections between 0 and 180°. We used different acquisition times per projection (0.5, 1, and 3 ms) to 
study the effect of noise and evaluate the limits of the proposed approach. We will refer to them as the 0.5 ms 
(1.62 μm pixel size with 0.5 ms acquisition time per projection), 1 ms (0.81 μm pixel size with 1 ms acquisition 
time per projection), and 3 ms (1.62 μm pixel size with 3 ms acquisition time per projection) fast-acquisition 
datasets. To obtain the tomographic reconstructions for the fast-acquisition scans, we followed the procedure 
described for the slow-acquisition tomograms. The acquired tomograms with these settings will be used as the 
datasets on which we will apply our so-called 2× and 4× super-resolution using CycleGAN (see section 2.2.2). 

2.2.2 CycleGAN for denoising and super-resolution 
CycleGAN is a deep-learning algorithm that can learn to perform domain translations between two image do-
mains. In our experiment, we have two domains: i) a fast domain, which contains low-resolution and noisy tomo-
grams, and ii) a slow domain, which contains high-resolution and high-contrast tomograms obtained at slower 
rates. For simplicity, we call these two domains fast and slow. A schematic representation of the CycleGAN 
approach is provided in Fig. 1. On the one hand, the CycleGAN algorithm learns to enhance a low-quality tomo-
gram from the fast domain to resemble a high-quality tomogram in the slow domain. On the other hand, Cy-
cleGAN also learns to transfer high-quality tomography from the slow domain to resemble the low-quality tomo-
grams in the fast domain. Even though only the enhancing transformation (from fast to slow domains) is relevant 
for our purpose, both translations are required for the training process. 
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Fig. 1: Simplified flow chart of two cycles in CycleGAN. The fast-slow-fast (slow-fast-slow) cycle is out-

lined with red (blue) arrows. An image from the fast domain is passed to the generator 'fast → slow', 
which produces an enhanced image 'slow generated'. This image is evaluated by the discriminator slow 

and then passed to the generator 'slow → fast', which produces a new image called 'fast cyclic'. The cycle 
consistency requires the identity between 'fast input' and 'fast cyclic'. 

By training both translations simultaneously, we ensure that when performing a full translation cycle from domain 
fast to slow and back to the fast domain, we retrieve the original image, and all information is conserved. This 
feature is called cycle consistency and is the reason for the name CycleGAN. The GAN refers to the generative 
adversarial network [25], a deep-learning framework that trains two neural networks, named generator and dis-
criminator, which compete against each other. The discriminator tries to categorise whether its input is an original 
tomogram or was produced by the generator. In contrast, the generator tries to achieve a good transformation that 
fools the discriminator. CycleGAN uses two GANs, one for the translation from the fast to the slow domain and 
another one for the translation from the slow to the fast domain. Then, the cycle consistency requirement is ap-
plied, and the optimisation process or training is repeated until the results are satisfactory. 

As a result of this cyclic approach, CycleGAN does not require a paired dataset with high-quality and low-quality 
images of the same specimen. This unpaired machine learning approach is sometimes called unsupervised learn-
ing. It is advantageous for our in-situ images as the specimens are destroyed after a loading test, and it is not 
possible to acquire slow and fast datasets on the same specimen. Furthermore, high-quality and low-quality tomo-
grams can be acquired at different times and facilities. In our experiments, we captured slow and fast tomograms 
on different specimens and setups to train the CycleGAN, i.e., unpaired slow and fast datasets. We implemented 
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a 2D and a 3D version of CycleGAN. The 2D CycleGAN is trained with 2D tomographic slices, while the 3D 
version is trained with 3D cubes over the whole 3D reconstructed volume. For both approaches, we realised gen-
erators that retrieve super-resolution with scale factors 2× and 4×. Since it enhances individual slices, 2D Cy-
cleGAN can apply super-resolution in two dimensions, while 3D CycleGAN increases the pixel count in all three 
spatial dimensions.  

The slow-acquisition data were rescaled to an effective pixel size of 0.405 µm to enable 2× and 4× super-resolution 
transformations of the 0.81 µm and 1.62 µm fast-acquisition tomograms, respectively. For this paper, we trained 
four CycleGANs: one 2D CycleGAN and three 3D CycleGANs, and Table 1 displays the attributes of the training 
datasets and the number of optimisation iterations with the training time for each network. The voxel sizes of the 
slow-acquisition datasets mentioned in Table 1 also determine the voxel sizes of the corresponding enhancements. 

The algorithms were trained on a GPU cluster consisting of 4 NVIDIA Tesla V100 GPUs with 4× 32 GB VRAM. 
During this phase, the 2D version of CycleGAN could also be run on GPUs with smaller memory since it is less 
memory intensive and converges towards sound enhancements faster than the 3D version. Once the training is 
complete, only the enhancing generative network the “fast → slow” (see Fig. 1) is used to improve the image 
quality of the fast-acquisition tomogram, and both algorithms produce enhancements of an 800 × 1200 × 400 
voxel volume within 2 minutes with the aforementioned hardware. 

However, it is important to note that CycleGAN optimisation is unstable as it involves training four neural net-
works and hence relies on carefully chosen hyperparameters. Details on our hyperparameter choices can be found 
in Appendix A. 

Table 1. Training details for 2D/3D CycleGAN enhancement algorithms. 

Enhancement 

Training data voxel 
size [nm3]* 

Optimisation it-
erations Training time [h] 

domain fast 

domain slow 

2×-1ms- enhanced 
(2D) 

810×810×810 
8000 4 

810×405×405 

2×-1ms- enhanced 
(3D) 

810×810×810 
32000 82 

405×405×405 

4×-3ms- enhanced 
(3D) 

1620×1620×1620 
12000 34✝ 

405×405×405 

4×-0.5ms- en-
hanced (3D) 

1620×1620×1620 
25000 24✝ 

405×405×405 

*The shape of the 3D array, including other parts in our paper, is depth, height, and width, where the 
depth is along the fibre direction. 

✝Dynamic hyperparameter updates during optimisation prolonged the training time and caused the con-
tradictory number of iterations and training time. 

2.2.3 Deep-learning-based segmentation 
Fig. 2 provides a schematic overview of the segmentation process, consisting of three steps. 
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Fig. 2: Schematic of the individual fibre segmentation process using the U-Net-id network, from prepar-

ing the datasets to training and prediction. 

In the data preparation stage (Step 1), a tomographic image is converted from floating point values to a greyscale 
image with values ranging from 0 to 255. As a supervised learning method, the training process for the U-Net-id 
model requires both greyscale input data and corresponding labels, i.e. inner fibres, whole fibres, and fibre borders. 
A single CT slice with sufficient details, including an adequate number of fibres, is chosen for the greyscale input 
data. The inner fibre is manually labelled using a manual annotation tool called Insegtpy, which is the Python 
version of Insegt Fibre [26, 27]. The greyscale data and manually labelled inner fibre data are then sampled into 
64 × 64 pixels with a stride of 8 pixels. Afterwards, the whole fibres are obtained by two iterations of dilating the 
inner fibres with a cross kernel and the fibre borders are obtained by subtracting the inner fibres from the whole 
fibres, see Fig. 2. 
In the training stage (Step 2), the greyscale input data is normalised to the range of 0 to 1 before being fed into 
the U-Net-id network [17], which is designed based on the U-Net for instance segmentation. The sum of binary 
cross-entropy and dice coefficient-related loss was used as the loss function [17], the Adam algorithm was used 
as the optimiser, and the learning rate was set to 0.001. During training, data augmentation was applied randomly 
to the input images to improve the network’s generalisation [28]. This augmentation includes changes in bright-
ness and contrast with the same factor chosen uniformly from 0.7 to 1.3 as well as Gaussian blur with a 5×5 
Gaussian kernel and sigma from 0.7 to 1.3. The network is trained with 200 epochs and a batch size of 16.  
Finally, once the U-Net-id network is trained, large CT datasets can be segmented using a sliding window ap-
proach with the trained model (Step 3). However, the segmentation of fibres along the image borders is often 
suboptimal, which can negatively impact the final segmentation results. Significant overlap is ensured between 
two sliding windows to address this issue, allowing for more accurate fibre segmentation by focusing on extracting 
areas that do not include fibres at the image border. As the output of the algorithm is not binary, a threshold value 
of 0.5 is chosen to binarise the images. The network's direct outputs are fibre borders, whole fibres and inner 
fibres, which can be combined for further separation of fibres. However, in the current study, all further analysis 
is based on the inner fibres. 
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For this paper, we trained eight different U-Net-id models, one for each dataset (three fast-acquisition datasets, 
one slow-acquisition dataset, one 2D CycleGAN and three 3D CycleGAN-enhanced datasets). The physical size 
of each data is larger than 607.5 × 601.8 × 356.4 µm³. The resolution of all 3D CycleGAN enhanced data matches 
the slow-acquisition data, with cubic voxels of 0.405 × 0.405 × 0.405 µm³. For 2D CycleGAN, the slice resolution 
is the same, but along the thickness, it remains consistent with the 1ms-fast-acquisition data, which has a voxel 
size of 0.81 × 0.81 × 0.81 µm³. The voxel size for the 3ms- and 0.5ms-fast-acquisition data is 1.62 × 1.62 × 1.62 
µm³. 

For the datasets with voxel edges smaller than 1.62 µm (1ms-fast-acquisition, the enhanced, and the slow-acqui-
sition datasets), a region of 300 × 150 pixels was selected for manual labelling. For the 0.5ms- and 3ms-fast-
acquisition datasets, an image size of 200 × 100 pixels was chosen for training due to the larger pixel size and to 
limit the manual labelling work. As a result, we generated 330 patches from 300 × 150 pixels crops and 90 patches 
from 200 × 100 pixels crops, all patches being of a uniform size of 64 × 64 pixels. The total time required to train 
these segmentation models can be completed within around two hours using an Nvidia RTX A5000 GPU with 24 
GB of VRAM. 

It is worth noting that after segmentation, a limited number of artefacts are still present. Some artefacts can be 
removed - using an opening operator with a disk-shaped kernel (radius=4) for high-resolution images (slow-ac-
quisition, 2D and 3D CycleGAN enhanced). However, this opening operator was not applied to the low-resolution 
images, as attempting to remove artefacts in such cases would also result in the removal of actual fibres.  

2.3 Assessment metrics 
To evaluate the performance of our CycleGAN - U-Net-id pipeline, we also acquired fast and slow tomograms of 
the same volume in a non-destructive manner. Specifically, we recorded tomograms of one intact specimen using 
the four previously described acquisition modes: slow-acquisition, 1ms-, 3ms-, and 0.5ms-fast-acquisition. These 
tomograms constitute a paired test dataset, and it is essential to highlight that they were not involved in the Cy-
cleGAN training and were only used to evaluate our algorithms. 

Our evaluation process involves a comparison of the fast-acquisition tomograms from the paired test dataset, their 
CycleGAN enhancements, and the corresponding slow-acquisition reference, as well as their U-Net-id segmenta-
tions. To make a fair visual inspection and quantitative comparison of the same regions for all these datasets, we 
performed image registration based on the greyscale 3D images with Avizo and then extracted the calculated 
transformation values to transform the segmented data. However, such transformations (e.g., rotation, scaling) 
can lose the binary nature of the segmented data due to interpolation. To rebinarise these images, we used a 
threshold value of 125. 

Geometric parameters such as the number, size, shape, and length of the fibres significantly influence the me-
chanical properties of fibre-reinforced composites. Therefore, these parameters form the primary criteria for eval-
uating the performance of our pipeline in terms of enhancement and segmentation. 

The fibre sizes and shapes are determined using 2D slices. For such studies, the fibres at the edge of the image are 
excluded to avoid the influence of incomplete fibres. The equivalent fibre diameter 𝐷𝐷𝑓𝑓 in µm can be calculated 
by: 

𝐷𝐷𝑓𝑓 = �4 ∗ 𝑆𝑆𝑓𝑓
𝜋𝜋

∗ 𝑝𝑝𝑝𝑝𝑝𝑝 (1) 

where 𝑆𝑆𝑓𝑓 is the total number of fibre-labelled pixels in the binary images, and 𝑝𝑝𝑝𝑝𝑝𝑝 is the pixel size in µm. Each 
segmented fibre is then fitted with an ellipse using the Scikit-image library. The aspect ratio, which is the ratio of 
the major over the minor diameter of the ellipse, can be used to describe the fibre shape, where 1 corresponds to 
a perfect circle. 

To calculate the fibre length in 3D, we used an effective tracking method based on the K-nearest neighbour algo-
rithm [5, 7]. The Scikit-image library is used to locate the centre of each fibre in each slice. The fibre centres on 
each slice are connected to define fibre trajectories. The maximum distance to query the nearest fibre centre for 
each pair of adjacent slices is set to 1 pixel for all data. This setting allows us to detect specific segmentation 
errors effectively (see Fig. D.1 in Appendix D for examples). The fibre length can then be measured by the dis-
tance from the start to the end point of the tracked segment [29]. To maintain any possible error/artefact in fibre 
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detection, we did not perform further post-processing steps such as splitting, elimination, interpolation and 
smoothing [5], or blind and smart stitching [7] to quantify the impact of missing fibres and noise. This is an 
essential benefit of the proposed pipeline. 
3 Results 

 
This section first compares the 2D and 3D CycleGAN approaches by contrasting enhancements of the respective 
2× super-resolution networks applied to 1ms-fast-acquisition data of fibre-reinforced composites. Later, we 
demonstrate the full potential of the CycleGAN - U-Net-id pipeline for tomography enhancements by presenting 
results from the two-remaining 3D CycleGANs with 4× super-resolution for 3ms and 0.5ms fast acquisition data. 
The subsequent evaluations exclusively rely on the paired test dataset after image registration. 

3.1 Comparison of 2D and 3D CycleGAN 
The 3D approach trains on cubes rather than 2D slices, offering a complete view of the fibre structure and provid-
ing an opportunity to learn features that are parallel to the tomographic axis. 

To demonstrate the capabilities of 3D CycleGAN compared to its 2D counterpart, we used both algorithms to 
enhance 1ms-fast-acquisition tomograms with 2× super-resolution and compared their results. Fig. 3 displays 
tomographic cross-sections from (a) the 1ms-fast-acquisition input, (b) the 2D CycleGAN 2× enhancement, (c) 
the 3D CycleGAN 2× enhancement, and (d) the slow-acquisition reference.  

The fast-acquisition image in Fig. 3a is noisy, making it difficult to recognise individual fibres. Furthermore, their 
borders are blurred and non-circular. Fig. 3e presents a tomographic slice along the horizontal yellow line and 
parallel to the fibres. Intersecting fibres cause bright vertical lines. 

Figs. 3b,f show the enhancements for the fast-acquisition images after using the 2D CycleGAN algorithm. The 
fibres are mostly round and distinguishable. However, the 2D CycleGAN enhancement in Fig. 3b displays fibre 
hallucinations that are not present in the slow-acquisition reference in Fig. 3d. The blue circles indicate such 
hallucinations that can extend through multiple slices along the fibres. For example, the blue arrow in Fig. 3f 
points to the position of a fibre hallucination, which was systematically introduced in multiple slices, mimicking 
the characteristics of an actual fibre. The occurrence of such systematic hallucinations impacts the authenticity 
and reliability of 2D CycleGAN enhancements of high-noise data. Additionally, the real 2D CycleGAN-enhanced 
fibres look frayed along their trajectory due to slightly inconsistent fibre centres across slices. 

The number of hallucinations in the 3D CycleGAN enhanced dataset (see Fig. 3c and Fig. 3g) is limited, and none 
resemble fibres. The enhanced fibres are rounder, straighter and less frayed compared to those observed in the 2D 
CycleGAN enhancement. 

In Appendix B, we evaluate the enhancement capabilities of the 2D and 3D CycleGAN algorithms by reporting 
the Peak Signal-to-Noise Ratio (PSNR) and the Structural Similarity Index (SSIM) compared to the slow acqui-
sition reference. We also quantify the occurrence of fibre hallucinations. 

It is clear that the 3D CycleGAN outperforms the 2D CycleGAN in terms of image quality and reliability. The 
lack of fibre hallucinations in the 3D enhancement warrants using this computationally heavy algorithm over the 
2D version. Consequently, all the results presented from now on are based on our 3D approach. Furthermore, we 
refer to 3D CycleGAN simply as CycleGAN in the rest of the paper. 
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Fig. 3: Comparison of cross-sectional slices of the (a,e) 1ms-fast-acquisition input, (b,f) 2D CycleGAN 2× 
enhancement, (c,g) 3D CycleGAN 2× enhancement and (d,h) slow-acquisition reference. The right-hand 

side images (e-h) display slices in the fibre orientation that intersect the left-hand side images (a-d) 
through the yellow lines. The blue circles and arrows highlight hallucinated artefacts which resemble fi-

bres.  

3.2 Individual fibre segmentation 
Fig. 4 presents the 3D overlay of greyscale and segmented binary images with U-Net-id for the 1ms-fast-acquisi-
tion data, slow-acquisition data and associated 2× enhanced data. The dashed rectangles highlight regions with 
segmented artefacts that are not fibres, which exist in all of these cases. However, while the 1ms-fast-acquisition 
tomogram is riddled with segmentation artefacts, they are sparse in the slow-acquisition tomogram and the Cy-
cleGAN enhancement. The segmentation algorithm can detect some fibres in the low-quality 1ms-fast-acquisition 
images (see Fig. 4a). Compared with the segmentation results on the slow-acquisition data (see Fig. 4b), however, 
the segmented fibres along the thickness are rough. This is mainly because the segmentation algorithm cannot 
accurately capture the fibre information, such as fibre size, shape and position, at the low resolution and high 
noise level of the fast-acquisition tomogram. After the 2× super-resolution CycleGAN enhancement, the seg-
mented fibres are much smoother than in the fast-acquisition data and similar to the slow-acquisition data. 
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 Fig. 4: 3D overlay of greyscale and segmented binary images with U-Net-id for (a) 1ms- fast-acquisition 
data, (b) slow-acquisition data, and (c) associated 2× enhanced data. The blue-coloured structures repre-

sent the segmented fibres, and the dashed black rectangles highlight artefacts that are not fibres. 

Fig. 5 compares the segmentation results of the slow-acquisition dataset to the fast-acquisition and enhanced da-
tasets. The key artefacts or errors are highlighted with ellipses: 

● Red: touching fibres, where the algorithm did not separate the fibres. 
● Blue: fibres that are not successfully segmented. 
● Green: an imaging artefact in the slow-acquisition dataset that causes segmentation difficulties. 
● Orange: falsely detected fibres, where there are no actual fibres. 

Although segmentation errors are present across all datasets, including slow-acquisition, fast-acquisition, and en-
hancements, the displayed slices effectively represent the datasets concerning the segmentation quality and the 
types and quantities of errors. Touching fibres (red ellipses) frequently appear in the 1ms- and 0.5ms-fast-acqui-
sition datasets. Although no touching fibres are detected for this particular slice in the 3ms-fast-acquisition data 
and all enhanced data, this does occur in other slices. Moreover, some fibres are not successfully detected in all 
fast-acquisition datasets (see the blue ellipses in Figs. 5d,f,h). The blue ellipse in Fig. 5b shows a missing fibre in 
the segmentation of the slow-acquisition data due to the presence of an imaging artefact (see the green ellipse in 
Fig. 5a). Orange ellipses in the 1ms-fast-acquisition data highlight some artefacts belonging to the matrix instead 
of fibres. The same artefacts are present in the enhanced 0.5 ms results where they occur due to faint fibre hallu-
cinations that can also be found at the same positions in Fig. 5m. 
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Fig. 5: Comparison of the segmentation results of the (a,b) slow-acquisition data, (c-h) fast-acquisition 
data with acquisition times of 1 ms, 3 ms, and 0.5 ms, and (i-n) the corresponding enhanced data. The 

green ellipse indicates the existing artefacts in the slow-acquisition slice. Red ellipses highlight touching 
fibres that are not separated successfully, blue ellipses highlight missing fibres, and orange ellipses high-

light wrongly detected fibres. 

For the fast-acquisition data, the image quality is poor, resolution and contrast are low, and the size and shape of 
the segmented fibres are highly inconsistent. Comparing the 3ms- and 0.5ms-fast-acquisition datasets, these issues 
become significantly worse for the shorter acquisition times. After enhancement, however, these issues largely 
disappear. The 4×-0.5ms-enhanced dataset still shows some artefacts, but this is also the most challenging dataset 
of the three. 

In terms of fibre shapes, the segmentation of the enhanced CT slices in Figs. 5j,l,n are much more homogeneous 
than the corresponding fast-acquisition segmentations. The fibres have similar sizes to the slow-acquisition refer-
ence and can predominantly be described as round. Most fibres that are missing in the fast-acquisition data (see 
blue ellipses) are successfully detected in the enhanced data. Fibre sizes, shapes and positions are similar in the 
enhanced and slow-acquisition data segmentation results. 

3.3 Quantitative analysis 

In this section, we present a quantitative analysis using quantities that are crucial to fibre analysis to evaluate our 
enhancement-segmentation pipeline's capabilities. We focus on fibre diameter, aspect ratio, fibre count per slice, 
and 3D fibre count as assessment metrics. Additionally, in Appendix C, we evaluate the enhancement and seg-
mentation accuracy based on pixel-based metrics, such as PSNR, SSIM, and Intersection over Union (IoU). Ap-
pendix D demonstrates how 3D fibre count effectively captures segmentation errors without requiring manual 
labelling, unlike pixel-based segmentation metrics. 
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The quantitative analyses were performed on the same volumetric region for all studied datasets, measuring 
401.76 × 369.36 × 152.28 µm3 and containing approximately 680 fibres. It is important to note that the fibre count 
per slice and 3D fibre count include fibres at the image border.  
For comparison purposes, we manually corrected the segmentation errors in the slow-acquisition segmentation 
results and refer to this as ground truth. Fig. 6 shows letter-value plots [30] (or boxenplot [31]) of the equivalent 
diameter and aspect ratio of the fibres for this large number of datasets. The number of boxes to draw is based on 
the trustworthy method [31]. For the slow-acquisition data, outliers are clearly visible for the equivalent fibre 
diameter, compared to the ground truth. The small fibre diameters are mainly caused by small artefacts that were 
misidentified as fibres, whereas the large fibre diameters are mainly due to touching fibres. 
The letter-value plots show that for the 1ms-fast-acquisition data, measured fibre diameters are significantly 
smaller than for the slow-acquisition data and ground truth. This is consistent with a visual inspection of Fig. 5. 
The aspect ratio is larger for the fast-acquisition than the slow-acquisition dataset and ground truth since the 
segmented fibre shape is less circular. This implies that the fast-acquisition datasets cannot be used to extract 
geometrical information of the fibres. Similar results can be seen for the 3ms- and 0.5ms-fast-acquisition datasets. 
As noted in Fig. 6, after the enhancement of the fast-acquisition dataset, the distributions of fibre diameter and 
aspect ratio become similar to those of the slow-acquisition dataset and ground truth, although some outliers 
remain. 

The analysis of the average values, presented in Table 2, also leads to the same conclusion: the average fibre 
diameter and aspect ratio for all enhanced datasets are close to the values of the slow-acquisition datasets and 
ground truth. Thus, the enhanced images can retrieve fibre information that cannot be obtained from the original 
fast-acquisition image. 

 
Fig. 6: Statistical distribution of the fibre geometrical parameters in different datasets: letter-value plot 

for (a) equivalent fibre diameter and (b) fibre aspect ratio. 
Table 2: Average and standard deviation of the fibre geometrical parameters as well as the fibre count in 

different datasets. 

Dataset name Equivalent fibre 
diameter (µm) 

Fibre aspect ratio Fibre count (all 
slices) 

3D fibre count 

Ground-truth  6.08±0.27 1.08±0.04 684.65±1.05 676 

slow-acquisition 6.08±0.29 1.08±0.05 687.43±2.01 620 

1ms-fast-acquisi-
tion 

3.45±0.87 1.40±0.38 655.10±8.18 0 

2×-1ms-enhanced 6.16±0.30 1.09±0.06 689.10±1.96 616 

3ms-fast-acquisi-
tion 

3.60±0.84 1.44±0.39 610.76±8.14 408 

4×-3ms-enhanced 6.25±0.27 1.09±0.05 687.56±1.40 659 

0.5ms-fast-acqui-
sition 

3.25±0.79 1.52±0.47  549.68±10.34 58 

4×-0.5ms-en-
hanced 

6.16±0.34 1.11±0.11 694.21±3.88 548 

Table 2 also presents the average and standard deviation of the fibre count for each slice along the volume depth 
(401.76 µm) and the 3D fibre count, which we defined as the number of segmented fibres that exceed a length 
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threshold of 364.5 µm. The 3D fibre count in the ground truth is approximately 1.3% lower than the average fibre 
count per slice. This discrepancy is primarily due to fibres at the border of the analysed volume that move in and 
out of the field of view. Comparing the slow-acquisition data to the ground truth, the 3D fibre count is reduced by 
8.3%. This decrease can primarily be attributed to imaging artefacts, like the one shown in Fig. 5a, which prevent 
successful segmentation in individual slices and disrupt the otherwise intact fibres (See Fig. D.1 in Appendix D 
for possible cases of unsuccessful tracking). In the 0.5ms-, 1ms- and 3ms-fast-acquisition datasets, the number of 
detected 3D fibres is much lower than in the slow-acquisition data. This highlights the subpar quality of tomo-
grams at fast acquisition speeds and the need for effective enhancements of such data. 

For the enhanced datasets, significantly more 3D fibres were detected compared to the fast-acquisition datasets 
thanks to the CycleGAN enhancement. The number of detected 3D fibres in the enhanced images is also close to 
the ground truth, and the 3D fibre count in the 4×-3ms-enhanced data even beats the slow-acquisition 3D fibre 
count by 39 fibres. This can be explained by fewer imaging artefacts being present in this CycleGAN enhancement 
compared to the slow-acquisition data. In the most challenging 4×-0.5ms-enhanced dataset, we can report ~10 
more detected single fibres, but a decrease of 18.9% of the 3D fibres compared to the ground truth. The overcount 
of average fibres per slice can be explained by the hallucinations that were also detected in Fig. 5m, while the 
undercount of 3D fibres results from the inferior image quality of this enhancement compared to the slow-acqui-
sition reference. Some of these incomplete fibres can be recovered through additional error-correcting algorithms, 
such as those employed by Sosa-Rey et al. [7] and Emerson et al. [5]. Nonetheless, this is out of the scope of this 
paper and we consider the 4×-0.5ms-enhancement as the limit for tomography enhancements with our algorithm. 

Based on the presented datasets, we can summarise that after super-resolution with unpaired data using Cy-
cleGAN, the geometric information of the fibres can be characterised with high accuracy. Moreover, 3D fibre 
trajectories can be reconstructed reasonably well if the fast-acquisition dataset is not of extremely low quality. 

4 Conclusions 

We propose a novel deep-learning-based pipeline for high-quality fibre segmentation of fast time-resolved com-
puted tomography scans. This pipeline consists of two deep-learning methods. First, CycleGAN applies super-
resolution to the fast-acquisition (low-quality) data and denoises them. Then, U-Net-id uses these enhanced im-
ages to segment individual fibres effectively. CycleGAN does not require paired datasets for training, which is a 
crucial advantage compared to traditional super-resolution methods. 

2D CycleGAN can yield good-quality 2D slices but is prone to introducing fibre-shaped hallucinations and fails 
to properly denoise the third direction. On the other hand, 3D CycleGAN can access volumetric contextual infor-
mation, and therefore (1) yields higher quality 2D slices with accurate fibre information, and (2) improves the 
resolution along the fibres. Segmentation of the fast-acquisition datasets yields many errors, including false fibre 
detections, missing fibres and merged fibres. The segmentation of the enhanced datasets, however, works and 
yields similar quality to the slow-acquisition data, as observed for both cross-sectional and transverse slices. The 
segmentation errors, which are observed for the enhanced datasets also appear in the slow-acquisition data. 

Quantitative analysis revealed that the segmented fibre shape and diameter are similar for slow-acquisition and 
enhanced data, while they cannot be retrieved directly from the fast-acquisition data. The number of long 3D 
fibres that could be segmented from the fast-acquisition data was limited. After enhancement of the images, the 
number of long 3D fibres was closer to the number for the slow-acquisition data. 

Future work will focus on the incorporation of the segmentation algorithm inside the CycleGAN to further im-
prove the results. We will also study the use of a 3D version of the U-Net-id and apply the pipeline to a dataset 
with fibre breaks.  

Source code and data repository 

The codes utilised in this pipeline for the implementation of 3D CycleGAN and 2D U-Net-id can be accessed 
through the following publicly available repositories: https://github.com/pvilla/3DCycleGaN and 
https://github.com/CMG-KULeuven/UnetID-FibreSeg. The reconstructed fast- and slow-acquisition tomograms, 
as well as trained models for CycleGAN, are available at https://zenodo.org/record/7632124. 

https://github.com/pvilla/3DCycleGaN
https://github.com/CMG-KULeuven/UnetID-FibreSeg
https://zenodo.org/record/7632124
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Supplementary materials 

Appendix A. Hyperparameter configurations for CycleGAN 
This section details the hyperparameters for CycleGAN, along with our hyperparameter choices for the algorithms 
presented in this paper. 

The relevant hyperparameters for our four CycleGANs are displayed in Table A.1. ‘Training data shape’ refers to 
the size of the randomly sampled volumes from the training tomograms. Data shape and batch size were chosen 
to best fill the available memory of the GPU cluster consisting of 4 NVIDIA Tesla V100 GPUs with 4x 32 GB 
VRAM. The total training loss is computed using the weighted sum of the two GAN and two cycle consistency 
components with weights: i) 𝜆𝜆𝑔𝑔𝑓𝑓 and 𝜆𝜆𝑑𝑑𝑓𝑓 for the GAN training of the slow to fast process, ii) 𝜆𝜆𝑔𝑔𝑔𝑔 and 𝜆𝜆𝑑𝑑𝑔𝑔 for the 
GAN training of the fast to slow process, and iii) 𝜆𝜆𝑐𝑐𝑓𝑓  and 𝜆𝜆𝑐𝑐𝑔𝑔 for the cycle-consistency constraints starting from 
the fast and slow domains, respectively. The learning rates for discriminators and generators determine the size 
of the optimisation steps. 

Table A.1. Hyperparameter choices for model optimisation of 2D/3D CycleGAN enhancement algorithms. 

Enhancement 

Training data 
shape [voxels] 

Batch 
size 

Loss-weights Learning 
rates 

Fast 𝜆𝜆𝑔𝑔𝑓𝑓 𝜆𝜆𝑑𝑑𝑓𝑓 𝜆𝜆𝑐𝑐𝑓𝑓 Discr. 

Slow 𝜆𝜆𝑔𝑔𝑔𝑔 𝜆𝜆𝑑𝑑𝑔𝑔 𝜆𝜆𝑐𝑐𝑔𝑔 Gen. 

2×-1ms- en-
hanced (2D) 

1024×1024 
16 

10 1 50 1e-4 

2048×2048 10 1 50 1e-3 

2×-1ms- en-
hanced (3D) 

64×128×128 
4 

10 1 100 1e-5 

128×256×256 10 1 100 1e-4 

4×-3ms- en-
hanced (3D) 

64×64×64 
4 

10* 1* 100* 1e-4* 

256×256×256 10* 1* 100* 1e-3* 

4×-0.5ms- en-
hanced (3D) 

64×64×64 
4 

10* 1* 100* 1e-4* 

256×256×256 10* 1* 100* 1e-3* 

* Initial hyperparameter choice. These hyperparameters were dynamically updated during optimization. 
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Appendix B. Quantitative evaluation of 2D and 3D CycleGAN image enhance-
ment 

In this appendix, we quantitatively evaluate the performance of 2D CycleGAN and 3D CycleGAN using the 
registered paired test dataset with the slow-acquisition data as a reference. The evaluation is based on Peak Signal-
to-Noise Ratio (PSNR) and Structural Similarity Index (SSIM). Higher PSNR values indicate better fidelity in the 
enhanced images, while higher SSIM values indicate a similar luminance, contrast, and structure. Additionally, 
we consider the average fibre count per slice since it is affected by hallucinated fibres. 

Table B.1 presents the quantitative evaluation results for the same volume of size 401.76 × 369.36 × 152.28 µm3. 
The voxel size of the slow acquisition dataset matches that of the 3D CycleGAN enhancement. Nearest neighbour 
interpolation was employed for adjusting the voxel size in the 2D CycleGAN enhancement along one direction 
and for the fast acquisition dataset along three directions, ensuring equal voxel dimensions. We can see improve-
ments over the original fast-acquisition image in the PSNR and SSIM for both the 2D and the 3D CycleGAN 
enhancement. However, both values suggest a significantly better image quality in the 3D enhancement. The most 
compelling argument for using the 3D algorithm over the 2D version is the fibre count though. In the fast acqui-
sition image, we undercount the number of fibres by an average of 32 fibres per slice. In the 2D CycleGAN 
enhancement, we count 25 additional fibres, which can be attributed to the hallucinated fibres associated with 2D 
CycleGAN. In contrast, the number of fibres in the images enhanced by 3D CycleGAN shows a negligible devi-
ation of 2 fibres compared to the slow-acquisition data.  

Table B.1. Quantitative evaluation of image enhancement performance using 2D CycleGAN and 3D Cy-
cleGAN approaches for 1ms-fast-acquisition data 

 PSNR SSIM Fibre count (all 
slices) 

Slow-acquisition      - - 687.43±2.01 
Fast-acquisition 18.46 0.30 655.10±8.18 

2D CycleGAN enhanced 19.74 0.55 712.03±6.24 
3D CycleGAN enhanced 21.24 0.62 689.10±1.96 

It should be noted that the image registration quality significantly influences the PSNR and SSIM, and the seg-
mentation quality affects the fibre count.  

Appendix C. Pixel-based evaluation of enhancement and segmentation accu-
racy 

In this appendix, we provide pixel-based metrics to evaluate the enhancement and segmentation accuracy. 

For enhancement performance evaluation, we employ PSNR and SSIM metrics. These measurements involve 
comparisons based on greyscale images and reference slow-acquisition datasets. To evaluate the segmentation 
accuracy, we calculate the Intersection over Union (IoU) with ground truth as a reference, which is manually 
corrected based on the slow-acquisition segmented data. The IoU value ranges from 0 to 1, with higher values 
signifying better segmentation results. Additionally, all fast-acquisition datasets are resized using the nearest 
neighbour interpolation to match the slow-acquisition data’s size. 

Table C.1. summarises the enhancement and segmentation evaluation values. This table shows that all enhance-
ment datasets exhibit higher PSNR, SSIM and IoU values than the fast-acquisition datasets. This confirms that 
our enhancement algorithm successfully improves image quality and boosts segmentation performance. Notably, 
the slow-acquisition data has the highest IoU value, which is close to 1. This is because our ground truth is cor-
rected based on the slow-acquisition segmented data, which has many completely overlapping regions. 

The impact of acquisition time and voxel size on the enhancement performance is discussed. The 3ms-fast-acqui-
sition data has the same voxel size as the 0.5ms-fast-acquisition data but with slower acquisition time, exhibiting 
higher PSNR, SSIM, and IoU values after being enhanced by our CycleGAN. Similarly, the 4×-3ms-enhanced 
data outperforms the 2×-1ms-enhanced data in terms of PSNR, SSIM, and IoU values, despite a larger voxel size. 
While the results of 2×-1ms-enhanced data exhibit similar PSNR and SSIM values compared to 4×-0.5ms-en-
hanced data, they present higher IoU values. These suggest that acquisition time affects our enhancement results 
more than voxel size. However, more thorough investigations would be required to precisely evaluate the effect 
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of time and spatial resolution, such as maintaining the same acquisition time but varying voxel sizes. Nonetheless, 
our developed CycleGAN can effectively improve image quality and segmentation quality for different time-
resolved computed tomography, encompassing different temporal and spatial resolutions. 

Table C.1. Comparative evaluation of enhancement and segmentation accuracy  

 PSNR SSIM IoU 
Ground-truth - - - 

slow-acquisition - - 0.99 
1ms-fast-acquisition 18.46 0.30 0.30 
2×-1ms-enhanced 21.24 0.62 0.81 

3ms-fast-acquisition 17.85 0.28 0.27 
4×-3ms-enhanced 22.95 0.67 0.84 

0.5ms-fast-acquisition 18.32 0.25 0.20 
4×-0.5ms-enhanced 21.95 0.62 0.77 

All these pixel-based metrics are sensitive to the size, shape, and position of the segmented fibres and are therefore 
susceptible to the imperfection of image registration between fast, enhanced and reference tomograms, regardless 
of enhancement and segmentation performance. 

Appendix D. 3D fibre count: A quantitative method for evaluating individual fi-
bre segmentation 

In this section, we demonstrate a new quantitative evaluation method called 3D fibre count for assessing the 3D 
individual fibre segmentation.  

The 3D fibre count is the number of segmented fibres above a certain length threshold. The length of each fibre 
can be calculated after searching all slices for the nearest centre of each segmented fibre between adjacent slices 
within a given maximum query distance. A higher 3D fibre count indicates that more fibres across multiple slices 
have been successfully tracked and exceed the length threshold, suggesting a higher segmentation quality. In 
comparison, a lower count means more potential "broken fibres" due to segmentation errors. Increasing the max-
imum query distance can result in a higher 3D fibre count, but also means greater tolerance to segmentation errors. 

The segmented images in Fig. D.1b-f are the possible segmentation errors, such as missing fibres, touching fibres, 
and unrealistically smaller, larger, and large-offset fibres, which are the reasons for the evaluation with IoU. By 
setting the maximum query distance to 1 pixel, these segmented errors can be identified as these segmented fibres 
cannot be tracked successfully, leading to a lower 3D fibre count. Therefore, this 3D fibre count can effectively 
evaluate 3D segmentation without manual labelling. 
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Fig. D.1 . A schematic depiction of 3D fibre tracking for different scenarios: (a) accurately segmented fi-
bres, (b) unrealistically segmented smaller fibres, (c) unrealistically segmented larger fibres, (d) touching 
fibres, (e) missing fibres, and (f) unrealistically large-offset fibres. All of the greyscale and segmented im-
ages are for the slow-acquisition data, and some fibres were not successfully segmented, mainly due to ar-

tefacts.  Consequently, cases (b-f) represent possible instances of unsuccessful segmentation, making it 
challenging to directly track these fibres using a maximum query distance of 1 pixel to find the nearest 

fibre centre for each pair of adjacent slices. 
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