Laboratory of Food Chemistry and Biochemistry **Leuven Food Science and Nutrition Research Centre**

KULEUVEN

Self-assembly of oat proteins in various colloidal states as function of the NaCl concentration

A.G.B. Wouters a* (arno.wouters@kuleuven.be), Taco Nicolai b

^a Laboratory of Food Chemistry and Biochemistry and Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, 3001 Leuven, Belgium ^b Le Mans Université, IMMM UMR-CNRS 6283, Polymères, Colloïdes et Interfaces, Le Mans, France

Introduction & Objective

Oats are increasingly used in liquid and semi-solid foods such as dairy alternatives

Most (if not all) oats are heattreated prior to use in foods ² The colloidal state of plant proteins affects their functionality in food systems ³

To investigate the **colloidal state**

Laboratory of Food Chemistry and **Biochemistry**

The protein content in oat-based dairy alternatives is often low ¹

Thus, most studies on oat proteins have not focused on native oat proteins

of native oat proteins in food system relevant conditions

Experimental set-up

Results

Light scattering

Conclusions

References: ¹ Walther et al. (2022), Front. Nutr. 9, https://doi.org/10.3389/fnut.2022.988707. ² Runyon et al. (2015), J Cereal Sci 65, 119-124, https://doi.org/10.1016/j.jcs.2015.06.008. ³ Schmitt et al. (2021), Curr. Opin. Coll. Int. Sci., 56, 101510, https://doi.org/10.1016/j.cocis.2021.101510.

Acknowledgments: A.G.B. Wouters thanks the Research Foundation Flanders (FWO, Brussels, Belgium) for funding for a research stay at Université Le Mans (ref. V432222N).