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ABSTRACT
Knowledge graphs (KGs) are a popular way to organise information
based on ontologies or schemas. Despite advances in KGs, repre-
senting knowledge remains a non-trivial task across industries and
it is especially challenging in the biomedical and healthcare do-
mains due to complex interdependent relations between entities,
heterogeneity, lack of standardization, and sparseness of data. KGs
are used to discover diagnoses or prioritize genes relevant to dis-
ease, but they often rely on schemas that are not centred around a
node or entity of interest, such as a person. Entity-centric KGs are
relatively unexplored but hold promise in representing important
facets connected to a central node and unlocking downstream tasks
beyond graph traversal and reasoning, such as training graph neu-
ral networks (GNNs) for a wide range of predictive tasks. This paper
presents an end-to-end representation learning framework to ex-
tract entity-centric KGs from structured and unstructured data. We
introduce a star-shaped ontology to represent the multiple facets of
a person and use it to guide KG creation. Compact representations
of the graphs are created leveraging GNNs and experiments are
conducted using different levels of heterogeneity or explicitness.
A readmission prediction task is used to evaluate the results of
the proposed framework, showing a stable system, robust to miss-
ing data, that outperforms a range of baseline machine learning
classifiers. We highlight that this approach has several potential
applications across domains and is open-sourced.
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1 INTRODUCTION
Knowledge graphs (KGs) have been widely used to organize infor-
mation in a structured and flexible way enabling a variety of down-
stream tasks and applications [28]. KGs consist of nodes (entities)
and edges (relations) between them, that represent the information
in a particular domain or set of domains. The ability of KGs to
support complex reasoning and inference has been explored in a
variety of tasks including search [33, 49], recommendation [25, 67],
and knowledge discovery [37, 47].

KGs are becoming increasingly used across a wide range of
healthcare applications. Knowledge graphs typically rely on infor-
mation retrieved from biomedical literature and early approaches,
such as BioGrid [15], have first depended on manual curation of
knowledge bases tomap protein-to-protein interactions using genes
and proteins as entity types. Semi-automatic and machine-learning
approaches have been introduced to assist, for example, in find-
ing associations or relations between important concepts such as
diseases and symptoms [53]. Recently, healthcare and clinical ap-
plications have otherwise focused on building KGs from electronic
health records (EHRs) where nodes represent diseases, drugs, or
patients, and edges represent their relations [48]. Most approaches
are however limited by the challenging nature of healthcare data,
including heterogeneity, sparseness and inconsistent or lacking
standardization [5]. Recent calls for future work on KGs have ex-
pressed the need to develop new models and algorithms that are
able to take these challenges (e.g. missing data) into account [48].
Furthermore, there is a need to be able to accurately represent infor-
mation from multiple data sources about individual patients. This
is not only required by physicians to support routine hospital activ-
ities but also for clinical research in, for example, developing novel
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predictive models or discovering new important features associated
with poor patient outcomes. A holistic representation of individual
patients should therefore capture not only their clinical attributes
such as diagnoses, procedures, and medication but also other vari-
ables that may also be predictors such as demographics, behavioral
and social aspects (e.g. smoking habits or unemployment). Incor-
porating new types of information in models and analyses will
allow the creation of better tools for evaluating the effectiveness of
therapies and directing them to the most relevant patients.

We present an end-to-end representation learning framework to
extract information and organize it into entity-centric KGs from
both structured and unstructured data. A star-shaped ontology is de-
signed and used for the purpose of representing the multiple facets
of a person and guiding the first stages of a person knowledge graph
(PKG) creation. Graphs are then extracted, and compact represen-
tations are generated leveraging GNNs. We evaluate our approach
using a real-world hospital intensive care unit (ICU) dataset and a
hospital readmission prediction task. To the best of our knowledge,
the novelty of the proposed approach can be summarised as:

• the first end-to-end framework for PKG extraction in Re-
source Description Framework (RDF) and PyTorch Geomet-
ric applicable format, using structured EHRs as well as un-
structured clinical notes.

• the first use of a star-shaped Health & Social Person-centric
Ontology (HSPO) [29] to model a comprehensive patient’s
view, focused on multiple facets (e.g. clinical and social).

• a representation learning approach that embeds personal
knowledge graphs (PKGs) using GNNs and tackles the task of
ICU readmission prediction using a real-world ICU dataset.

• the implementation is open-sourced1 and generalizable so
that it can be used to undertake other downstream tasks.

The paper is structured in the following way: section 2 discusses
related work and section 3 describes the HSPO ontology. Section 4
describes the data preprocessing pipeline for PKG extraction using
the ontology and the processed dataset. Section 5 evaluates different
graph approaches in tackling downstream tasks anchored by an ICU
hospital readmission prediction task. Finally, section 6 discusses the
impact and adoption of the study and highlights the applicability
of the framework in different downstream tasks and domains.

2 RELATEDWORK
Public KGs are perhaps the most pervasive type of KGs today. These
are often based on publicly available documents, encyclopedias
or domain-specific databases and their schemas describe the fea-
tures typically found within them. In recent years, especially in the
health and biomedical domains, different types of KGs have been
proposed from literature or EHRs yet they are not usually centred
around the individual. Recent works include the PubMed KG [69],
enabling connections among bio-entities, authors, articles, affilia-
tions, and funding, the clinical trials KG [16], representing medical
entities found in clinical trials with downstream tasks including
drug-repurposing and similarity searches, and the PrimeKG [14],
a multimodal KG for precision medicine analyses centred around
diseases. Indeed disease-centric KGs have been previously proposed
and despite some efforts in overlaying individual patient informa-
tion [46], these graphs are not centred around the person or patient.

1https://github.com/IBM/hspo-ontology

The idea behind entity-centric KGs and particularly person-
centric graphs is relatively unexplored. One of the first efforts to
define personal knowledge graphs (PKGs) was that of Balog and
Kenter [3] where the graph has a particular “spiderweb” or star-
shaped layout and every node has to have a direct or indirect con-
nection to the user (i.e. person). The main advantage of having such
a star-shaped representation lies in the fact the graph itself becomes
personalized, enabling downstream applications across health and
wellbeing, or personal assistants [3]. Similarly, a review paper [56]
discussed the idea of a Person Health KG as a way to represent ag-
gregated multi-modal data including all the relevant health-related
personal data of a patient in the form of a structured graph but
several challenges remained and implementations are lacking espe-
cially in representation learning. Subsequent works have proposed
research PKGs [13] to represent information about the research
activities of a researcher, and personal attribute knowledge bases
[40] where a pre-trained language model with a noise-robust loss
function aims to predict personal attributes from conversations
without the need for labeled utterances. A knowledge model for
capturing dietary preferences and personal context [60] has been
proposed for personalized dietary recommendations where an on-
tology was developed for capturing lifestyle behaviors related to
food consumption. A platform that leverages the Linked Open Data
[7] stack (RDF, URIs, and SPARQL) to build RDF representations
of Personal Health Libraries (PHLs) for patients is introduced in
[1] and is aimed at empowering care providers in making more
informed decisions. A method that leverages personal information
to build a KG to improve suicidal ideation detection on social media
is introduced by [12]. In the latter, the extracted KG includes several
user nodes as the social interaction between the users is modeled.
UniSKGRep [61] is a unified representation learning framework
of KGs and social networks. Personal information of athletes and
scientists is extracted to create two different universal KGs. The
framework is used for node classification [57] and link prediction
[37]. A graph-based approach that leverages the interconnected
structure of personal web information, and incorporates techniques
to update the representations as new data are added is proposed by
[58]. The approach captures personal activity-based information
and supports the task of email recipient prediction [54].

Despite the above efforts and idiosyncrasies, person-centric KGs
have not been extensively used for predictive or classification tasks,
especially those involving graph embeddings and GNNs. Similarly,
ontologies that support the creation of entity-centric, star-shaped
PKGs are not well established and there is no published research on
representation learning of person-centric KGs using GNNs. To the
best of our knowledge, this paper is the first to propose a framework
for learning effective representations of an entity or person (i.e.,
graph classification setting [11, 68]) using PKGs and GNNs that can
be applied to different downstream predictive tasks.

3 HSPO ONTOLOGY
The HSPO ontology has been designed to describe a holistic view
of an individual spanning across multiple facets. HSPO defines a
schema for a star-shaped PKG [3] with a person as a central node
of the graph and corresponding characteristics (e.g. computable
phenotype) linked to the central node. This view is unique as it is
designed to continue to be expanded with additional domains and
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facets of interest to the individual including but not limited to the
clinical, demographics, and social factors in a first version but also
being able to expand future versions to include behavioral, biologi-
cal, or gene information. Representing a holistic view of individuals
with new information generated beyond the traditional healthcare
setting is expected to unlock new insights that can transform the
way in which patients are treated or services delivered.

Previous ontologies have been built to harmonize disease defini-
tions globally (MONDO [64]), to provide descriptions of experimen-
tal variables such as compounds, anatomy, diseases, and traits (EFO
[42]), or to describe evidence of interventions in populations ([43]).
Other ontologies have focused on specific contexts or diseases, such
as SOHO, describing a set of social determinants affecting individ-
ual’s health [36] or an ontology that describes behavior change
interventions [45]. Further to this, not all ontologies provide map-
pings for their entities into standard biomedical terminologies and
vocabularies. The HSPO aims to address these challenges by be-
ing the first to create a person-centric view linking multiple facets
together, leveraging existing ontological efforts, and providing map-
pings to known terms of biomedical vocabularies when appropriate.

HSPO has been built incrementally with the main objective of
providing an accurate and clear representation of a person and
their characteristics across multiple domains of interest. Domains
of interest were identified and prioritized together with domain
experts and a well-established methodology [50] was followed to
guide development. HSPO is built not only to ensure that questions
may be asked from the generated KGs but also that derived graphs
may be used to train neural networks for downstream tasks.

hasDisease
hasAge

followsReligion

hasMaritalStatus

hasSocialContext

hasInterventionIntervention

Religion

Age

Social Context

Location

Disease

Marital Status

Gender
Race & Ethnicity

Behavior

Person

lives

hasRaceOrEthnicity
hasGenderhasBehavior

Figure 1: Main classes defined in HSPO.

4 PERSON-CENTRIC KG EXTRACTION
Generating Person-Centric KGs requires a data preprocessing
pipeline to prepare the dataset before graphs can be extracted.
This section describes the use case rationale and data, the data
preprocessing pipeline, and the steps taken to extract KGs.

4.1 Use Case Rationale and Dataset
In this study, we use EHRs on ICU admissions provided by MIMIC-
III [31, 32], a well-established publicly available and de-identified
dataset that contains EHRs from a large hospital’s ICU. MIMIC-III,
therefore, includes data and a structure similar to most hospitals,
containing both tabular data and clinical notes in the form of free
text. The data covers the demographic (e.g. marital status, ethnicity,
etc.), clinical (e.g. diagnoses, medication, etc.), and some aspects of
the social view of the patient embedded in text notes. Detailed re-
sults of lab tests and metrics of monitoring medical devices are also
provided. MIMIC-III is not only an appropriate dataset because of
its structure and the types of data that it contains but also because
of its population characteristics, including the reasons for hospital
admission. More than 35% of the patients in this dataset were admit-
ted with cardiovascular conditions [31] which are broadly relevant

across healthcare systems globally. Indeed, following their first hos-
pital discharge, nearly 1 in 4 heart failure patients are known to be
readmitted within 30 days, and approximately half are readmitted
within 6 months [34]. These potentially avoidable subsequent hos-
pitalizations are on the increase and reducing 30-day readmissions
has now been a longstanding target for governments worldwide to
improve the quality of care (e.g. outcomes) and reduce costs [38].

Therefore, both the experiments carried out and knowledge
graphs generated in this paper describe a use case on patients ad-
mitted with cardiovascular conditions and a downstream prediction
task to identify potential 30-day readmissions. This task can be fur-
ther generalised to other conditions as readmissions are a widely
used metric of success in healthcare, and other outcome metrics (e.g.
specific events, mortality) are also possible using the approach pro-
posed in this paper and accompanying open-source code repository.

4.2 Preprocessing Pipeline

Data
Selection

Data
Completion

Data
Sampling

Clinical Notes
Integration

MIMIC-III Dataset

Relevant data
selection
Data aggregation 
JSON format

Dictionary Mapping
Textual description
for diagnoses and
procedures 

Task definition:
ICU readmission 

MetaMap annotator
Employment status
Household composition 
Housing conditions

Figure 2: Preprocessing: The EHRs are preprocessed and a
JSON file is extracted, that consists of admission records de-
scribing the clinical, demographic, and social patient’s view.

4.2.1 Data Selection and Completion. The goal of the data prepro-
cessing is to prepare the dataset for the PKG extraction. Due to
the nature of MIMIC-III, each PKG represents the state of a patient
during a single hospital admission. In the first step of the data pre-
processing pipeline (Fig. 2), we select and aggregate the relevant
data. In order to construct an efficient and applicable representation
for a range of downstream tasks, the data selection step is necessary
to include a subset of the EHR data, that is concise.We exclude the
detailed lab test results (e.g. full blood count test values), as we
assume that the diagnoses, medication, and procedures data are
sufficiently expressive to represent the clinical view of the patient.
The inclusion of fine-grain information poses additional challenges
in the encoding of the PKG and the representation learning process.

Following this strategy, we select the demographic information:
gender, age, marital status, religion, ethnicity, and the essential
clinical data: diagnoses, medication, and procedures. We create a
different record for each admission with the corresponding infor-
mation using the JSON format. The diagnoses and procedures in
MIMIC-III are recorded using the international classification of dis-
eases, ninth revision (ICD-9) [51] coding schema with a hierarchical
structure (with a format xXXX.YYY ) where the first three or four
digits of the code represent the general category, and the subse-
quent three digits after the dot separator represent more specific
subcategories. We group the diagnoses and procedures using the
corresponding general family category (xXXX ) to reduce the num-
ber of different textual descriptions while defining substantially
each diagnosis and procedure. For example, the diagnoses acute
myocardial infarction of anterolateral wall (ICD-9 code: 410.0) and
acute myocardial infarction of inferolateral wall (ICD-9 code: 410.2)
are grouped under the general family diagnosis acute myocardial
infarction (ICD-9 code: 410). This grouping is important, otherwise,
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the encoding of the graph and training of a GNN to solve a down-
stream task would be very challenging, as some diagnoses and
procedures are rare and underrepresented in the limited dataset of
the study. In detail, more than 3,900 diagnoses and 1,000 procedures
have a frequency of less than 10 in the dataset, while after grouping
the numbers drop to less than 300 and 280 respectively.
4.2.2 Data Sampling. As the diagnoses and procedures are given
using ICD-9 coding, we add the textual descriptions of the ICD-9
codes to the dataset.We sample the data records that are appropriate
for the downstream task: 30-day ICU readmission prediction. The
day span is a hyperparameter. The ICU admission records of patients
that passed away during their admission to the hospital, or in a day
span of fewer than 30 days after their discharge, are excluded.
4.2.3 Clinical Notes Integration. The clinical notes of the dataset
contain information related to the clinical, demographic, and so-
cial aspects of the patients. We use the MetaMap [2] annotator
to annotate the clinical notes with UMLS entities (UMLS Metathe-
saurus [8, 44]) and sample the codes that are related to certain social
aspects such as employment status, household composition, and
housing conditions. In this study, we focus on these three social
aspects because social problems are known to be non-clinical pre-
dictors of poor outcomes but also they are often poorly recorded yet
previous works have identified these specific three social problems
available in MIMIC-III [41]. The extracted UMLS annotations of the
clinical notes are integrated into the processed dataset.
4.2.4 Summary of Processed Dataset. After the data preprocessing
steps, the total number of admission records is 51,296. From these,
in 47,863 (93.3%) of the cases, the patients are not readmitted to the
hospital, while 3,433 (6.7%) of the patients returned to the hospital
within 30 days. In the downstream task, we focus on patients diag-
nosed with heart failure or cardiac dysrhythmia. Hence, the final
dataset consists of 1,428 (9.2%) readmission cases and 14,113 (90.8%)
non-readmission cases. Hence, the dataset is highly imbalanced as
the readmission cases are underrepresented. In addition, EHR data
is often incomplete [4, 30, 62, 66] and MIMIC-III, as it consists of
real-world EHRs, is no exception. Information may be missing for
multiple reasons, such as the unwillingness of the patient to share
information, technical and coding errors, among several others [5].
More precisely, we observe that for some fields, such as religion,
marital status, and medication there is a significant percentage of
missing information. Tab. 1 shows the number of missing records
per field for all admissions. We highlight that the social information
(employment, housing conditions, and household composition), ex-
tracted from the unstructured data is scarce. This is an indication

Table 1: Missing information in the processed dataset.
Information Records with missing information

Gender 0
Religion 17,794 (34.69%)

Marital Status 9,627 (18.77%)
Race/Ethnicity 4,733 (9.23%)

Diseases/Diagnoses 10 (0.02%)
Medication 8,032 (15.66%)
Procedures 6,024 (11.74%)
Employment 25,530 (49.77%)

Housing conditions 49,739 (96.96%)
Household composition 42,958 (83.75%)

that the clinical notes focus predominantly on the clinical view
of the patients, without paying attention to aspects that can be
connected to the social determinants of health, as reported [6, 41].

MIMIC-III is protected under HIPPA regulations. Thus, the de-
tailed data distribution per field (e.g. diseases, etc.) cannot be shared
publicly. The implementation for the extraction of the distributions
is available in the official repository accompanying this paper and
can be used when dataset access is officially granted2 to the user.

4.3 Extraction
The HSPO ontology provides the knowledge schema used to create
the PKGs. A PKG is extracted for every admission record of the
processed data. The ontology represents the different classes (e.g.
Religion, Disease, etc.), instances/individuals of the classes (e.g.
Acute Kidney Failure), relations between the classes (e.g. hasDisease,
hasSocialContext, etc.), and data properties (e.g. the instances of
the class Age has a data property age_in_years that is an integer
number). We use the rdflib python library for the implementation.
The extracted knowledge graphs follow the RDF [19] format (Fig.
3), which is the primary foundation for the Semantic Web. Thus,
SPARQL Query Language [18, 52] can be used to query, search and
perform operations on the graphs.

Figure 3: Person-Centric KG: The graph represents the demo-
graphics, clinical, intervention, and social patient’s aspects.

5 EVALUATION
This section reflects on the reliability and effectiveness of the
person-centric graphs in downstream tasks. We evaluate the patient
representation learning using person-centric graphs and a GNN on
a specific ICU readmission prediction task. We provide insights into
the applicability, benefits, and challenges of the proposed solution.

5.1 Data Transformation
The extracted graphs in RDF format cannot be used to train GNNs.
Hence, a transformation step is implemented to transform graphs
into the format (.dt files) of PyTorch Geometric [21], as we adopt
this framework to build the models. The transformed graphs consist
of the representations (initialized embeddings) of the nodes and
the adjacency matrices for each relation type. They follow a triplet-
based format, where the triplets have the following format: [entity 1,
relation type, entity 2] (e.g. [patient, hasDisease, acute renal failure]).

Training GNNs using person-centric graphs as input is a rela-
tively unexplored field and defining a priori the most useful graph
structure is not a trivial task. We experiment with 4 different graph
versions (Fig. 4) to find the most suitable structure for the down-
stream task given the available data. The strategy to define the
2https://physionet.org/content/mimiciii/1.4/
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Figure 4: The 4 directed graph structures of the study are
presented. The colors of the nodes represent the different
types of information and are consistent across the versions.

different graph structures is described as follows: starting from a
detailed version, we progressively simplify the graph by reducing
the heterogeneity with relation grouping. We highlight that find-
ing the optimal level of heterogeneity is an open and challenging
research question as it depends on the available data, the down-
stream task, and the model architecture. More precisely, the first
version is aligned with the schema provided by HSPO and includes
8 relation types (hasDisease, hasIntervention, hasSocialContext, has-
RaceOrEthnicity, followsReligion, hasGender, hasMaritalStatus, and
hasAge). The detailed demographic relations are grouped under the
hasDemographics relation in the second version. The third version
is the most simplified containing only the has relation type.

Lastly, we present the fourth version with the inclusion of group
nodes to explore the effectiveness of graph expressivity on learnt
representation. The design of the fourth version is based on the
assumption that the summarization of the corresponding detailed
information (e.g. the disease information is summarized in the
representation of the Disease node) and the learning of a grouped
representation during training can boost the performance of the
models. To explore this assumption, we introduce a node type group
node and add 7 group nodes (Diseases, Social Context, Demographics,
Age, Interventions, Procedures, and Medication). For the inclusion
of the group nodes in the graph, we introduce the general relation
type has. Fig. 4 presents the four directed graph structures. We also
experiment with the undirected corresponding versions.

The nodes of each graph are initialized using the bag-of-words
(BOW) approach. Hence, the initial representations are sparse. We
create the vocabulary using the textual descriptions of the end
nodes (diagnoses names, medication, etc.) and the description of
the group nodes (patient, social context, diseases, interventions,
medication, procedures, demographics, and age). The final vocab-
ulary consists of 3,723 nodes. Alternatively to the introduction
of sparsity using the BOW approach, a language model, such as
BioBERT [39], PubMedBERT [24], and CharacterBERT [20, 63], can
be used for the node initialization. We provide this capability in
our open-source framework.

5.2 GNNs and Baseline Models
We experiment with two different GNN architectures and each of
them has two variations. The difference between the variations lies
in the final layer of the model which is convolutional or linear (Fig.
5). The first model (PKGSage) is based on Sage Graph Convolution
Network [26] and the second (PKGA) utilizes the Graph Attention
Network (GAT) architecture [10, 65]. Given a graph structure G
with N nodes, a sequence of transformations T is applied, and the
final prediction p of the model is extracted as follows:

𝑋𝑘,𝑖 = 𝜎 (𝑇𝑖 (𝑋𝑘,𝑖−1,𝐺)),𝑤𝑖𝑡ℎ 𝑘 ∈ [1, ..., 𝑁 ] 𝑎𝑛𝑑 𝑖 ∈ [1, 2, 3], (1)
𝑝 = 𝜎 (𝑋𝑛,3), (2)

where 𝑇𝑖 is the transformation (Sage or GAT Convolution, or
linear) of the 𝑖𝑡ℎ layer, 𝑋𝑘,𝑖 is the 𝑘 node representation after the
𝑇𝑖 transformation, 𝑋𝑛,3 is the final output of the last layer for the
patient node, and 𝜎 is the activation function. ReLU is used as the
activation function for the first two layers and Sigmoid for the last
layer. In principle, the graphs are multi-relational and this can lead
to rapid growth in the number of model parameters. To address this
issue, we apply basis decomposition [59] for weight regularization.

We incorporate a set of baseline classifiers to compare the graph-
based approach with traditional machine-learning algorithms. Par-
ticularly, k-nearest neighbors (KNN) (k is set to 5 based on the
average performance in the validation set), linear and non-linear
Support Vector Machines (L-SVM and RBF-SVM respectively) [17],
Decision Tree (DT) [9], AdaBoost [22, 27], Gaussian Naive Bayes
(NB), and Gaussian Process (GP) [55] with radial basis function
(RBF) kernel are included in the study. We apply one-hot encoding
to transform the textual descriptions into numerical features for
the diagnoses, medication, and procedures. The remaining features
(gender, religion, marital status, age group, race, employment, hous-
ing conditions, and household composition) are categorical, so we
encode each category using mapping to an integer number. For a
fair comparison, feature engineering or feature selection techniques
are not implemented, since the graph-based models include all the
available information extracted from the EHRs.
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Figure 5: The input is a graph with N number of nodes and
edge index per relation type. The dimension of the initial
representation of the nodes is 3,723. The PKGSage models
leverage the Sage Convolution while the PKGA models in-
clude the GAT Convolution module. The final output of the
models is the readmission probability of the patient.
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5.3 Experimental Setup
We create 10 different balanced dataset splits for experimentation
to overcome the imbalance problem. In detail, the 14,113 non-
readmission cases are randomly divided into 10 folds. Combined
with the 1,428 readmission cases, these folds constitute the final
10 balanced splits. For each balanced split, 5-fold cross-validation
is applied. We highlight that we use the same splits across the dif-
ferent experimental settings to have a fair comparison. The Adam
optimizer [35] is used and the learning rate is set to 0.001. The
models are trained for 100 epochs and the best model weights are
stored based on the performance in the validation set (15% of the
training set). The number of bases, for the basis decomposition
method [59], is 3, and the batch size is set to 32.

5.4 Results
We present the average results, across the different runs and folds
of 5-fold cross-validation, of the models using different graph ver-
sions (Tab. 2) and compare the performance of the best models
with various machine learning classifiers (Tab. 3). Starting with the
intra-model comparison, the PKGSage model performs best using
the first directed graph version with 62.16% accuracy and the third
undirected graph version with 68.06% F1-score. The PKGA model
achieves 61.69% accuracy and 67.49% F1-score using the third undi-
rected graph version. Overall, the end-to-end convolution strategy
is advantageous as the second variation of the models (PKGSage2,
PKGA2) performs better than the first variation with the linear final
layer in most cases. Nonetheless, the best performance is achieved
by the PKGSage1 model. The inter-model comparison reveals that
both models (PKGSage, PKGA) achieve similar results.

The graph’s structure is essential since the performance varies
according to the graph version. More precisely, the results are com-
parable with less notable differences using the undirected/directed
first version of the graph, and the undirected second and third ver-
sions. However, the performance degradation is significant when
the directed second and third versions are utilized. In both versions,
we observe that all links point to the central Patient node (Fig. 4),
and the representations of the remaining nodes are not updated
during training, imposing a challenge on the trainability of the
models. However, the same structure is present in the directed first
version where no performance drop is noticed. Another possible
reason is the level of heterogeneity of the graph. The first version
has 8 relation types, while the second and third versions contain
4 and 1 relation types respectively. Given these, we conclude that
the direction of the links and graph heterogeneity are crucial for

Table 2: Results: models with different graph versions.
G.1 D.2 Model Accuracy F1-Score G.1 D.2 Model Accuracy F1-Score

V1 U
nd

ire
ct
ed PKGSage1 61.72 ± 0.98 67.86 ± 1.31

V3 U
nd

ire
ct
ed PKGSage1 61.69 ± 0.91 68.06 ± 1.14

PKGSage2 61.27 ± 0.92 67.44 ± 1.34 PKGSage2 61.48 ± 0.93 67.5 ± 1.21
PKGA1 59.73 ± 1.08 66.32 ± 1.12 PKGA1 61.69 ± 0.71 66.32 ± 1.56
PKGA2 61.39 ± 0.89 66.58 ± 1.56 PKGA2 61.46 ± 0.82 67.49 ± 1.76

D
ire

ct
ed

PKGSage1 62.16 ± 0.89 67.93 ± 1.35

D
ire

ct
ed

PKGSage1 50.2 ± 0.51 64.21 ± 1.74
PKGSage2 61.72 ± 0.73 67.2 ± 1.68 PKGSage2 49.93 ± 0.57 61.43 ± 1.83
PKGA1 60.5 ± 1.26 66.52 ± 1.51 PKGA1 50.2 ± 0.63 61.54 ± 1.91
PKGA2 61.38 ± 0.87 67 ± 1.65 PKGA2 49.98 ± 0.61 61.44 ± 1.87

V2 U
nd

ire
ct
ed PKGSage1 60.43 ± 0.63 67.85 ± 1.22

V4 U
nd

ire
ct
ed PKGSage1 49.5 ± 0.55 59.77 ± 2.54

PKGSage2 60.93 ± 0.81 67.06 ± 1.45 PKGSage2 54.5 ± 1.4 59.51 ± 2.36
PKGA1 58.95 ± 0.78 66.21 ± 1.36 PKGA1 52.08 ± 1.68 53.1 ± 1.88
PKGA2 60.24 ± 0.99 67.37 ± 1.31 PKGA2 57.9 ± 0.91 58.67 ± 0.9

D
ire

ct
ed

PKGSage1 51.26 ± 0.81 65.1 ± 1.58

D
ire

ct
ed

PKGSage1 49.45 ± 0.58 58.41 ± 2.75
PKGSage2 51.61 ± 0.76 61.75 ± 1.26 PKGSage2 54.79 ± 1.79 59.87 ± 2.67
PKGA1 51 ± 0.81 64.86 ± 1.27 PKGA1 51.01 ± 1.29 62.92 ± 1.54
PKGA2 51.3 ± 0.91 63.84 ± 1.43 PKGA2 57.32 ± 1.54 60.16 ± 2.28

1 G.: Graph, 2 D.: Direction

Table 3: Results: Comparison with baseline models
Metric DT AdaBoost NB GP
Accuracy 55.34 ± 0.55 60.03 ± 0.65 53.92 ± 1.44 56.82 ± 0.57
F1-Score 57.5 ± 0.65 59.01 ± 1.44 39.93 ± 3.56 52.53 ± 1.62
Metric KNN L-SVM RBF-SVM PKGSage1
Accuracy 57.31 ± 0.54 61.58 ± 0.62 62.11 ± 0.65 62.16 ± 0.89
F1-Score 50.9 ± 1.73 61.45 ± 1.49 64.44 ± 1.49 68.06 ± 1.14

the final performance of the models. Leveraging the fourth graph
version is not advantageous since the models achieve worse per-
formance. This indicates that introducing the group nodes and
additional expressibility can be an obstacle to the trainability and
performance of the models. We observe saturation and stability
problems [23] during training when the fourth version is used. The
best-performing models of the study also significantly outperform
the baseline models.We notice an improvement of 3.62% in F1-Score.
Based on the accuracy metric, only the SVM classifiers (linear and
non-linear) achieve comparable results. The results illustrate the
potential of the PKG-based models in downstream predictive tasks
and particularly in ICU readmission prediction.

5.5 Ablation Study
Following the observation that the data is incomplete, we conduct
an ablation study to probe the robustness of our approach in han-
dling missing information. The following hypotheses are drawn:

• The patient’s clinical view (medication, diseases, procedures)
is very important in predicting ICU readmission. (H1)

• The exclusion of additional information results in lower per-
formance. (H2)

We apply the ablation study using the best-performing model
PKGSage1 with the directed first graph version (PKGSage1DV1)
and the undirected third graph version (PKGSage1UnV3). In the
first step, we exclude one facet of the data (e.g. medication, proce-
dures) and evaluate performance degradation. To address the H2
hypothesis and to further test model robustness, in the next step,
we exclude two facets in a complete manner (as depicted in Tab. 4).
The exclusion of the disease information results in the most signifi-
cant performance decline in the accuracy for both model versions
and in the F1-score for PKGSage1UnV3. Excluding the medication
information leads to 1.13% drop in F1-score for PKGSage1DV1. The
results of the ablation study only partially support the H1 hypothe-
sis. The robustness of the models in handling missing information
is profound as the performance deterioration is limited. In the worst

Table 4: Ablation Study

Excluded Information PKGSage1 undirected V3 PKGSage1 directed V1

Accuracy F1-Score Accuracy F1-Score
- 61.69 68.06 62.16 67.93

Social aspect 60.68 (↓ 1.01) 67.63 (↓ 0.43) 60.5 (↓ 1.66) 67.64 (↓ 0.29)
Medication 59.7 (↓ 1.99) 66.98 (↓ 1.08) 60.03 (↓ 2.13) 66.8 (↓ 1.13)
Procedures 60.42 (↓ 1.27) 67.43 (↓ 0.63) 59.97 (↓ 2.19) 67.56 (↓ 0.37)
Diseases 59.69 (↓ 2) 66.87 (↓ 1.19) 59.59 (↓ 2.57) 67.48 (↓ 0.45)

Demographics 60.43 (↓ 1.26) 67.43 (↓ 0.63) 60.16 (↓ 2) 67.54 (↓ 0.39)
Social aspect and Medication 60.13 (↓ 1.56) 66.84 (↓ 1.22) 60.01 (↓ 2.15) 66.67 (↓ 1.26)
Social aspect and Procedures 60.13 (↓ 1.56) 67.99 (↓ 0.07) 59.87 (↓ 2.29) 67.34 (↓ 0.59)
Social aspect and Diseases 59.87 (↓ 1.82) 66.62 (↓ 1.44) 59.6 (↓ 2.56) 67.18 (↓ 0.75)

Social aspect and Demographics 60.64 (↓ 1.05) 66.84 (↓ 1.22) 60.14 (↓ 2.02) 66.88 (↓ 1.05)
Medication and Procedures 58.76 (↓ 2.93) 66.59 (↓ 1.47) 59.47 (↓ 2.69) 66.86 (↓ 1.07)
Medication and Diseases 59.49 (↓ 2.2) 65.69 (↓ 2.37) 59.72 (↓ 2.44) 66.06 (↓ 1.87)

Medication and Demographics 59.84 (↓ 1.85) 66.8 (↓ 1.26) 59.9 (↓ 2.26) 66.56 (↓ 1.37)
Procedures and Diseases 59.32 (↓ 2.37) 66.62 (↓ 1.44) 58.53 (↓ 3.63) 66.38 (↓ 1.55)

Procedures and Demographics 60.63 (↓ 1.06) 67.69 (↓ 0.37) 60.01 (↓ 2.15) 67.67 (↓ 0.26)
Diseases and Demographic 59.53 (↓ 2.16) 66.85 (↓ 1.21) 59.56 (↓ 2.6) 66.52 (↓ 1.73)
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case, accuracy and F1-score drop by 2.57% and 1.13% respectively.
A similar pattern is revealed when we remove two facets of the
data as the removal of clinical information is reflected in lower
performance. More precisely, the exclusion of the medication and
disease information leads to 2.37% and 1.87% drop in F1-score for
the PKGSage1UnV3 and PKGSage1DV1 models correspondingly.
PKGSage1UnV3 is less accurate by 2.93% when medication and
procedures nodes are absent, and PKGSage1DV1 achieves 58.53%
accuracy (3.63% reduction) when procedure and disease data are
excluded. The performance of the models is robust even when two
out of three clinical facets (medication, diseases, and procedures)
are unavailable. We highlight that stability and robustness are key
properties, especially in healthcare data where missing information
is inevitable due to privacy issues, system or human errors.

6 DISCUSSION
The proposed end-to-end framework for person or entity-centric
KGs has impacts on the technology and industry and we highlight
the benefits and challenges of adopting KG technologies in practice.
We focus on the healthcare domain yet present a solution that is,
by design, generalisable across domains and it is also not restricted
by the final predictive task. The proposed approach was evaluated
using complex real-world data, which is imbalanced, heterogeneous,
and sparse, and the ontology efforts and approach were reviewed
by domain experts from multiple organisations. The proposed star-
shaped KG approach and ontology will not only allow data from
disparate sources and types to bemeaningfully combined, as already
demonstrated, but also allow pertinent new research questions to be
addressed. This paves theway towards a comprehensive and holistic
360°view of the person to be created from multiple data sources
and could be further generalised to patient cohorts or groups of
individuals. This approach is also scalable as multiple PKGs can be
created, one for each patient, unlike traditional approaches relying
on very large general knowledge KGs or others which have reported
scalability issues [59]. The topology of traditional KGs used to query
and infer knowledge might not be easily applied to learn graph
representations using GNNs primarily due to their large size. Our
experiments show that reducing the heterogeneity with relation
grouping has an effect on F1-score provided that the PKG structure
is generally fit for learning patient representations using GNNs.
We also observe that the proposed framework is able to generalise
even with limited amount of data.

Furthermore, the ontology design process can be used as guid-
ance for the creation of other entity-centric ontologies and the
HSPO is continuing to be expanded with new domains and facets.
The open-sourced implementation can be reused, with necessary
adjustments, to extract entity-centric knowledge graphs in RDF
or PyTorch Geometric applicable format. Finally, a wide range of
predictive tasks using neural networks, or inferences using the KGs
produced can be addressed, even if these will be constrained by the
availability and expressiveness of the data and provided annota-
tions. We highlight the applicability of the framework through a
readmission prediction task using the PKGs and GNN architectures.
Following the proposed paradigm, other classification tasks, such
as mortality prediction and clinical trial selection, can be under-
taken. The efficient patient representation may also be leveraged
for clustering and similarity grouping applications.

7 CONCLUSION AND FUTUREWORK
This paper proposes a new end-to-end representation learning
framework to extract entity-centric ontology-driven KGs from
structured and unstructured data.We describe howKG technologies
can be used in combination with other technologies and techniques
(learning entity representation using GNNs, predicting outcomes
(prediction tasks) using neural networks and learnt representation)
to drive practical industry applications with an example in the
healthcare industry. The open-sourced framework and approach
are scalable and show stability and robustness when applied to
complex real-world healthcare data. We plan to extend and apply
the PKG and the proposed framework to new use cases which will
further drive adoption. In healthcare, we envisage that this work
can unlock new ways of studying complex disease patterns and
drive a better understanding of disease across population groups.
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