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Abstract 

To ensure the quality, safety, and long-term durability of fiber-reinforced composite 

components, it is necessary to explore approaches for monitoring and detecting defects or 

damage. Non-destructive detection techniques based on dynamic properties and structural 

response, such as natural frequency, damping, and modal shape. This study presents a 

numerical-experimental methodology based on dynamic analysis of structures made of 

composite materials. The methodology utilizes a surrogate model to establish a design envelope 

through a Kriging metamodel and to assess a damage index for structures affected by impact 

damage. The Latin Hypercube method is employed to generate values for the input variables, 

while the Finite Element Method (FEM) is utilized to calculate the natural frequencies. The 

Kriging metamodel is then employed to generate a numerical model, which is optimized using 

the Efficient Global Optimization (EGO) algorithm and the Expected Improvement metric (EI) 

to minimize computational costs. The methodology yields a frequency range and determines a 

design envelope to evaluate the manufacturing quality of the structure. A damage index is used 

to identify structures with defects or impact damage, allowing for the assessment of severity. 

Additionally, the study evaluates the impact of incorporating metrics into the Latin Hypercube 

method to further reduce computational costs. Finally, this proposed approach contributes to 

the development of monitoring systems for assessing the manufacturing quality of composite 

structures and detecting impact damage through dynamic analysis. By utilizing this 

methodology, it becomes possible to effectively identify and evaluate the severity of defects 

and damage in composite structures, thus enhancing quality evaluation processes. 
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1. Introduction 

With the advancement of technological development, more complex structures require specific 

materials [1-2]. The combination of low weight, high strength, high stiffness, and resistance to 

abrasion and impact is difficult to find in conventional materials [3-4]. Composite materials 

provide new opportunities for high-performance structures. By combining two or more 

different materials, structural properties are different from the properties of each of the 

components [5]. However, unlike metallic structures, composite properties are not easy to 

control during the manufacturing, and as a consequence, some level of uncertainty in the 

properties of these materials is usually inevitable. These uncertainties make the design task 

difficult and increase the probability of errors in predicting the structural life cycle. Strict 

control and monitoring of the loss of structural properties is required to prevent a premature 

failure of the structure. These losses can occur due to the low quality of the manufacturing 

process, and damage suffered during their lifetime by external agents. The development of 

efficient methodologies and monitoring systems for detecting defects and/or damage in 

composite structures is important to avoid catastrophic failure [6-9]. According to [1], damage 

and defects can occur during materials processing, component manufacture, or in-service use. 

The present work considers defects which originate from the manufacturing process, and 

damage is caused due to the in-service use, such as an impact event. 

 Vibration characteristics of the structure qualify as an indicator for detecting and 

monitoring defects and damage in composite structures. Vibration-based damage methods 

(VBM) follow the changes in the dynamic structural response caused by the defect or the 

damage. These changes are sensed by structural health monitoring (SHM) system, which then 

compare the responses of intact and damaged structures in terms of mode shapes, natural 

frequencies, or damping factors using damage indices. The SHM system  estimates the severity 

of defect or damage and it can make a prognosis of the structure in terms of service life [10]. 

Dynamic analyses show high potential not only to be applied in SHM systems but also to be 

used as Non-Destructive Test [11-12]. the Frequency Response Functions (FRF) provide a very 

adequate metric for this task in composite structures [13]. Several damage detection methods 

assume that damage causes changes in the mass and/or stiffness of the structure [14-16], which 

naturally change the FRF. However, to guarantee that the change in the FRF is caused by 

damage which originates from in-service usage, non-destructive testing on the structure is 

required before it is put in service to verify the presence of manufacturing defects [17-19]. This 

task is particularly relevant for composite structures, where the manufacturing process has a 

high number of parameters to be controlled. 



 

 To address complex problems with a large number of parameters, Finite Element 

Analysis (FEA) can be a useful approach. FEA is particularly effective in tackling structural 

optimization problems, which have gained significant attention, especially when combined with 

the study of structural reliability. By utilizing FEA, engineers and researchers can create models 

of physical structures and analyze how they behave under different conditions, allowing them 

to optimize designs and improve the reliability of structures [20]. However, these problems 

have a high computational cost due to the large numbers of numerical models that must be 

solved, taking into account the range of parameter settings and parameter combinations that are 

required. Many techniques used in regression analysis and prediction modeling, such as kriging 

[20-28], multivariate adaptive regression splines (MARS) [29-30], and response surface [31-

32]. Choosing the appropriate method depends on the nature of the data, the problem at hand, 

and the goals of the analysis. For example, kriging is more suitable for spatial data, especially 

when spatial autocorrelation is present, while response surface modeling and MARS are better 

suited for simpler datasets with a focus on non-spatial relationships and interpretability. 

In this context, the concept of surrogate models is useful in this respect, such as the 

Kriging metamodel, which has been used in optimization problems. In addition, due to the high 

computational cost of the objective function, Efficient Global Optimization (EGO) can be used, 

which is efficient to limit the number of evaluations of the objective function [21-23]. Literature 

provides scientific contributions that surrogate models that are specifically developed for 

composite structural analysis. Echaabi et al. [24] present a review of different failure criteria 

(Tsai-Wu, maximum stress and strain, Hashin criterion, and Hart-Smith criterion) with a 

Kriging metamodel. The authors discuss the computational implementation, pointing out the 

validity, advantages, and limitations of each case. Lanzi and Giavotto [25] propose a multi-

objective optimization procedure for the design of composite stiffened panels in post-buckling 

states. The procedure is based on genetic algorithms with three different methods of global 

optimization: neural networks, radial basis functions, and Kriging approximation. Their results 

prove that the initial imperfections (defects) affect not only the first-buckling load but also the 

post-buckling range up to collapse. Jansson et al. [20] evaluate approximation models used in 

conjunction with genetic algorithms via a generic beam structure as an example problem. The 

accuracy of four different approximation methods is assessed, polynomial models with and 

without term selection, radial basis functions, and Kriging. Lu et al. [26] propose an inverse 

procedure to identify the mechanical properties of both the carbon fibre and the interphase 

region based on computational micromechanics with a Kriging metamodel. Mukhopadhyay et 

al. [27] show a critical comparative assessment of Kriging model variants for surrogate-based 



 

uncertainty propagation considering stochastic natural frequencies of composite doubly-curved 

shells. The study reveals that universal Kriging coupled with marginal likelihood estimate 

yields the most accurate results, followed by Co-Kriging and Blind Kriging. Pavlack et al. [28] 

investigate the performance of a data-driven methodology for quantifying damage based on the 

use of a metamodel obtained from a Polynomial Chaos Kriging method. Polynomial Chaos 

Kriging shows promising results for capturing the proper trend for the severity of the damage 

as a function of the damage index. 

 The present work consists of an additional contribution to a methodology, which has 

been developed by the authors over the years [17-18, 33-38]. The proposed procedure goals to 

detect and monitor defects from the manufacturing process as well as damage from in-service 

usage of composite structures, such as impact events. In a first step, design variables are 

investigated that are most affected by the manufacturing process. In other words, the variables 

are identified that have the strongest effect on the dynamic behaviour of the structure, defining 

the tolerance limits for a set of composite plates. In a second step, the finite element model is 

updated using the Kriging metamodel. Third, composite specimens are manufactured. This 

work uses a glass fibre and epoxy resin stack-up with sixteen layers, and two different types of 

reinforcements: unidirectional (UD) and bidirectional (BD). Physical vibration tests are carried 

out with the specimens. Results of both physical and virtual experiments are used to provide a 

range of possibilities for the FRFs, which can be applied to monitor and detect defects and 

damages based on damage indices. Finally, there is a discussion on defect and damage detection 

via VBM and metamodels. 

 

2. Fundaments of Metamodels 

Manufacturing defects are extremely complex to analyse, requiring enormous computational 

time, which hampers the optimization process. The alternative is the use of surrogate models 

(metamodels). It reduces the number of accesses to the objective function and, consequently, 

the computational time and resources, which are not always available. Thus, a metamodel 

consists of the approximation of a high-fidelity model that can be used to replace the original 

one. The construction of the surrogate model is based on obtaining an explicit function of low-

cost 𝑓 that the response is close to the response of the original model, which is called high 

fidelity. Thus,  

 

𝑓(𝑥) =  𝑓(𝑥) +  𝜀(𝑥), (1) 



 

 

where 𝑓(𝑥) represents the response of the model to a certain point in the design space, 𝑓(𝑥) is 

the response of the metamodel to this same point, and ε(𝑥) corresponds to the error. 

 In general, metamodels are applied to create models that are closer to reality. This 

modelling via response surface or metamodel is used to determine the minimum global. These 

metamodels are created by a curve or surface adjustment from a set of initial points based on a 

DoE (Design of Experiments), belonging to the search domain of the project variables [39]. In 

other words, the metamodel functions as an “interpolator curve” of the initial points without 

using the objective function. To build it, it is not necessary for the region where the minimum 

global [40]. So, this method is often used to replace the objective function to obtain a fast 

response. The response surface, once obtained, will be many orders of magnitude faster than a 

primary source, and still useful for predicting other function points [21]. 

 

2.1. Latin Hypercube 

For sampling uniformly a design space, a rectangular grid of points can be used. Thus, Latin 

Hypercube (LH) designs have become particularly popular among strategies for computer 

experiments because it is an attractive sampling technique. It is flexible enough to provide data 

besides being capable of covering small to large design spaces. Point locations are determined 

using a random procedure [41]. To obtain an accurate model, the sampled points must be 

distributed as evenly as possible, filling the entire design space. An experiment design meets 

this characteristic by filling the space [21]. 

 According to Forrester et al. [21], a Latin Hypercube can be constructed by splitting the 

design space into equal-sized bins and placing points in the bins, ensuring that in each bin, there 

is a unique point. Therefore, an experimental design can be written as 𝑝 points and 𝑑 dimensions 

into a matrix 𝑝  ×  𝑑, where the column matrix represents the variables, and the row matrix 

represents the samples. A Latin Hypercube Sampling (LHS) is generated considering that each 

one of the 𝑑 dimensions is divided into 𝑝 equal levels, and there is only one point (or sample) 

in each level, aiming to generate points whose projections are orthogonal. Point locations are 

determined by a random procedure [41]. The maximin metric is one type of metric that can be 

used. Given the distances between the pairs of points present in the Latin Hypercube, position 

them in ascending order {𝑑1, 𝑑2, … , 𝑑𝑛 / 𝑑1 < 𝑑2 , … , 𝑑𝑛−1 < 𝑑𝑛 } and try to maximize the 

shortest distance between the points, i.e., 𝑑1. After that, the procedure is repeated for the 



 

distance 𝑑2. In addition, in order to minimize 𝐽𝑗  , i.e, to minimize the number of times a given 

distance 𝑑𝑗  is repeated [42]. Distance setting can be set as 

𝑑𝑝(𝒙(1), 𝒙(2)) = (∑|𝑥𝑗
(1)

− 𝑥𝑗
(2)

|
𝑝

𝑘

𝑗=1

)

1
𝑝

 , (2) 

 

where the index i represents the planes, k the dimension of the problem and p the norm used. 

For p = 1, it has the rectangular distance (Manhattan norm) and p = 2 the Euclidean norm. The 

use of the scalar value criterion function allows using these vectors and determining the best 

plane through the obtained index. Competing sampling plans can be classified through [43],  

 

Φ𝑞(𝑿) = (∑ 𝐽𝑗𝑑𝑗
−𝑞

𝑚

𝑗=1

)

1
𝑞

  , (3) 

 

where the smaller the value obtained for Φ, the better the sample space of X. Morris and Mitchell 

[43] suggested using values for q equal to 1, 2, 5, 10, 20, 50 and 100 and finding the best plan 

obtained between them through the maximin metric. 

 

2.2. Kriging Metamodel 

Metamodels are known as response surfaces, surrogates, emulators, and auxiliary models. 

According to Kleijnen et al. [23], a metamodel is an approximation of the input/output (I/O) 

function that is implied by the underlying simulation model. Surrogate models, such as Kriging, 

are fitted to data that are obtained for larger experimental areas. 

 Kriging model is constructed based on the correlation function theory. Particularly, it is 

an exact interpolation of the given data and goes through all the sampling points. Therefore, the 

Kriging model usually has a higher approximation accuracy than the traditional Root Mean 

Square (RSM). The Kriging model drastically reduces the computational time required for 

objective function evaluation in the optimization (optimum searching) process. This technique 

considers the relationship between input and output as a black-box system, and other system 

information, such as the internal process of dynamic analysis is not required. It can create, for 

example, a fast-running surrogate model to replace the exact Finite Element Analyses, and then 

the solving time of optimization will be reduced significantly. Thus, the potential of metamodel 



 

techniques is indisputable in the model updating the field. A comparison of the most commonly 

used metamodels is presented by Simpson et al. [44]. 

 The best linear unbiased predictor is a surrogate model, frequently used to represent a 

physical phenomenon or process, which is difficult to represent by numerical models or to 

measure experimentally. Kriging is considered a flexible model that depends on a set of 

parameters that control the properties of the model [45]. The goal of Kriging is to estimate the 

parameters that describe how the function typically behaves [46]. In this model, errors in 

predictions are considered dependent. 

 The building of the Kriging model starts with a given set of sample data, 𝑿 =

{𝒙1,  𝒙2,   … ,  𝒙𝑛
𝑇}. Considering the responses 𝒀 = 𝒚1,  𝒚2,   … ,  𝒚𝑛

𝑇, the expression of the Kriging 

model reflects the relationship between them as 

 

𝑦(𝒙𝑖) = 𝒇𝑇(𝒙𝑖)𝜷 + 𝑧(𝒙𝑖), (4) 

 

where 𝒇𝑇(𝒙𝑖) is a polynomial vector of the sample 𝒙𝑖, 𝜷 is the vector of the linear regression 

coefficients to be estimated, and 𝑧(𝒙𝑖) represents error and is assumed to be a stochastic process 

that follows a normal distribution of 𝑁(0, 𝛔2), with a zero mean and standard deviation 𝛔. 

 The fundamental assumption of the Kriging model is that the same input will lead to an 

identical output. Therefore, the deviation between the output response and the polynomial 

regression part is only due to the modelling error itself, regardless of the measurement error and 

other random factors. This method does not depend on the simulated precision of the 

polynomial part to the response surface but focuses on constructing the appropriate surrogate 

model by the effective filling of the stochastic process part, which makes it more suitable for 

dealing with non-linearity. Thus, the polynomial part is often taken as a constant in some other 

references. 

 To estimate the stochastic process 𝑧(𝒙𝑖), the Kriging method assumes that the true 

response surface is continuous, any two points will tend to have the same value as the distance 

in between approaches zero, and it is the same for 𝑧(𝒙𝑖) of two points. Thus, the correlation 

between 𝑧(𝒙𝑖) of any two sample points can be expressed as a function of their spatial distance. 

The most widely used Gaussian correlation model is adapted as, 

 

𝑹 (𝑧(𝒙𝑖),  𝑧{(𝒙}𝑗)) =  𝑒𝑥𝑝  (− ∑ 𝜃𝑘|𝑥𝑖
𝑘  −  𝑥𝑗

𝑘|
𝑝𝑘

𝑚

𝑘=1

) , (5) 

 



 

where 𝑥𝑖
𝑘 and 𝑥𝑗

𝑘 are the 𝑘𝑡ℎ components of the two sample points 𝒙𝑖 and 𝒙𝑗, 𝑚 is the number 

of design variables. The 𝑝𝑘 and θ𝑘 are sample-adjusted interpolation parameters. The 

parameter 𝑝 influences the smoothness of the correlation and θ𝑘 controls the decay rate of 

correlation on different dimensions. From this, it is possible to construct 𝑛 x 𝑛 matrix of 

correlation functions between sample points as 

 

𝑹 = {
𝑅(𝒙1𝒙2), . . . 𝑅(𝒙1𝒙𝑛)

. . . ⋱ . . .
𝑅(𝒙𝑛𝒙2) . . . 𝑅(𝒙𝑛𝒙𝑛)

} . (6) 

 

Therefore, a set of variables 𝑦(𝑥𝑖), which are correlated throw matrix 𝑹. These correlations 

depend on the distance between the sample points |𝑥𝑖
𝑘  −  𝑥𝑗

𝑘|and the parameter θ𝑘. 

 The likelihood function of the sample point can then be written as 

 

𝐿 =
1

(2𝜋𝜎2)
𝑚
2 |𝑹|

1
2

𝑒𝑥𝑝 [
(𝒀 − 𝑭𝜷)𝑇𝑹−1(𝒀 − 𝑭𝜷)

2𝜎2
], (7) 

 

where 𝑭 is considered as a unitary vector 1 of a size equal to the number of samples. |𝑹| is the 

determinant of 𝑹 which is a function of θ𝑘. Thus, according to the maximum likelihood function 

method seeking the model parameters (𝑠𝑖𝑔𝑚𝑎 and 𝑝) that maximize the probability model 

representing the function that originated the samples, this process called training 

 

�̂� = (
𝑭𝑇𝑹−1𝒀

𝑭𝑇𝑹−1𝑭
), (8) 

�̂�2 =
((𝒀 − 𝑭𝜷)𝑇𝑹−1(𝒀 − 𝑭𝜷))

𝑛
 . (9) 

 

 The logarithm function concentrated likelihood can be written as 

 

𝑙𝑛(𝐿) ≈ −
𝑚

2
𝑙𝑛(�̂�2) −

1

2
𝑙𝑛|𝑹|. (10) 

 

 Model training can be done by any optimization technique. Forrester et al. [21] 

recommended the use of a genetic algorithm due to its easy operation. Thus, to define function 

prediction (interpolation) using the statistical model the prediction point �̂� is added to the 



 

sample, increasing the correlation matrix using the previously adjusted parameters. The 

maximum likelihood is applied to the new sample, where only the value �̂� is unknown, and the 

function is maximized. For any point 𝑥0, following the principle that the predicted value for the 

point continues to maximize the augmented likelihood function of both the sample point and 

the new point, the predicted response value can be obtained by 

 

�̂�(𝒙0) = 𝒇𝑇�̂� + 𝒓𝑇(𝒙0)𝑹−1(𝒀 − 𝑭�̂�) . (11) 

 

where 𝒓𝑻(𝑥0) is a row vector of correlation function between the new point and each sample 

point as 

 

𝒓𝑇(𝒙0) = [𝑹(𝒙0, 𝒙1), ⋯ , 𝑹(𝒙0, 𝒙𝑛)] . (12) 

 

Therefore, when the value of the 𝑖𝑡ℎ a sample point is predicted, since 𝒓𝑻(𝑥𝑖)𝑹−1 equals the 𝑖𝑡ℎ 

order unit vector 

 

�̂�(𝒙𝑖) = 𝒇𝑇(𝒙𝑖)�̂� + 𝑦𝑖 − 𝒇𝑇(𝒙𝑖)�̂� = 𝑦𝑖 , (13) 

 

which shows that the Kriging model predicts the real response value at the sample point, and it 

says the reason it can be considered an interpolation technique. 

 The Kriging model allows the calculation of an estimate for the error of the model 

answers. The estimate of the potential error in the predictor is inversely associated with the 

curvature of the concentrated likelihood logarithm function. A low curvature (flatter curve) 

suggests a high potential for error, whereas a high curvature (flat curve) suggests a low potential 

for error [46]. Due to the technique being based on a statistical model, the estimated error of a 

predicted value can be obtained, which shows the reliability of the approximation. The error 

can be used to evaluate where in the domain it is most advantageous to include a new sample 

to define the approximation. This technique is called the re-interpolation of the model. Thus, 

the mean squared error (MSE) of the predictor is denoted by 

 

�̂�2(𝒙) = 𝝈2 [1 −  𝒇𝑇𝒙, 𝒓𝑇𝒙 [0 𝑭𝑇

𝑭 𝑹
]

−1

{
𝒇(𝒙)

𝒓(𝒙)
}], (14) 

 



 

 Assuming that the substitute model is a faithful representation of the original model, it 

then is possible to seek the minimizer through an inexpensive evaluation of the surrogate model 

until finding a global optimum. However, one should guarantee the best possible substitution 

of the original model, at least where the overall minimum is found. For this, it is important to 

identify the convex regions to reduce the metamodel error in these regions. One way to 

guarantee these minimum regions is by adding new infill points (IPs). In this way, it is shown 

greater reliability in the substitute model. These points are determined using only the 

metamodel information [21]. 

 

2.3. Efficient Global Optimization - EGO 

A metamodel approximates a high-fidelity model of an experiment or physical phenomenon. 

The quality of a metamodel can be influenced by several factors, such as the degree of 

nonlinearity of the problem, the number of design variables, the technique of selection of 

sample points, and their uniformity throughout the design space [47]. This makes the 

construction of a metamodel a complex process. The challenge becomes even greater when it 

looks for the generation of a surrogate model with the lowest number of sampling points 

possible, further reducing the computational cost. 

 One way to get new Infill Points (IPs) and get global optimization is to focus on finding 

domain regions with some degree of uncertainty about the surrogate model. For this, the square 

root of the Mean Squared Error (RMSE) can be calculated as �̂� = √�̂�2(𝒙). However, the metric 

to be chosen for IPs addition must contain a good balance between local and global search and 

involve the minimum value of the function already obtained [46]. To perform a search and infill 

strategy the goal is to position the next IP at the value of 𝑥 that leads to an improvement on the 

best-observed value so far, 𝑦𝑚𝑖𝑛. Thus, by considering �̂�(𝒙) as the realization of a random 

variable, the expression of the probability of an improvement 𝐼 = 𝑦𝑚𝑖𝑛 − 𝑦(𝒙) upon 𝑦𝑚𝑖𝑛, 

results in a probability of improvement calculated using the error function as 

 

𝑃[𝐼(𝒙)] =
1

2
[1 + 𝑒𝑟𝑓 (

𝑦𝑚𝑖𝑛 − �̂�(𝒙)

�̂�√2
)] , 𝑖𝑓  �̂�(𝒙) > 0 (15) 

 

 However, instead of finding the probability that there is some improvement, it is 

possible to calculate the amount of improvement. One of the most common infill methods used 

is the Expected Improvement (EI). EI calculates how much improvement is expected to be 



 

achieved by sampling at a given point. This technique was developed to be used in conjunction 

with the Kriging metamodel. The Expected Improvement is determined by 

 

𝐸[𝐼(𝒙)] = {
(𝑦𝑚𝑖𝑛 − �̂�(𝒙))𝛹 (

𝑦𝑚𝑖𝑛 − �̂�(𝒙)

�̂�(𝒙)
) + �̂�(𝒙)𝝍 (

𝑦𝑚𝑖𝑛 − �̂�(𝒙)

�̂�(𝒙)
)

0, 𝑖𝑓�̂�(𝒙) = 0

, 𝑖𝑓�̂�(𝒙) > 0 (16) 

 

where 𝛹 and 𝜓 represent, respectively, the probability density function and the cumulative 

probability function of a normal distribution [48]. 𝑦 and �̂� are, respectively, the mean and the 

RMSE [21]. Then, the first term is the difference between the current minimum of the function 

𝑦𝑚𝑖𝑛 and the predicted value �̂�(𝑥). The second term represents the uncertainty of �̂�(𝑥)reaching 

𝑦𝑚𝑖𝑛 [49]. The method associates different amounts of improvement or distances below 𝑦𝑚𝑖𝑛, 

with the RMSE variability over the metamodel domain. 

 In this criterion, each new point is positioned in the region where the expected 

improvement is maximum. The strategy of the criterion consists of considering the expected 

improvement null in the already known points, preventing the search in regions previously 

exploited, and certifying the convergence of the algorithm. Also, the magnitude of EI increases 

with �̂�, stimulating demand in lesser-known regions, and increasing with the �̂�(𝒙), favoring the 

search for regions where the predicted value is less than 𝑦𝑚𝑖𝑛 [40]. 

 Therefore, EGO selects input combinations based on the maximization of the EI. EGO 

uses the Kriging model to approximate the input/output function simulation. The Kriging 

predictor equals the simulation outputs for input combinations that have already been simulated. 

EGO estimates the EI through the Kriging predictor and the estimated variance of this predictor 

[23]. 

 

3. Materials and Methods 

Figure 1 summarizes the combined numerical-experimental procedure. First, the design 

variables' limits are defined and the levels of variability on each of the design variables are 

quantified. The material properties and geometric dimensions of the composite material 

samples are collected as input data. The variability of the data is considered to determine the 

intact range of each design variable, i.e., the variability of the manufacturing process. Design 

variables related to the geometry of the laminated composite plates are evaluated (Step 1), and 

the variables related to the material properties are taken from literature [17-18, 38, 50-54] (Step 



 

2). In parallel, experimental modal analysis (Step 3) of the intact (undamaged) laminated 

composite plates is used as a guideline for the numerical simulation. An impact test (Step 4) 

using a drop toweris carried out to impose damage on the plates. Damage affects the structural 

characteristics of the plates, including their resonance frequencies. Modal analysis experiments 

of intact (undamaged) and damaged structures contain information on the damage type and the 

influence of this damage on each mode. 

 

 

Figure 1. Numeric-experimental procedure 

 

 A Latin Hypercube scheme (Step 5) is used to conduct the logic of the test sequence. 

The LH determines the value of each design variable within the range considered intact obtained 

by the previous step. With the design of experiments (DoE) built, the next stage consists of 

running simulations. The finite element analysis (Step 6) is performed to determine the natural 

frequencies for each test line of the input variables whose values were determined by the Latin 

Hypercube in the previous step. The commercial 𝐴𝑏𝑎𝑞𝑢𝑠® finite element software is used for 

setting and solving models. Automated data handling is done using a Python routine. 

 In Step 7, with the input and output data, the Kriging metamodel is built. This numerical 

model replaces the finite element model in Step 6. In other words, this model provides a 

simplified way to obtain natural frequencies without explicit execution of any 𝐴𝑏𝑎𝑞𝑢𝑠® 

models. In addition to the sample points provided, the model predicts intermediate points. Six 

metamodels are built for each group of the plate/material that consists of one metamodel for 
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each natural frequency. The Kriging metamodel is built from a computational routine written 

in Python. However, this model can be contaminated with errors that can be caused by the lack 

of sampling points in specific regions. To overcome this issue (Step 8), the Efficient Global 

Optimization (EGO) algorithm through Expected Improvement (EI) is used to predict regions 

that need the inclusion of Infill Points (IP) to rebuild the Kriging metamodel. The highest EI 

average between Kriging models is considered for choosing the point to be inserted. The EGO 

is done using a computational routine in Python as well. To ensure the correctness and reliability 

of the code routine, a crucial step in the validation process involved cross-referencing the 

outcomes with the results obtained by Forrester et al. [21]. 

 The numerical results are used to create the manufacturing envelope (Step 9), which 

characterizes the set of composite plates evaluated in the DoE process. The envelopes generated 

by numerical and experimental FRFs are compared, and the results are discussed in terms of 

the potential and limitations of the proposed procedure. Finally, based on intact and damaged 

experimental results, the values of the Damage Index (Step 10) are quantified. 

 

4. Design variables analysis and material properties 

Mechanical tests are performed on a set of 10 composite plates made of Glass Fibre Reinforced 

Polymer (GFRP) manufactured by a modified VARTM (Vacuum Assisted Resin Transfer 

Molding) process. The GFRP specimens were manufactured and tested in the Aeronautical 

Structure Laboratory at the Sao Carlos School of Engineering of the University of São Paulo. 

The composite plates are made of sixteen layers with [(45/-45/0/90)2]s. The first three samples 

(P01 through P03) are made from a unidirectional fabric (UD) of 140 g/m², and the remaining 

five (P06 through P08) from a bidirectional fabric (BD) of 83 g/m². Both fabrics are supplied 

by the manufacturer Texiglass/Brazil, and they are named [WRU-140] and [WR-83]. The 

polymer matrix was an epoxy resin [1564 BR (85 % w/w)], which uses a hardener [REN HY 

150 BR (15 % w/w)] during the cure cycle. This take 8 hours in vacuum bag molding and 

ambient temperature. Figure 2(a) shows a unidirectional GFRP composite sample, and Figure 

2(b) shows a bidirectional one. 

 The plates have a nominal length of 150 mm and a width of 100 mm. The thickness is 

1.7 mm for unidirectional (UD) samples, and 1.6 mm for bidirectional (BD) samples. To 

conduct the DoE process, the upper and lower limits values of the design variables must be 

defined. The quality of the DoE representation is improved using reference data to define these 

boundaries [38]. The upper and lower limit values of the geometric [50] and material [51-54] 



 

parameters are based on the standard deviation (SD) described in the literature [38]. It was 

assumed 3-sigma interval, which is related to the standard deviation. However, the upper and 

lower values for thickness were obtained evaluating the distribution provided by the 3D 

scanner. Where a normal distribution has been observed. Therefore, the upper and lower values 

for the thickness range was defined in a way that, 99.7% of the measured values were into these 

boundaries. Sutcliffe et al. [54] evaluate the fibre orientation considering the resin transfer 

moulding process (RTM), and obtain a standard deviation of 0.6 degree for in-plane orientation. 

As shown in the literature [38], three standard deviations (3σ) are considered to determine the 

maximum and minimum values of each angle. Tables 1 and 2 show the design variable analysis, 

considering the mean, upper, and lower values for the GFRP-UD (Table 1), and GFRP-BD 

(Table 2) composite plates, respectively. 

 

  

(a) (b) 

Figure 2. GFRP composite samples [50]: (a) UD fabric; (b) BD fabric. 

 

Table 1. Design variables and its levels from GFRP-UD with [(45/-45/0/90)2]S 

Variable Reference Mean value Lower Upper Unit 

Length (L) [50] 152.60 148.54 156.68 mm 

Width (W) [50] 101.20 96.31 106.90 mm 

Thickness (t) [50] 1.70 1.60 1.80 mm 
𝜃0 (0°) [54] 0 -1.8 1.8 degrees 

𝜃90 (90°) [54] 90 88.2 91.8 degrees 
𝜃45 (45°) [54] 45 43.2 46.8 degrees 

𝜃−45 (−45°) [54] -45 -46.8 -43.2 degrees 

Young’s Modulus longitudinal (E11) [51] 38.60 37.84 39.36 GPa 

Young’s Modulus transversal (E22 = E33) [51] 13.61 12.67 14.55 GPa 

Shear Modulus in plane 1-2 (G12 = G13) [51] 7.14 6.90 7.38 GPa 

Shear Modulus in plane 2-3 (G23) [52] 2.30 2.06 2.54 GPa 

Poisson’s ratio in plane 1-2 (ν12 = ν13) [51] 0.353 0.327 0.378 - 

Density (ρ) [51] 1616.40 1500.16 1732.64 Kg/m3 

 



 

Table 2. Design variables and its levels from GFRP-BD with [(45/-45/0/90)2]S 

Variable Reference Mean value Lower Upper Unit 

Length (L) [50] 149.40 147.93 150.87 mm 

Width (W) [50] 100.56 96.48 104.64 mm 

Thickness (t) [50] 1.60 1.50 1.70 mm 
𝜃0 (0°) [54] 0 -1.8 1.8 degrees 

𝜃90 (90°) [54] 90 88.2 91.8 degrees 
𝜃45 (45°) [54] 45 43.2 46.8 degrees 

𝜃−45 (−45°) [54] -45 -46.8 -43.2 degrees 

Young’s Modulus longitudinal (E11
 = E22) [53] 19.1 17.19 21.01 GPa 

Young’s Modulus transversal (E33) [53] 1.8 1.62 1.98 GPa 

Shear Modulus in plane 1-2 (G12) [53] 2.9 2.61 3.19 GPa 

Shear Modulus in plane 2-3 (G23 = G13) [53] 1.6 1.44 1.76 GPa 

Poisson’s ratio in plane 1-2 (ν12) [53] 0.11 0.10 0.12 - 

Density (ρ) [50] 1722.0 1668.9 1775.1 Kg/m3 

 

5. Experimental Modal Analysis 

The experimental analysis is carried out via vibration tests on composite plates hung by 

elastomeric wires to simulate "free-free" boundary conditions. The natural frequencies and the 

Frequency Response Functions (FRFs) for undamaged (intact) and damaged (impact) plates are 

obtained using two accelerometers. The accelerometers are model 352A24 and model 352C22 

for lightweight structures. Accelerometer 1 (sensitivity 99.6 mV/g) is mounted at position 2, 

and accelerometer 2 (sensitivity 9.57 mV/g) is mounted at position 3 (Figure 3). Force 

excitation by impact hammer is applied in position 1. The positions of the accelerometers are 

selected based on the previous modal analysis, avoiding nodal lines and considering the first 

six mode shapes [18], [50]. 

 

 

Figure 3. Positions of the accelerometers (points 2 and 3) and impact impulse (point 1) [50] 

 



 

 Figure 4 shows all data acquisition setups used in the experiment for damage 

identification. The specimen is suspended by elastomeric wires to simulate “free-free” 

boundary conditions. The accelerometers and the hammer are linked to an LMS SCADAS 

Mobile equipment, which is controlled by the Test.Lab software (LMS Test.Lab). The LMS 

SCADAS Mobile is plug-and-play equipment and it has a multifunction analogy, digital, and 

timing I/O board for USB bus computers. Each signal consists of 2048 points and sampling is 

done from 0 Hz to 1024 Hz. The frequency band of 850 Hz is selected to calculate the damage 

index (damage metric) by vibration-based method for the first six natural frequencies of the 

structure. The number of averaging individual time records is selected to be five to reduce the 

variation effects. This analysis can be evaluated by comparing not only the FRFs but also the 

coherence values. The dataset contains mode shape and FRFs, which include information on 

natural frequencies and damping factors. 

 

 

Figure 4. Experimental setup for modal analysis [50] 

 

6. Damage plates by impact loading 

An impact load inflicts damage to the composite structures [55-59]. A drop tower is used to 

damage the composite plates. The drop tower apparatus consists of two vertical bars, which 

guide the falling weight during the test, producing a normal impact loading with a hemisphere 

impactor. According to ASTM 7136M [60], the damage resistance properties generated by this 

test method are highly dependent upon several factors, which include specimen geometry, lay-



 

up, impactor geometry, impactor mass, impact force, impact energy, and boundary conditions. 

Figure 5 shows the drop tower apparatus and the test specimen mounted in the device ASTM 

7136M on the basis of the drop tower. This test method determines the damage resistance of 

multidirectional polymer matrix composite laminated plates subjected to a drop-weight impact 

event. The tests are carried out using an aluminium round impactor head with a diameter of 

16 mm, impactor weight of 0.074 kg, and are performed at the Aeronautic Structure Laboratory 

(University of Sao Paulo). In these experiments, the average potential energy level of the drop-

weight used in the impact tests is set to 8.9 J (drop height of 1 m) for all plate sets [50]. 

 

 

Figure 5. Drop test setup: Normal impact (by using a hemisphere impactor) on the GFRPcomposite plate [50] 

 

7. Dynamic Numerical Analysis 

Finite element models of composite plates are developed using the 𝐴𝑏𝑎𝑞𝑢𝑠® software, which 

incorporates subroutines written in Python. The set of input-output data are the initial samples 

in the Kriging metamodel. Specifically, the finite element model is used in different stages of 

the procedure. First, the computational model is used to generate the initial sample data as a 

basis for the Kriging metamodel. Second, the computational model is used each time when the 

EGO model requests a new infill point to compose the Kriging Metamodel. In addition, the 

computational Frequency Response Function (FRF) is obtained to define the envelope 

considered without manufacturing defects. 



 

 The finite element models of the composite plates feature a mesh of quadrilateral 8-

node shell elements defined as S8R5. This element presents an 8-node isoparametric doubly 

curved thin shell, reduced integration, and five degrees of freedom (DOF) per node (three 

translations and two rotations) [61]. The plate is modelled with 4.287 quadrilateral elements 

and 12.951 nodes. Numerical simulations are run to obtain the natural frequencies and FRFs 

under "quasi" free-free boundary conditions, because the elastic wires attached to the composite 

plates are simulated as used in the vibration experimental tests. 

 The accelerometers have a very small mass when compared to the mass of the structure. 

No added mass is included in the numerical modal analysis. As commented earlier, one tip of 

the elastic wire with very low stiffness (10 N/m) is attached to the composite plate. The other 

tip of the elastic wire is modelled with fixed translations (𝑈𝑥, 𝑈𝑦, 𝑈𝑧) and rotations 

(𝑈𝑟𝑥, 𝑈𝑟𝑦, 𝑈𝑟𝑧). To generate the envelope, dynamic implicit analyses are done to obtain the 

FRFs (Figure 6). The same boundary conditions described previously for modal analyses are 

applied to the dynamic analyses. An impulse loading is applied on the surface of the plate 

simulating the excitation of a hammer at the same loading point of experimental plates. The 

input signal is a transverse force of amplitude equal to 1 N. The frequency range of the force is 

0 to 1024 Hz. Damping coefficients are identified experimentally from the modal analyses of 

the plates. 

 

 

Figure 6. Boundary conditions considered in the numerical analysis 

 

Table 3 shows the mean value and the standard deviation of the damping coefficients 

for each mode. In general, the composite properties result in greater damping with higher resin 

content during the manufacturing process. The  mean value of damping coefficients of 



 

experimental plates is in the finite element models. Frequency Response Functions (FRFs) are 

obtained from the same point to the experimental sensor using the numerical model (Erro! 

Fonte de referência não encontrada.). Figure 7 shows the first six modes, which are the 1st 

bending mode, 1st torsion mode, 2nd torsion mode, 2nd bending mode, 3rd torsion mode, and 4th 

torsion mode, which are the same for both, UD and BD, plate configurations. 

 

 

Figure 7. Vibration modes of GFRP-UD and GFRP-BD plates 

 
Table 3. Damping coefficient obtained from the modal analysis of GFRP plates 

 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 

P01 – UD 0.36 0.21 0.26 0.23 0.25 0.24 

P02 – UD 0.48 0.21 0.24 0.22 0.31 0.23 

P03 – UD 0.32 0.21 0.20 0.24 0.30 0.27 

Mean Value 0.39 0.21 0.23 0.23 0.29 0.25 

Standard deviation 0.08 0.00 0.03 0.01 0.03 0.02 

P06 – BD 0.28 0.24 0.27 0.33 0.23 0.28 

P07 – BD 0.44 0.27 0.28 0.32 0.23 0.44 

P08 – BD 0.36 0.25 0.25 0.39 0.25 0.36 

Mean Value 0.36 0.25 0.27 0.33 0.23 0.36 

Standard deviation 0.08 0.02 0.02 0.04 0.01 0.08 

 

8. Metamodel Kriging and EGO 

According to Xiao et al. [62], for all plates (samples) using one of the existing designs of 

experimental methods, if the dimension of input variables is less than 10, the initial training 

sample (ns) is equal to 12; otherwise, ns is equal to the number of variables plus 5 (five). 

Considering the input parameters for both plate configurations, 18 initial samples are defined, 

and the training of the Kriging metamodel is started. Figure 8 presents a detailed flowchart of 

the steps performed during metamodel training to find an optimized numerical model. It is 



 

observed that the calculation of output variables (first six natural frequencies) is performed by 

the Finite Element Method. 

 After reading the inputs and outputs, the first step is to provide the number of analysed 

frequencies to the program code. For the plates, this number is defined as equal to 6. It is also 

defined that the number of analysis points “p” during the Kriging process, and its optimization 

would be 100 samples, which corresponds to the addition of 100 points suggested to the model. 

These samples are obtained through the Latin Hypercube algorithm. This value is a balance 

between precision, robustness, and resource efficiency, ensuring that the design is both effective 

and practical for real applications. 

 

 

Figure 8. Kriging metamodel flowchart: Training to find an optimized numerical model 



 

 Based on this information, the Kriging metamodel is trained for the set of inputs to 

obtain the first output frequency. Once the training of the Kriging model [63] is complete, a 

numerical model is generated and subsequently improved through Efficient Global 

Optimization (EGO) [21, 64]. The Expected Improvement (EI) [21, 65] metric is used. The EI 

metric is calculated for the first output frequency for all 100 suggested samples. At the end of 

the process, a vector with 1×100-dimension containing the EI values for the first frequency is 

stored. 

 The Kriging process with global optimization is repeated for the other output 

frequencies (steps involved by the dashed lines in the flowchart). At the end of the process, 6 

metamodels are created, resulting in a 6×100 matrix. The average of the EI values for each of 

the 100 points is calculated and stored in the EImed vector of dimension 1×100: 

 

𝑬𝑰𝒎𝒆𝒅(𝑝)  =
∑ 𝐸𝐼(𝑥, 𝑝)6

𝑥=1

6
 (17) 

 

After the EImed vector is calculated, the highest EImed value is stored in the EImax variable. If the 

value obtained for the EImax metric is greater than an established limit, which was set to be 10−2, 

a new Infill Point is added. With the addition of this point, the input variables are stored, and 

used in the numerical model to obtain the output variables via the Finite Element Analysis 

(FEA). This set of inputs and outputs is added to the 18 samples, and a new iteration is started. 

When the value obtained for the EI metric is lower than  10−2, the variables of the optimized 

numerical model are obtained, and the dynamic analysis could be carried out to provide the 

Frequency Response Functions for determining the upper and lower frequency limits via FEA, 

again. 

 

9. Manufacturing Defect 

After the Kriging step the model is optimized. The output data (frequencies) are analyzed to 

retain the maximum and minimum values. These values are obtained based on the values 

provided by the support points, assuming that there are no maximum and minimum frequency 

points between these points. The maximum and minimum values for each frequency can be 

contained in different samples. As a result, these values are normalized and the maximum and 

minimum mean value is adopted as a criterion for selecting the limit samples. With the limits 

defined, the input data for the maximum and minimum frequencies and the mean value of the 



 

experimental damping are used to obtain the numerical responses (FRFs). The computational 

FRFs are plotted, and the valleys and peaks are linked to provide the design envelope. The FRFs 

for undamaged plates are added to the graph in order to detect manufacturing defects. If a 

sample has its FRF within the established limits, that sample would be considered intact 

(“without defects”). The flowchart in Figure 9 illustrates the successive steps. 

 

 

Figure 9. Manufacturing defect analysis flowchart 

 

10. Damage Analysis 

The detection of damage in composite structures requires the comparison of data from intact 

(“without defects”) and damaged samples. Damages in the samples is caused by impact loading. 

More information about the damage can be found in the literature [17-18], [50]. 

 Initially, the natural frequencies and FRFs of the intact and damaged samples are 

directly compared. However, those comparisons do not allow for effective detection of damage, 

as there are cases where the natural frequencies of the damaged samples are within the range of 

the intact ones, and the FRFs of both samples are similar. A Damage Index (DI) is an objective 

indicator of one response set with respect to another one.  It is based on the amplitude and phase 

of the FRFs from intact and damaged samples, defined as: 
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where the superscripts i and d represent the undamaged (intact) and damaged structures, 

respectively. And, the subscripts j and k denote the location of measure and force, respectively. 

H(ω) denotes the amplitude, P(ω) is the phase, and ω is the frequency range. More details about 

the DI, such as the formulation, can be found in the literature [17-18], [50]. In a general way, 

the expression of the DI returns a value equal to zero when the structure does not change its 

structural behaviour, i.e. when there is no damage The value of the DI increases as the structural 

behaviour changes. 

 

11. Results and Discussion 

From Latin Hypercube (LH), the values of the design variables are obtained in each of the 18 

test rounds. The values are based on design variable limits and LH matrices. The LH matrix is 

converted into a matrix with corresponding values for each design variable in each of the 18 

rounds as input to the 𝐴𝑏𝑎𝑞𝑢𝑠® software. Each input generated by the LH results in the 

respective natural frequency output. The inputs and outputs set are used as a sample basis for 

the Kriging metamodel. 

Infill points (IP) are included for GFRP plates. This inclusion occurs through point-to-

point selection by the EI suggestion. With each new IP, Kriging metamodels are retrained until 

reaching the EI stop criterion 𝐸𝐼 <  10−2. There are six natural frequencies of interest, 

corresponding to the first six modes of vibration (Figure 7). Once the computational model is 

trained with the infill points (IP) suggested by the EI, the ability to be used as a tool for assessing 

the quality of the composite plates is evaluated. Among the infill points (IP) used for training 

the metamodel, those that generate the minimum and maximum numerical natural frequencies 

as a training response are used as the basis for analysis. Each of these two IPs is composed of 

an input set and an output set. Specifically, 18 inputs to UD and BD composite plates are used, 

which are the design variables, and 6 outputs, which are the first six natural frequencies of 

composite plates. 

 

 

 



 

11.1. GFRP-UD Composite Plates 

 The set of infill points added to the GFRP-UD plates for Kriging training by the EI 

method is shown in Figure 10. The maximum EI value per training determines the IP choice. 

The value of the first EI started at 1.7431, after that, another 31 points are added. The 31st EI 

value is 0.0127. In total, 49 points are used as a basis to construct the approximate function of 

the Kriging metamodel. Figure 11 shows a graphical representation of the numerical values of 

49 frequency points. The vertical axis of the boxplot represents the natural frequency values for 

all points added by the EI, and the horizontal axis represents the first six natural frequencies. 

The observations that are above or below the central vertical lines are called outliers, that is, 

they are observations that are too high or too low for the pattern observed in the data, and are 

represented by points. The “X” represents the mean value and the central horizontal bar 

represents the median value of the quantitative variable. It is observed that the distribution is 

negatively skewed i.e., the median lies closer to the third quartile. This demonstrates that the 

mean is less than the median, the frequencies tend towards the lower limit of the design 

parameters. 

 

 

Figure 10. Expected Improvement (EI) evolution for GFRP-UD properties 
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Figure 11. Expected Improvement (EI) evolution for GFRP-UD properties 

 

At the end of the numerical model optimization, the values of the first six frequencies 

are analysed for each point. It is verified through normalization that for the minimum frequency, 

the chosen point presents almost all the minimum values between the points of the model, 

except for the frequencies at points 1 and 4. For the maximum point, only frequencies at points 

1 and 5 do not present the maximum value, but the normalized values for the frequencies at 1 

and 4 (minimum) are very close to zero and frequencies at 1 and 5 (maximum) to one. Table 4 

presents the two points selected for the limits, as well as the values of the normalized 

frequencies. 

 
Table 4. Maximum and minimum limits for the natural frequencies of the GFRP-UD plates 

Frequency 𝒇(𝟏) 𝒇(𝟐) 𝒇(𝟑) 𝒇(𝟒) 𝒇(𝟓) 𝒇(𝟔) 

Minimum 237.4 245.4 546.4 560.8 654.6 769.4 

Maximum 295.7 311.3 696.2 772.5 815.2 1013.8 

Normalized minimum 0.009 0.000 0.000 0.016 0.000 0.000 

Normalized maximum 0.987 1.000 1.000 1.000 0.984 1.000 

 

 With the frequency limits defined by the computational mode, graphs are created 

containing the intervals of natural frequencies for undamaged samples. Figure 12 presents the 

maximum and minimum limits obtained by the computational model for the first six natural 

frequencies and six experimental samples (3 for intact and 3 for damaged structure). 

 

1        2        3       4         5        6



 

 

Figure 12. Natural frequency limits and experimental results, intact (black) and damaged (red), for 

the GFRP-UD plates 

 

The first 3 samples are considered intact and the last 3 have some kind of impact 

damage. It is observed that almost all intact and damaged samples were below the limits 

established for each frequency. Thus, intact samples have some manufacturing defects. It is 

observed that intact and damaged samples 1 and 4, 2 and 5, and 3 and 6 had similar values for 

their natural frequencies. 

After analysing the frequency range, the FRFs are obtained FE analysis. Figure 13 

shows the envelope for intact samples created from these points, together with the FRFs of the 

6 plates analysed. For this envelope, the data extracted from  accelerometer at point 2 and the 

hammer impact at point 1 are considered. The intact plates are at the lower limit of the design 

envelope, confirming that they have problems in the manufacturing process. Small differences 

between intact and damaged FRFs are noticed around 550 and 600 Hz. Based on the FRFs 

presented by intact and damaged plates, it becomes difficult to define which samples are 

damaged by impact. 

An envelope is also created for the data obtained from the accelerometer at point 3 and 

the hammer impact at point 1 shown on the plate. Figure 14 presents the design envelope 

together with the FRFs of the 6 analysed plates. For this case, the intact plates seem to at the 

lower limit of the proposed envelope interval, showing  the presence of manufacturing defects. 

When verified between the FRFs of intact and damaged plates, FRFs peaks of the damaged 

structure are different from the intact ones in the ranges from 450 to 750Hz. 

 



 

 

Figure 13. FRFs (H21) envelopes for GFRP-UD plates 

 

 

Figure 14. FRFs (H31) envelopes for GFRP-UD plates 

 

Finally, an analysis of the damage indices is carried out as presented in Eq. (2). Table 5 

presents the damage indices found for the 3 plates analysed. It can be seen that the damage 

indices present higher values for the data analysed through the accelerometer 3, similar to what 

was observed in the previous FRFs, demonstrating the presence of the damage. 

 

Table 5. Damage indices obtained for GFRP-UD plates 

Frequency interval analyzed: 0 a 1024 Hz 

Plate H21 H31 Mean Standard deviation 

1 2.632 2.146 2.389 0.243 

2 0.149 1.003 0.576 0.427 

3 1.205 1.871 1.538 0.333 
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11.2. GFRP-BD Composite Plates 

A set of points are added to Kriging training of the GFRP-BD plates by the EI method as shown 

in Figure 15. The maximum EI value per training determines the IP choice. The value of the 

first maximum EI started at 0.4742, after that, another 31 points were added, besides 18 points 

of initial support. Due to changes in the approximate function of the Kriging metamodel, on the 

14th (𝐸𝐼𝐼𝑃 =14  =  3.3868) points EI peak occurred. The 31st EI value is 0.01822. In total, 49 

points were used as a basis to construct the approximate function of the Kriging metamodel. 

Figure 16 shows a graphical representation of the numerical values of 49 frequency points. as 

in the UD case, it is possible to observe that the frequencies tend towards the lower limit of the 

design parameters. 

 

  

Figure 15. Expected Improvement (EI) evolution for GFRP-BD properties 

 

At the end of the numerical model optimization, the values of the first six frequencies, 

the same UD plates, were analysed. As in the previous case, the maximum and minimum values 

for each of the frequencies were verified at different points. Thus, when performing the 

normalization of frequencies, a null value was verified for almost all values of minimum 

frequencies (except for the frequency at 2, 3 and 6) and a unit value for almost all values of 

maximum frequencies (except for the frequency at 1). Table 6 presents the two selected points, 

as well as the values of the normalized frequencies. 

Based on the frequency limits defined by the computational mode, graphs were 

generated containing the frequency intervals of intact samples. Figure 17 presents the maximum 

and minimum limits obtained by the computational model for the first six frequencies and six 

experimental samples. The first 3 samples are considered intact and the last 3 have some kind 

of impact damage. 
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Figure 16. Expected Improvement (EI) evolution for GFRP-BD properties 

 

Table 6. Maximum and minimum limits for the natural frequencies of the GFRP-BD plates 

Frequency 𝒇(𝟏) 𝒇(𝟐) 𝒇(𝟑) 𝒇(𝟒) 𝒇(𝟓) 𝒇(𝟔) 

Minimum 183.551 191.118 413.854 431.287 495.561 596.674 

Maximum 214.525 235.476 524.414 530.396 589.658 730.097 

Normalized minimum 0.000 0.001 0.050 0.000 0.000 0.027 

Normalized maximum 0.938 1.000 1.000 1.000 1.000 1.000 

 

 

Figure 17. Natural frequency limits and experimental results, intact (black) and damaged (red), for 

the GFRP-BD plates 
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It was found that all intact and damaged samples were inside the limits established by 

the range. By this analysis, all intact samples would not have manufacturing defects. It was 

observed that intact and damaged samples had similar values for their frequencies. 

After analysing the frequency range, the FRFs were obtained using 𝐴𝑏𝑎𝑞𝑢𝑠®. Figure 

18 shows the envelope for intact plates created from these points, together with the FRFs from 

the 6 previously analysed plates. For this envelope, it was considered the data obtained from 

the accelerometer at point 2 and hammer impact at point 1 shown in the plate. 

The FRFs of intact plates were found to be inside the design envelope. Based on the 

procedure used, this shows the presence of less issues in terms of manufacturing process 

comparing to UD samples. In fact, this makes sense, because it is easier to stack BD plies 

instead UD plies, mainly, when it is used hand-lay-up process. In other words, it is easier to 

guarantee the orientations of the plies specified in the initial design. When analysing the intact 

and damaged FRFs, considerable differences were observed between the frequencies of 450 

and 650 Hz, thus characterizing that plates 4 to 6 had some type of damage. The envelope for 

the data obtained from the accelerometer at point 3 and the hammer impact at point 1 was also 

plotted. Figure 19 shows the FRFs envelope for the intact sample created from these points, 

together with the FRFs of the 6 analysed plates. For this study, it is possible to verify that the 

intact plates and the damaged plates present divergences in their amplitudes from the frequency 

value of 350Hz. 

 

 

Figure 18. FRFs (H21) envelopes for GFRP-BD plates 

 

Finally, an analysis of the damage indices was carried out. Table 7 presents the damage 

indices found for the 3 boards analysed. It can be verified that the damage indices presented 
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high values for both cases, some being more expressive for the data analysed through 

accelerometer 3, and others from accelerometer 2. With this, it can be confirmed that both 

samples present impact damage in their structure. 

 

 

Figure 19. FRFs (H31) envelopes for GFRP-BD plates 

 

Table 7. Damage indices obtained for GFRP-BD plates 

Frequency interval analyzed: 0 a 1024 Hz 

Plate H21 H31 Mean Standard deviation 

1 0.609 0.267 0.438 0.171 

2 2.578 0.778 1.678 0.900 

3 0.730 0.454 0.592 0.138 

 

12. Conclusions 

The authors introduce a numerical-experimental procedure to detect defects and impact damage 

in composite structures. For the application of the proposed procedure, GFRP composite plates 

made from uni-directional and bi-directional fabrics are used as case studies. Analysis of the 

properties of the plates is conducted to be used in the Latin Hypercube method. Natural 

frequencies are obtained from finite element analysis to feed the LH discretization. These inputs 

and outputs are the basis for the construction of the Kriging metamodel. 31 more data points 

are added to complement the Kriging database using the EGO technique. Finally, numerical 

runs with the highest and lowest frequencies are selected to generate the natural frequency 

envelopes and the FRFs envelopes. Therefore, the envelopes can be used to select better 

composite structures in terms of manufacturing quality. 

Considering the UD GFRP composite samples, it was verified that all samples are in the 

lower limit, and may have manufacturing defects. This information was confirmed through the 
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design envelope. By analysing frequencies and comparing the FRFs of intact and damaged 

samples, no information on damage can be obtained. It was possible to verify the damage only 

through the damage indices. When analysing the group of BD GFRP composite samples, it was 

verified through the frequencies and the design envelope that all intact samples present less 

manufacturing issues than UD samples, which are more complicated to have the plyes stacked 

acoording to the design specifications. When analysing the FRFs of intact damaged samples, 

no damage information could be obtained. However, based on the damage index, it can be seen 

that the samples had some type of damage. 

 Finally, it was possible to verify the influence of adding metrics to the Latin Hypercube, 

collaborating in the development of the metamodel, reducing the computational cost, and 

consequently providing a gain in time at the end of the simulation. An approximated function 

is obtained to generate the design envelope to analyse the manufacturing process of the 

structure. Te proposed procedure is a kind of inspection tool to quantify the quality of composite 

structures. In fact, through this tool, considering the limits imposed in the initial design, it is 

possible to quickly inspect post-manufactured composite structures by using a vibration-based 

method. Therefore, the present work contributes to the development of a non-destructive 

inspection method by applying a proposed procedure based on experimental and numerical 

analysis. In addition, the proposed procedure can provide the foundations for the next 

generation of systems for detecting defects from the manufacturing process of real composite 

structures, as well as damage indices for damages caused during the life of the structure. 

Therefore, the present work is one more contribution to a methodology proposed by the authors 

over the years [17-18, 33-38]. Thus, the methodology, which incorporates a new damage metric 

combined to shearography speckle technique and flexure after impact to detect, locate, and 

mainly, to provide information on the extent of damage and the residual strength in composite 

structures, can include the proposed procedure to evaluate the influence of manufacturing 

process on the dynamic behavior of the composite structures, as well. In other words, the 

authors have improved their methodology in order to be used in advanced SHM systems for 

composite structures. 
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