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Abstract. We prove that an inductive limit of aperiodic noncommutative Car-
tan inclusions is a noncommutative Cartan inclusion whenever the connecting
maps are injective, preserve normalisers and entwine conditional expectations.
We show that under the additional assumption that the inductive limit Cartan
subalgebra is either essentially separable, essentially simple or essentially of
Type I we get an aperiodic inclusion in the limit. Consequently, we subsume the
case where the building block Cartan subalgebras are commutative and provide
a proof of a theorem of Xin Li without passing to twisted étale groupoids.

1. Introduction

The theory of Cartan subalgebras for operator algebras has been prevalent since
Murray and von Neumann’s construction of the algebras L∞(X, µ)⋊G arising from
nonsingular group actions on a measurable space G ↷ (X, µ). Although not termed
a Cartan subalgebra then, the distinguished subalgebra L∞(X, µ) ⊆ L∞(X, µ)⋊G is
indeed a Cartan subalgebra (a regular inclusion of a masa admitting a faithful normal
conditional expectation). The abstract definition for a Cartan subalgebra in a von
Neumann algebra was later given by Vershik (see [17]). A characterisation of such
inclusions was provided by Feldman and Moore in [4]; the Cartan subalgebras are
certain subalgebras of von Neumann algebras constructed from measured countable
equivalence relations.

The theory of Cartan subalgebras in the setting of C∗-algebras was thereafter
developed by Kumjian and Renault ([7] and [16], respectively) and characterised
as the inclusion of the C0-functions on the unit space of an étale effective twisted
groupoid inside the reduced C∗-algebra of the twisted groupoid. Shortly after this
characterisation, Exel defined a notion of a noncommutative Cartan subalgebra
in [3], where the condition of being maximally commutative was replaced with
the condition of having trivial virtual commutants. In the commutative case, this
condition is exactly the one of being maximally commutative. Exel also showed
that every noncommutative Cartan inclusion was an inclusion inside the reduced
cross-sectional C∗-algebra of a Fell bundle over an inverse semigroup, where the
Cartan subalgebra corresponds to the reduction of the semigroup to the lattice of
idempotents. Kwaśniewski and the first author improved upon Exel’s theory in [9]
by completely characterising the types of actions that yield noncommutative Cartan
inclusions.
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In recent years, the commutative setting for Cartan subalgebras has attracted a
lot of attention. They are related to topological dynamical systems via continuous
orbit equivalence, to geometric group theory via quasi-isometry (see [13]), and also
to the classification programme for C∗-algebras, which aims at classifying a certain
class of ‘well-behaved’ C∗-algebras by an invariant consisting of K-theoretic and
tracial data. A breakthrough result by Li in [14] shows that every such classifiable
C∗-algebra has a Cartan subalgebra.

In the same work, Li provides sufficient conditions on connecting maps of an
inductive system of Cartan inclusions which guarantee that the inductive limit is a
Cartan inclusion. One requires the connecting maps to be injective, map Cartan
subalgebra to Cartan subalgebra, normalisers to normalisers and entwine the faithful
conditional expectations (see Theorem 1.10 in [14]). In many classes of examples, it
is significantly easier to check that such conditions hold rather than attempting to
find a Cartan subalgebra in the inductive limit directly (for instance, in AF-algebras,
where connecting maps are well-understood). In fact, Li and the second author
have used these conditions to construct inductive limit Cartan subalgebras in many
classes of AH-algebras, many of which are not classifiable (see [15]). The main result
of this article generalises Li’s theorem to inductive systems of noncommutative
Cartan inclusions:

Theorem (see Theorem 3.9). Given an inductive system of aperiodic noncommu-
tative Cartan inclusions where the connecting maps are injective and map Cartan
subalgebra to Cartan subalgebra, normalisers to normalisers and entwine the condi-
tional expectations, the inductive limit is a noncommutative Cartan inclusion. If the
limit Cartan subalgebra has an essential ideal that is separable, simple or of Type I,
then the limit inclusion is aperiodic.

As a consequence, we get a sufficient condition on the level of connecting maps
that guarantees that the inductive limit is a canonical noncommutative Cartan
inclusion. In the commutative case, it turned out to be much easier to check such
conditions rather than work directly with the inductive limit.

Our result also subsumes the result on Cartan subalgebras of inductive limits in
Theorem 1.10 in [14] because all commutative Cartan inclusions are aperiodic (see
Remark 3.10). Our proof of this theorem does not rely on passing to étale twisted
groupoids.

The paper is organised as follows. Section 2 will briefly provide preliminaries
on noncommutative and aperiodic Cartan inclusions, and will set up the standing
assumptions on our inductive system. Section 3 will present the proof of our main
theorem.

2. Preliminaries

Throughout this article, we will consider an inductive system of C∗-algebras

A1 A2 A3 . . . A

C1 C2 C3 . . . C,

ϕ1 ϕ2 ϕ3

µn

ϕ1 ϕ2 ϕ3

µn

23 Jun 2023 04:46:38 PDT
220830-fdo64 Version 3 - Submitted to Proc. Amer. Math. Soc.

Analysis



INDUCTIVE LIMITS OF NONCOMMUTATIVE CARTAN INCLUSIONS 3

where the vertical arrows are set inclusions. The building block inclusions Cn ⊆
An are assumed to be nondegenerate noncommutative Cartan inclusions as in
[3, Definition 2.1]. This means the following:

(1) Cn is a C∗-subalgebra of An that is regular, that is, the set of normalisers
NAn

(Cn) := {n ∈ An : n∗Cnn ⊆ Cn, nCnn∗ ⊆ Cn} generates An as a
C∗-algebra;

(2) there is a faithful conditional expectation Pn : An ↠ Cn;
(3) Cn contains an approximate unit for An;
(4) virtual commutants of Cn in An are trivial.

Here a virtual commutant of Cn in An is a bounded Cn-bimodule map φ : Jn → An

for some closed two-sided ideal Jn ⊆ Cn. A virtual commutant of Cn in An is trivial
if the image of the map lies in Cn. For further details consult [3].

We further assume that the inclusion Cn ⊆ An is aperiodic. This means that
the Banach Cn-bimodule Xn = An/Cn is an aperiodic Cn-bimodule, that is, for
each x ∈ Xn and each nonzero hereditary subalgebra D ⊆ Cn and ϵ > 0, there is a
positive element d ∈ D with ∥d∥ = 1 and ∥dxd∥ < ϵ (see [9, Definition 6.1]).

We assume the connecting maps {ϕn}n∈N to be nondegenerate and injective
∗-homomorphisms. This gives rise to a nondegenerate inclusion of C∗-algebras
C ⊆ A with nondegenerate and injective structure ∗-homomorphisms {µn}n∈N. To
simplify notation, we may identify building block algebras with their images under
connecting maps, so that we may consider the maps ϕn and µn as inclusions of
C∗-subalgebras and drop them from our notation.

We further place assumptions on the connecting maps that are analogous to those
in Theorem 1.10 in [14], namely:

(1) they map normalisers to normalisers, that is, ϕn(NAn
(Cn)) ⊆ NAn+1(Cn+1);

(2) they entwine the conditional expectations, that is, Pn+1 ◦ ϕn = ϕn ◦ Pn.
For an inclusion of C∗-algebras C ⊂ A we will call a subset M ⊂ A a slice for

the inclusion if M is a closed linear subspace of NA(C) that is also a C-bimodule.
For n ∈ N, let Sn be the inverse semigroup of slices for the inclusion Cn ⊆ An; its
multiplication is defined by taking the closure of the linear span of the algebraic
multiplication, and the inverse by taking the involution * (see Section 10 in [3]). For
subsets A and B of a C∗-algebra, we will denote the aforementioned multiplication
by A · B = span(AB). For an element m ∈ NAn

(Cn), Cn · {m} · Cn is a slice (see
[3, Proposition 10.5]). Every slice is contained in a sum of slices of this form. Indeed,
by the Cohen–Hewitt Factorisation Theorem ([6, Theorem 32.22]) we can write
every slice M as CnMCn, which is contained in

∑
m∈M Cn · {m} · Cn.

An inductive system of slices F = {Mn, ϕn}n∈N consists of slices Mn ∈ Sn with
ϕn(Mn) ⊆ Mn+1. This system of slices gives rise to a limit slice FF =

⋃
n∈N µn(Mn).

Define P : A → C as the (unique) extension of P0 :
⋃

n µn(An) →
⋃

n µn(Cn)
defined by P0(µn(a)) = µn(Pn(a)), a ∈ An. Since the connecting maps entwine
conditional expectations and each Pn is contractive, the map P0 is well-defined
and contractive. A conditional expectation Q : B → D is faithful if no nonzero
positive element of B is mapped to zero. It is almost faithful if Q(x∗b∗bx) = 0 for
all x ∈ B and some b ∈ B implies b = 0. It is symmetric if Q(b∗b) = 0 is equivalent
to Q(bb∗) = 0.

For an inclusion of C∗-algebras C ⊂ A a generalized expectation is a completely
positive contractive map E : A → C̃ such that E|C = id, where C ⊂ C̃ is an inclusion
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of C∗-algebras. If C̃ = I(C) (where I(C) is Hamana’s injective hull, see [5]) then E
is called a pseudo-expectation. For details, consult [11, Section 3].

Let P be a property for C∗-algebras (for example, separable). We call a C∗-
algebra essentially P if it contains an essential ideal with property P . Some results
in [11] can only be applied if the C∗-algebra A is essentially separable, essentially
simple, or essentially of Type I.

3. Inductive limits of noncommutative Cartan inclusions

In this section we prove our main result. Unless otherwise stated, we assume
throughout that we are in the setting given in the preliminaries.

Lemma 3.1. The inclusion C ⊆ A is regular, and P is an almost faithful conditional
expectation.

Proof. We first show that C ⊆ A is a regular inclusion. Let m ∈ NAn
(Cn). We are

going to prove that µn(m) ∈ A normalises C. Let c ∈ C. There are cj ∈ Cj with
lim cj = c. Then

µn(m∗)cµn(m) = lim
j→∞

µn(m∗)µj(cj)µn(m) = lim
j→∞

µj

(
ϕjn(m∗)cjϕjn(m)

)
.

Since ϕjn(m) is a normaliser in Aj by assumption, ϕjn(m∗)cjϕjn(m) ∈ Cj and
so the limit belong to C. This finishes the proof that µn(m) ∈ A normalises C.
Therefore, the C∗-algebra generated by NA(C) contains the C∗-algebra generated
by all the µn(An), which is all of A.

Next, we show that P is almost faithful. Equivalently, N := {a ∈ A : P (b∗a∗ab) =
0 for all b ∈ A} vanishes. [8, Proposition 2.2] implies that N is the largest ideal
of A contained in ker(P ). We know that Nn = N ∩ µn(An) is an ideal of µn(An).
Thus N =

⋃
n Nn (see [2, Lemma III.4.1]). Since P vanishes on Nn, it follows

that Pn vanishes on µ−1
n (Nn). Since Pn is almost faithful, even faithful, this forces

Nn = {0}. Hence N = {0} as desired. □

Lemma 3.2. Let F = {Mn, ϕn}n∈N be an inductive system of slices with limit F .
Then F is a slice for the inclusion C ⊆ A.

Proof. We know that F normalises C because each Mn normalises Cn. It is clear
that F is a closed linear subspace. We claim that FC ⊆ F . Fix ck ∈ Ck and
consider f = limi µi(mi) ∈ F . Then fck = limi µi(miϕik(ck)) which is a limit of
elements in µi(Mi) and hence belongs to F . As F is closed it follows that FC ⊆ F .
A similar proof shows CF ⊆ F . □

We now let S be the collection of all limits of inductive systems F = {Mn, ϕn}n∈N.

Lemma 3.3. The collection S is an inverse semigroup of slices, under the multipli-
cation · and the inverse ∗.

Proof. Let F1 and F2 be the limits of inductive systems of slices F1 = {Mn, ϕn}n∈N
and F2 = {Nn, ϕn}n∈N, respectively. We first show that F1 · F2, is the limit of the
inductive system of slices {Mn · Nn, ϕn}n∈N. First,

⋃
n µn(span(MnNn)) is dense

in
⋃

n µn(Mn · Nn), and
⋃

n µn(span(MnNn)) = span((
⋃

n µn(Mn))(
⋃

n µn(Nn))).
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Then

(1) F1 · F2 = span((
⋃
n

µn(Mn))(
⋃
n

µn(Nn)))

=
⋃
n

µn(span(MnNn)) =
⋃
n

µn(Mn · Nn).

Let us now show that the involution ∗ of the C∗-algebra A acts as a generalized
inverse. Let F ∈ S be the limit of the system {Mn, ϕn}, so that F = ∪n∈Nµn(Mn).
Now note that by continuity of the involution ∗ we have F ∗ = ∪n∈Nµn(M∗

n) . Hence
by (1) it follows that

F · F ∗ · F =
⋃
n

µn(Mn · M∗
n · Mn) =

⋃
n

µn(Mn) = F.

Similarly one can show that F ∗ ·F ·F ∗ = F ∗. To obtain uniqueness of the generalized
inverse, note that if F1, F2 ∈ S are idempotents, then they are ideals of C and hence
commute. Now [12, Theorem 3 in Chapter 1.1] gives uniqueness of the generalized
inverse and hence S is an inverse semigroup. □

Lemma 3.4. The linear span of elements in S is dense in A.

Proof. Any m ∈ NAn(Cn) is contained in the slice Cn · {m} · Cn. Thus the limit of
the inductive system of slices {Ck · {ϕkn(m)} · Ck, ϕk}k≥n contains µn(m). Hence
the linear span of elements of S contains the linear span of

⋃
n µn(NAn

(Cn)). The
latter is dense in A because each inclusion Cn ⊆ An is regular. □

Remark 3.5. Lemma 3.4 implies that S is a saturated grading for A (see [9, Def-
inition 2.1]). Then [9, Remark 2.8] shows that there is a canonical surjective
∗-homomorphism U : C ⋊ S → A.

Lemma 3.6. Let U : C⋊S → A be the universal surjective ∗-homomorphism and let
EL : C ⋊ S → Mloc(C) be the canonical generalized conditional expectation defined
in [9, Proposition 2.9]. Then EL = P ◦ U , and so EL takes values in C ⊆ Mloc(C).

Proof. By Lemma 3.4, elements of S span a dense subset of A. Since conditional
expectations are linear and continuous, it suffices to consider restrictions to building
blocks of inductive systems of slices. Consider such a building block Mn. It suffices
to show that EL(k) = Pn(k) for all k ∈ Mn. On Mn ∩ Cn both Pn and EL
restrict to the identity map as this is contained in Cn. The expectation EL is zero
on the complement Mn · (Mn ∩ Cn)⊥ by construction (see [1, Lemma 4.5]). To
see that the expectation Pn is zero on Mn · (Mn ∩ Cn)⊥, note that Pn preserves
slices by [9, Lemma 4.10]. Then Pn(Mn · (Mn ∩ Cn)⊥) ⊆ P (Mn) · (Mn ∩ Cn)⊥ ⊆
(Mn ∩ Cn) · (Mn ∩ Cn)⊥ = {0}. Since Cn ⊆ An is a Cartan inclusion, the slice Mn

decomposes as Mn = Mn ∩ Cn ⊕ Mn · (Mn ∩ Cn)⊥ by [9, Proposition 2.17]. So
Pn = EL on each slice. Then P and EL agree on the inductive limit slices belonging
to S. Thus EL = P ◦ U . □

Corollary 3.7. The inductive limit expectation P is symmetric.

Proof. Lemma 3.6 says that EL = P ◦ U . Fix a ∈ A with P (a∗a) = 0. There is
a0 ∈ C⋊S with U(a0) = a. By [10, Theorem 4.11], the expectation EL is symmetric.
So EL(a∗

0a0) = P (U(a0)∗U(a0)) = P (a∗a) = 0 implies EL(a0a∗
0) = 0. Then

P (aa∗) = P (U(a0)U(a0)∗) = EL(a0a∗
0) = 0. This shows that P is symmetric. □
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Corollary 3.8. The inductive limit expectation P is faithful.

Proof. By Lemma 3.1 and Corollary 3.7, P is almost faithful and symmetric. There-
fore, it is faithful by [10, Corollary 3.8]. □

Theorem 3.9. Let Cn ⊆ An be aperiodic noncommutative Cartan inclusions.
Let ϕn : An → An+1 be injective and nondegenerate ∗-homomorphisms that satisfy
ϕn(Cn) ⊆ Cn+1, ϕ(NAn

(Cn)) ⊆ NAn+1(Cn+1), and Pn+1 ◦ ϕn = ϕn ◦ Pn. Then
C = lim−→(Cn, ϕn) ⊆ A = lim−→(An, ϕn) is a noncommutative Cartan inclusion. If, in
addition, C is essentially separable, essentially simple or essentially of Type I, then
the inclusion C ⊆ A is aperiodic.

Proof. We are going to prove by contradiction that C detects ideals in all intermediate
C∗-algebras C ⊆ B ⊆ A. Together with the results in [11], this will imply our claims.
So assume that this fails. Then there is a nonzero ideal I ⊆ B with I ∩ C = {0}.
Fix a nonzero positive element b ∈ I. Corollary 3.8 says that the conditional
expectation P is faithful. So there is ϵ > 0 with ∥P (b)∥ > ϵ. Then there are n ∈ N
and a positive element bn ∈ An with ∥bn − b∥ < ϵ/3.

Let I(Cn) denote Hamana’s injective envelope of Cn (see [5]) and let π : B → B/I
be the quotient map. We have got the following commutative diagram:

An A

Cn B B/I

I(Cn) C.

π

Since I(Cn) is injective, the identity homomorphism on Cn extends to a completely
positive contractive map Q : B/I → I(Cn). Next, Q ◦ π extends to a completely
positive contraction R : A → I(Cn). By construction, R(b) = Q(π(b)) = 0 and then
∥R(bn)∥ = ∥R(bn − b)∥ ≤ ∥bn − b∥ < ϵ/3. The reverse triangle inequality implies
ϵ/3 > ∥P (bn) − P (b)∥ ≥

∣∣∥P (bn)∥ − ∥P (b)∥
∣∣ and then ∥P (bn)∥ > 2ϵ/3 > ϵ/3 >

∥R(bn)∥. Hence P |An
̸= R|An

. However, both P and R are completely positive
contractions extending the identity map on Cn, which makes them generalized
expectations for the inclusion Cn ⊆ An. It is well known that Mloc(Cn) ⊆ I(Cn).
So P and R produce two different pseudo-expectations for the inclusion Cn ⊆ An.
Then [11, Theorem 3.6] implies that this inclusion is not aperiodic, in contradiction
to our assumption. This finishes the proof that C detects ideals in any intermediate
C∗-algebra B.

The canonical expectation EL on C⋊S takes values in C by Lemma 3.6. Therefore,
the reduced and essential crossed products agree for the relevant action of S on A.
Since EL = P ◦U and P is faithful, it also follows that the canonical ∗-homomorphism
U : C ⋊ S → A descends to an isomorphism A ∼= C ⋊r S. If T ⊆ S is an inverse
subsemigroup that contains all idempotents of S, then C ⊆ C ⋊r T ⊆ C ⋊r S is
an intermediate C∗-algebra, and we have shown that C detects ideals in it. Now
[11, Proposition 6.7] shows that the action of S is purely outer. Then the inclusion
C ⊆ A is a noncommutative Cartan inclusion by [9, Theorem 4.3]. If C also contains
an essential ideal that is separable, simple, or of Type I, then the inclusion C ⊆ A
is even aperiodic by the conditional implications in [11, Figure 1]. □
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Remark 3.10. The properties of being of Type I, separable, or simple each pass to
inductive limits of C∗-algebras. Thus, if all the noncommutative Cartan subalge-
bras Cn in the building blocks are of Type I, separable, or simple, then the inclusion
C ⊆ A is again aperiodic. This, however, may break down if the building block
subalgebras are only essentially of Type I, simple or separable, because essential
ideals in Cn need not survive to ideals in C.

In particular, if each Cn is commutative, then it is of Type I and so there is no
difference between aperiodic and purely outer actions. Hence Theorem 3.9 subsumes
the setting of [14, Theorem 1.10]. Moreover the argument we give does not rely on
passing to étale twisted groupoids.

Remark 3.11. In the case where each Cn = C0(Xn) is commutative, consider the
Gelfand dual continuous map fn : Xn+1 → Xn inducing ϕn|Cn

. If fn is an open
map, then the inclusion Cn ⊆ Cn+1 induced by ϕn|Cn

is anti-aperiodic, that is,
contains no non-zero aperiodic Cn-bimodules. Indeed, for any non-zero function
g ∈ C0(Xn+1) there is an open subset V ⊆ Xn+1 where |g(x)| > ||g||/2 for all
x ∈ V . Since fn is open we see that C0(fn(V )) is an ideal in C0(Xn), and for any
h ∈ C0(fn(V )) with ||h|| = 1 we have ||hgh|| ≥ supx∈V |g(x)||h(fn(x))|2 > ||g||/2,
so can never satisfy Kishimoto’s condition.

In this situation we have by [11, Proposition 3.9] that generalised expectations
for the inclusion Cn ⊆ An taking values in Cn+1 are unique, since the inclusion
Cn ⊆ An is aperiodic, and the inclusion Cn ⊆ Cn+1 is anti-aperiodic. The maps
ϕn ◦ Pn and Pn+1 ◦ ϕn are both such generalised expectations, so must then be
equal. Thus our ∗-homomorphisms An → An+1 entwine conditional expectations
automatically if the Gelfand duals of the restrictions Cn → Cn+1 are open.

If the Gelfand dual map is not open then inclusions of commutative C∗-algebras
may not be anti-aperiodic. For example consider C[0, 1] ⊆ C[0, 2] induced by the
continuous function f : [0, 2] → [0, 1], defined by

f(t) :=
{

t, t ≤ 1
1, t > 1.

The C[0, 1]-subbimodule C0(1, 2] is annihilated by the essential ideal C0[0, 1) ⊆
C[0, 1]. By [10, Lemma 5.12] the bimodule C0(1, 2] is a non-zero aperiodic C[0, 1]-
subbimodule of C[0, 2], hence the inclusion is not anti-aperiodic.
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