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Summary 

• Epigenetic inheritance can drive adaptive evolution independent of DNA sequence variation. 

However, to what extent epigenetic variation represents an autonomous evolutionary force 

remains largely elusive.  

• Through gene ontology and comparative analyses of genomic and epigenomic variation of wild 

strawberry plants raised in distinct drought settings, we characterized genome-wide 

covariation between SNPs (single nucleotide polymorphisms) and DMCs (differentially 

methylated cytosines).  

• Covariation between SNPs and DMCs was independent of genomic proximity, but instead 

associated with fitness-related processes such as stress responses, genome regulation and 

reproduction. We expected this functional SNP-DMC covariation to be driven by adaptive 

evolution canalizing SNP and DMC variation, but instead observed significantly lower 

covariation with DMCs for adaptive than for neutral SNPs. Drought-induced DMCs frequently 

co-varied with tens of SNPs, suggesting high genomic redundancy as a broad potential basis 

for polygenic adaptation of gene expression.  

• Our findings suggest that stress-responsive DMCs initially co-vary with many SNPs under 

increased environmental stress, and that natural selection acting upon several of these SNPs 

subsequently reduce standing covariation with stress-responsive DMCs. Our study supports 

DNA methylation profiles representing complex quantitative traits rather than autonomous 

evolutionary forces. We provide a conceptual framework for polygenic regulation and 

adaptation shaping genome-wide methylation patterns in plants.  

 

Keywords: adaptive evolution, adaptive potential, facilitated epigenetic variation, Fragaria, 
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Introduction 

The ability of natural populations to adapt to novel environmental stressors is a key driver of 

biodiversity, particularly in an era of accelerated environmental change. Understanding the molecular 

mechanisms that allow populations to withstand environmental perturbations therefore is 

fundamental to biodiversity conservation. Quantitative genetics theory predicts that the probability of 

populations to keep pace with environmental change increases with molecular variation underlying 

phenotypic traits affecting fitness (Wright, 1948; Fisher, 1930; Payne & Wagner, 2019). While heritable 

genetic variation is thought to be the dominant driver of trait evolution, a rising number of studies 

suggests an important role for epigenetic variation and non-genetic inheritance in governing adaptive 

trait-environment covariation (Meröndun et al. 2019; De Kort et al. 2020a; Wogan et al. 2020). 

However, it remains elusive to what extent genetic variation dictates epigenetic responses to 

environmental changes (Burgess, 2019; Cavalli & Heard, 2019). If genetic variation drives all genome-

wide epigenetic and regulatory processes in response to environmental stress, then epigenetic 

variation should be considered a consequential quantitative trait that is under genetic control, rather 

than an independent evolutionary force.  

As a non-genetic inheritance mechanism, intergenerational transmission of epigenetic signatures is 

deeply interwoven with DNA sequence inheritance (Danchin et al., 2019; Adrian-Kalchhauser et al., 

2020; Medrano et al., 2021). Epigenetic marks can be established, erased, maintained and recognized 

by a large repertoire of DNA sequence motifs and proteins. As a consequence, allelic variants of these 

protein-coding genes can affect the genomic distribution, stability and inheritance of epigenetic 

variation. Epigenetic inheritance is also suggested to be highly context-dependent and probabilistic 

rather than linear and deterministic, also referred to as facilitated epigenetic inheritance (Richards, 

2006). For example, epigenetic marks frequently integrate across larger genomic regions with dynamic 

epigenetic landscapes, and gene activity depends on the combined actions of many epigenetic marks 

that spatially and temporally co-occur (Jones & Liang, 2009; Marchal & Miotto, 2015; Adrian-

Kalchhauser et al., 2020). 

Most adaptive epigenetic variation may thus, either directly or moderated by environmental 

influences, arise from adaptive genetic variation, questioning the importance of epigenetic adaptation 

as a gene-independent evolutionary mechanism. Uncoupling epigenetic from genetic evolution is, 

however, challenging, requiring experimental work on isogenic or inbred lines each raised under 

various environmental settings and preferably over multiple generations, or comparative studies 

integrating genomic, gene expression and epigenomic analysis of genotypes that underwent distinct 

evolutionary trajectories. Experimental inbred studies show that environmental stress generates 



ample epigenetic variation (Verhoeven et al., 2010; Herman & Sultan, 2016; Berbel-Filho et al., 2019), 

but that epigenetic responses to treatments are genotype-specific (Herman and Sultan 2016; Berbel-

Filho et al. 2019, but see Xu et al. 2019). The observation that each inbred line generates a specific 

epigenetic profile may suggest non-independence between DNA sequence polymorphisms and 

differential methylation (Herman & Sultan, 2016; Berbel-Filho et al., 2019). Comparative genome-

epigenome studies, on the other hand, frequently find more differentially methylated genomic regions 

than DNA sequence polymorphisms, and little evidence for causative mutations underlying epigenetic 

variation (but see Herrera and Bazaga 2010; van Moorsel et al. 2019; Yagound et al. 2019), suggesting 

that (i) part of the epigenetic variation can arise independent from genetic evolution (Schmid et al., 

2018; Stajic et al., 2019), and/or (ii) single DNA sequence polymorphisms (e.g. in methyltransferase 

enzymes catalysing genome-wide DNA methylation) pleiotropically affect epigenetic variation across 

large genomic regions (e.g. Kankel et al. 2003). Molecular mechanisms such as polygenic and 

pleiotropic regulation of epigenetic variation likely are omnipresent throughout the genome of most 

species (Wagner & Zhang, 2011; Smith et al., 2015; Frachon et al., 2017; Csilléry et al., 2018; Adrian-

Kalchhauser et al., 2020), posing a huge challenge to disentangling epigenetic from genetic adaptive 

evolution.  

DNA methylation islands, i.e. genomic regions characterized by high-density methylation, can have 

large effects on gene expression and phenotypic fitness (Cortijo et al., 2014; Jeziorska et al., 2017; 

Jeong et al., 2018). For example, up to 90% of heritability for flowering time could be explained by a 

small number of islands of differential methylation in isogenic Arabidopsis lines (Cortijo et al., 2014). 

In addition, many DNA methylation islands are linked to DNA sequence variation in transposable 

elements, gene bodies and intergenic regulatory elements (Suzuki & Bird, 2008; Gent et al., 2013; 

Zhang et al., 2018; Adrian-Kalchhauser et al., 2020). Genomic islands of differential methylation, i.e. 

DNA methylation islands with significantly different methylation levels between populations, may 

therefore especially arise near genetic polymorphisms that are under the influence of divergent 

natural selection (see also Kawakatsu et al. 2016). Identifying to what extent islands of differential 

methylation can arise independent of genetic variation may help elucidating the role of genome-wide 

methylation landscapes in adaptive evolution. 

Epigenetic variation may contribute disproportionally to adaptive evolution where the amount of 

standing genetic diversity is low, for example in clonal species, following demographic bottlenecks, 

and/or where selection pressures are variable or extremely high (Dapp et al., 2015; Latzel et al., 2016; 

Ardura et al., 2017; Artemov et al., 2017; Thorson et al., 2017; Wibowo et al., 2018). A recent study 

comparing population epigenomic signatures between a steep altitudinal gradient and a much wider 

continental gradient in the clonal species Fragaria vesca (woodland strawberry), demonstrated that 



genomic islands of epigenetic divergence arise even at fine spatial scale (<2km), and persist through 

the next generation (De Kort et al. 2020a). How these epigenetic patterns behave relative to genetic 

variation nevertheless remains an open question that is key to understanding the molecular basis of 

adaptive evolution.  

Aiming to shed new light on the interplay between epigenetic and genetic adaptive evolution, we 

compare genome-wide methylation profiles with genome-wide SNP (single nucleotide polymorphism) 

data from 20 F. vesca individuals originating from three nearby populations and raised in a common 

garden to control for short-lived environment-driven epigenetic signatures. A genomic bisulphite 

treatment was used to convert unmethylated cytosines into thymines thereby allowing quantifying 

cytosine methylation across the genome. While whole genome bisulphite sequencing (WGBS) is the 

most preferred method for methylation profiling, it complicates single nucleotide polymorphism (SNP) 

calling, with an increased occurrence of false calls particularly at CT and AG variants (Lindner et al., 

2022). Various techniques are being developed to deal with bisulphite-induced ascertainment bias, 

allowing dual use of bisulphite-treated genomes (Xu et al., 2019; Liew et al., 2020; Lindner et al., 2022). 

Here, we relied on stringent filtering and complementary downstream methods to corroborate our 

findings.  

We used a hierarchical sampling design involving a steep altitudinal population gradient, which has 

been demonstrated to generate fine-scale adaptive trait divergence in F. vesca (De Kort et al. 2020b), 

and subjected five of the individuals of one population (N=10) to acute drought stress. Specifically, five 

individuals originated from the low and high-altitudinal population, and ten from the mid-altitudinal 

population. While our major goal was to elucidate the role of adaptive evolution in driving SNP-DMC 

associations along an environmental gradient, the drought treatment helped disentangling epigenetic 

DMC (differentially methylated cytosine) patterns that are expected to be gene-independent (stress-

induced) from SNP-associated DMC patterns. Through distinguishing between neutral and adaptive 

SNPs (genetic outliers) we also tested whether differential methylation between natural populations 

is associated to adaptive evolution acting upon nearby SNPs. We then explored to what extent acute 

stress, adaptation evolution, genomic proximity, and the tendency of DMCs to co-occur in genomic 

islands of differential methylation together explain genome-wide epigenetic and genetic covariation. 

Gene ontology enrichment tests served to assess whether SNP-DMC covariation is associated with 

specific biological functions. To consolidate the role of adaptive evolution in shaping genome-wide 

SNP-DMC covariation, we performed multivariate trait association analyses. We finally tested to what 

extent genes associated to flowering time, an important fitness trait with high heritability and adaptive 

divergence in F. vesca (De Kort et al. 2020b), are under genetic and/or epigenetic control. Flowering 

genes, which regulate vernalisation and timing of flowering in response to various environmental 



stimuli including light conditions and ambient temperature, are prime examples of adaptive DNA 

sequences that can be subject to evolutionary divergence (e.g. Andrés and Coupland 2012) and of 

which transcription is fine-tuned by epigenetic modifications (Cortijo et al., 2014; Bratzel & Turck, 

2015). As a results, flowering genes are representative for adaptive evolution governed by the joint 

and complementary actions of genetic and epigenetic processes.  

 

Materials and Methods 

Study system 

Fragaria vesca is a self-compatible clonal species of deciduous forest edges and gaps, with a relatively 

small diploid genome (2n = 14; 219 Mbp, Edger et al., 2018). Seeds were collected from F. vesca plants 

at three locations along a fine-scale altitudinal gradient in the French Pyrenees (<2kms between 

populations, Table S1), including five plants from a low and high altitudinal population (400 and 1200 

masl, resp.), and ten plants from a mid-altitudinal population (900 masl). Clear adaptive trait 

divergence has previously been observed along the fine-scale gradient (covering 9 populations, with 

ca. 13 plants per population), coinciding with various topographical variables including elevation, 

aspect and slope (De Kort et al. 2020b). Among the most heritable and adaptive traits was flowering 

vigour per unit biomass, demonstrating that this fitness trait is under strong selection even at a very 

fine spatial scale.  

For a previous study (De Kort et al. 2020a), one random seedling per plant (N=20) was grown in a 

growth chamber with standardized soil moisture and light conditions after germination in petri-dishes 

(two week germination period). The plants were potted in potting soil (LP2D, Peltracom). Two times a 

week, the plants were watered and reshuffled to make sure they all experienced similar environmental 

variation. To help disentangling genetic from epigenetic variation, five samples from the mid-

altitudinal Pyrenees were raised under drought stress through applying three consecutive drought 

treatments starting two months after germination (Table S1). At the start of each treatment, watering 

stopped until leaves went limp (6-10 days), after which plants were watered for three days to allow 

partial recovery of the soil. The plants were allowed to rehydrate for one week after the last drought 

treatment to remove the most unstable drought-induced epigenetic effects. The plants were kept in a 

growth chamber with regular growth lamps and a day/night regime of 16/8 hours and 22/18°C. No 

fertilizer was added in the course of the experiment. Ca. three months after germination, one leaf per 

plant was collected in liquid nitrogen prior to DNA extraction (see De Kort et al. 2020a).  

Whole-genome bisulphite sequencing, and methylation and SNP profiling  



Library preparation, bisulphite conversion and whole-genome sequencing was performed  by De Kort  

et al. (2020a), and rendered 76 417 704 ± 13 837 490 high quality reads (mean ± standard deviation) 

per sample (See Supporting Methods and Fig. S1-S3 for more details). Methylkit v1.10.0 (Akalin et al., 

2012) was used by De Kort et al. (2020a) to call significant differentially methylated cytosines (DMCs), 

which were deemed significant where (i) at least 3 samples per population  had a minimum cytosine 

coverage of 5x, (ii) at least a 25% difference in methylation between at least two populations was 

observed, and (iii) q-values <0.01 (see Supporting Methods for more details). Because DMCs often tend 

to cluster together, we assessed the tendency of DMCs to co-occur (< 100 bp between DMCs) along 

genomic blocks of 1 kb using the genomic R package “bumphunter v1.12”. We defined DMC islands 

where at least five DMCs were found within these 1 kb blocks. Because we identified DMCs in offspring, 

significant methylation differences between the parental conditions are assumed to be inherited from 

parents to offspring (intergenerational inheritance). Therefore, cytosines with significantly 

differentiated methylation levels between the three populations and between the drought stress 

treatments are referred to as inherited and drought-induced DMCs, respectively. Note that the DMCs 

inherited from the parental generation (i) may in part reflect the environmental conditions 

experienced by the parents, and (ii) are insensitive to our drought treatment (no inherited DMC was 

also a drought-induced DMC). SNP calling was conducted with the ANGSD-software (Korneliussen et 

al., 2014) from high coverage (30x and 13x genome coverage before and after bisulphite treatment, 

respectively) 30 bam files that were generated previously on a Hiseq (PE75, 8 lanes) by De Kort et al. 

2020a. Stringent filtering (see Supporting Methods) rendered a total of 7,192 SNPs (Table S3).  

PCadapt was used to identify SNPs with exceptional genetic patterns that reflect adaptive genetic 

differentiation (Luu et al., 2017). A total of four principal components captured most background 

genetic variation (K=4, Fig. S4 and S5; See Supporting Methods). The SNPs that deviated significantly 

from neutral background structure along the principal components (expressed as the Mahalanobis 

distance and with q<0.05) were identified as putatively adaptive loci. Because no a priori definition of 

populations is required for this analysis,  PCadapt is (i) not restricted to signatures of selection at the 

population level, and (ii) insensitive to unbalanced sampling sizes. However, outlier detection methods 

generally perform poorly for low sample sizes, rendering high false discovery rates particularly for rare 

alleles. We thus implemented a leave-one-out strategy, by removing every sample once for a range of 

MAF thresholds (0, 0.05, 0.075 and 0.1), and applied PCadapt on each of these subsets (20 subsets x 4 

MAF thresholds = 80 analyses, see table S4 and Supporting Methods). We observed a strong impact of 

MAF threshold, and the highest number of consistent outliers was found for MAF and q-value 

thresholds of 0.1 (Fig. S6). Outliers with consistent signatures of selection were thus defined under 

these threshold conditions for all downstream analyses. 



DMC-SNP covariation 

To assess covariation between epigenetic and genetic population structure, we first performed a 

Principal Component Analysis (PCA) on the methylation frequency and allele matrix, respectively. 

Individual genotypes were coded as 0, 1 or 2 representing allele counts (homozygous for reference 

allele, heterozygous, and homozygous for alternative allele). The methylation matrix is composed of 

methylation frequencies along the individual x DMC matrix, i.e. the transposed DMC matrix as provided 

in Table S2. Then, to identify the general degree of covariation between genetic and epigenetic 

population structure, we performed a coinertia analysis between the principal components of the SNP 

matrix and the principal components of the DMC methylation percentages (R package “ade4”) (Dray 

& Dufour, 2007). This rendered 19 co-inertia axes delineating the multidimensional molecular space, 

of which the first two axes covered most covariation between allele and methylation frequencies (76.8; 

Fig. S7). The overall strength of the covariation between SNPs and DMCs was measured through the 

RV-coefficient, and its significance was determined using 1000 Monte Carlo permutations. 

Mahalanobis distances, representing the dissimilarity between SNPs and DMCs in the two-dimensional 

coinertia space, were calculated for each SNP-DMC pair, using the R package “StatMatch”. The degree 

of covariation between each SNP-DMC pair was calculated as [maximum Mahalanobis distance 

between SNP and DMC scores - pairwise SNP-DMC Mahalanobis distance], divided by the maximum 

Mahalanobis distance to obtain a covariation index between 0 (corresponding to the maximum 

Mahalanobis distance) and 1 (corresponding to maximum covariation). The SNP-DMC pairs with a 

covariation index > 0.9 were considered as co-varying SNP-DMCs (n=3,902 ~ 0.56% of all SNP-DMC 

pairs).  

A mixed model was generated to test whether the degree of SNP-DMC covariation depended upon (i) 

the logarithmic distance between each SNP and all DMC islands, (ii) natural selection (consistent 

outliers vs. background SNPs), (iii) DMC clustering (number of linked DMCs in the DMC island), and (iv) 

acute drought stress (DMC type: drought-induced DMCs vs. inherited DMCs), while controlling for SNP 

and DMC cluster ID (two random factors): 

Covariation ~ Log10(Distance) + Natural selection +  DMC clustering + DMC type + (1 | SNP) + (1 | DMC 

Cluster ID) 

This model served to address the following hypotheses in respective order: (i) SNP-associated DMCs 

are predominantly cis-acting (i.e. close to co-varying SNP) rather than trans-acting, (ii) SNP-associated 

methylation differentiation is linked to natural selection acting upon SNPs rather than to neutral 

processes, (iii) SNP-DMC covariation is more likely where more dense DMC islands are involved, and 

(iv) SNP-DMC covariation is more pronounced for DMCs inherited from parental environmental 



conditions than for drought stress-induced DMCs. The hypothesis that adaptive evolution facilitates 

SNP-DMC covariation stems from the increasingly recognized importance and abundance of genetic 

variants governing non-genetic inheritance (Danchin et al., 2019; Adrian-Kalchhauser et al., 2020; 

Medrano et al., 2021). Therefore, natural selection-driven canalization of allelic variants may result in 

canalization of associated epigenetic variants, resulting in increased SNP-DMC covariation. 

The covariation between SNPs and DMCs may not be reflected by specific alleles directly resulting into 

higher or lower methylation frequencies, but may rather reflect alleles altering the methylation 

sensitivity or variability of co-varying DMCs. To test how the allelic composition of SNPs alters 

methylation profiles of co-varying DMCs, we first calculated methylation variability as the coefficient 

of variation (SD/mean) in methylation frequencies across all samples. A higher coefficient of variation 

thus corresponds to higher methylation variability. We then tested the amount of SNP-DMC 

covariation explained by (i) the absolute difference in average methylation frequencies between SNPs 

that were homozygous vs. heterozygous for the reference allele (Δ methylation frequency, normalized 

to obtain values between 0 and 100), and (ii) the absolute difference in methylation variability 

between SNPs that were homozygous vs. heterozygous for the reference allele (Δ methylation 

variability). In addition, we hypothesize that the relationship between SNP-DMC covariation and 

methylation patterns differed between DMCs arising from drought stress than for inherited DMCs that 

were not affected by drought stress (fixed effect “DMC type”), because acute environmental stress 

may reduce variation in methylation frequencies. Finally, because only a tiny fraction of the SNPs was 

homozygous for the alternative alleles (0.25%), these were excluded from the mixed model: 

Covariation ~ (Δ methylation frequency × DMC type) + (Δ methylation variability × DMC type) + (1 | 

SNP) + (1 | DMC Cluster ID) 

Functional enrichment analysis 

For each SNP and DMC, the nearest gene within 1 kb distance was determined, as well as their putative 

involvement in flowering (Table S5 and S6). We retrieved gene ontology terms (GOs; Table S7) from 

the Genome Database for Rosaceae (GDR, Jung et al. 2019) for F. vesca v4.0.a2. Using Fisher’s exact 

tests (R package “TopGO”), we then assessed which biological processes and molecular functions were 

particularly overrepresented in (i) outlier SNPs, (ii) drought DMCs, (iii) inherited DMCs, (iv) DMCs co-

varying with SNPs (covariation > 0.9) and (v) SNPs co-varying with DMCs, as compared to the full F. 

vesca genome. We hypothesized an enrichment of (i) stress-related GO terms in each of these groups 

(and drought DMCs in particular), (ii) fitness-related GOs in outlier SNPs and in inherited DMCs, and 

(iii) genome regulatory GOs in all DMCs.  



To test to what extent the covariation between SNPs and DMCs is linked to functional enrichment or 

functional similarity, we first grouped all GO terms in broad GO categories, including “stress” (e.g. 

response to water and immune response), “reproduction” (e.g. flowering and seed development), 

“growth” (e.g. photosynthesis and mitosis), “genome regulation” (e.g. regulation of transcription and 

nucleotide binding), “translation” (e.g. protein processing and ribosome biogenesis), “metabolism” 

(e.g. metabolic process and catalytic activity) and “signalling” (e.g. signal transduction and transferase 

activity) (Table S7). When a gene was involved in multiple GO categories, we prioritized reproduction, 

followed by stress, growth, genome regulation, translation, signalling and metabolism (e.g. a gene 

involved in reproduction, genome regulation and metabolism was assigned the GO category 

reproduction). This order was chosen to emphasize any potential association with fitness, as stress 

responsiveness and reproductive traits are known to be frequent targets of natural selection across 

fine scale gradients. We then tested whether SNP-DMC covariation could be explained by “SNP GO 

category” and/or “DMC GO category” rather than by “genomic distance” (i.e. three fixed effect 

variables), using a mixed model with “SNP ID” and “DMC cluster ID” as random effects. In this model, 

we additionally included the binary fixed effect variable “functional similarity” indicating whether or 

not a SNP-DMC pair shared the same GO category: 

Covariation ~ Log10(Distance) + SNP GO Categories + DMC GO Categories + functional similarity + (1 | 

SNP) + (1 | DMC Cluster ID) 

To assess the strength of the relationship between genomic vs. functional variation and SNP-DMC 

covariation, we calculated the variance uniquely explained by each variable while partialling out 

random effects (R package “partR2”). 

Phenotypic association analysis 

We used phenotypic data of sister plants that were raised in similar conditions (moist vs. dry) to 

evaluate whether the adaptive SNP-DMC covariation signals observed in this study can be linked to 

adaptive trait divergence. While the use of sister plants may cause some noise in the hypothesized 

relationship between adaptive trait variation and SNP-DMC covariation, their shared parental and 

environmental origin is expected to render very similar evolutionary signals. Specifically, a total of 83 

sister plants (on average 4.3 sister plants per genotype) were monitored for specific leaf area (SLA), 

flower density, runner density, growth and stomatal density as part of a large common garden trial 

detailed in De Kort et al. 2020b, and for which significant adaptive divergence was observed (De Kort 

et al. 2020b, Table S10). The phenotypic data were averaged per genotype (Table S1) and then used in 

redundancy analyses (RDA, R package “vegan”) to detect associations between adaptive trait variation 

and (i) methylation frequencies of DMCs co-varying with at least five SNPs vs. (ii) methylation 



frequencies of DMCs not co-varying with any SNP. The methylation frequencies of DMCs represent the 

multivariate response matrix, with the five traits along with altitude and treatment as explanatory 

variables. Because adaptive evolution along the altitudinal gradient is hypothesized to drive SNP-DMC 

covariation, we expected that DMCs co-varying with SNPs manifest more pronounced associations 

with adaptive traits and altitude than  DMCs that do not co-vary with SNPs. Treatment was included 

to account for methylation variation resulting from the drought treatment. An additional RDA model 

was ran to corroborate the adaptive role of outlier SNPs, using the individual alleles of the consistent 

outliers as response matrix and the adaptive traits as response variables.  

 

Results 

Based on a PCadapt outlier analysis, a total of 127 SNPs (1.77% of 7,192 SNPs) deviated significantly 

from background genetic structure of 20 F. vesca individuals originating from three mountainous 

populations and raised under two distinct soil moisture settings (Fig. 1a, Table S1 and S3). These outlier 

SNPs were enriched for several biological processes, including “regulation of a biological trait” and 

“flowering” (Table S8), corroborating the adaptive nature of the outliers. Of these potentially adaptive 

SNPs, 30 (23.62%) were highly consistent outliers across all leave-one-out outlier analyses (Fig. 1a). 

These outliers showed a strong and significant association with adaptive traits (Fig. S8, R²adj = 16.40), 

as compared to neutral SNPs (R²adj = 2.77, Table S12 and S13). Because only 13 of these consistent 

outliers could be annotated, enrichment analysis on this small sample did not provide additional 

insights (Table S8). A total of nine SNPs were within or near a total of eight flowering genes (Table S6), 

two of them (22.22% of flowering genes) showing signatures of fine-scale adaptation (Fig. 1a).  

Across the genome, a total of 619 DMCs were found along the sampling gradient, most of which were 

found in isolation or loosely linked (79.16%) while 20.84% was clustered in 13 genomic islands of 

differential methylation (Fig. 1b). Most of the DMCs were in CG context (71.6%), followed by CHG 

(18.7%) and CHH (9.7%) context (see De Kort et al. 2020 for detailed analysis of methylation across the 

DMC contexts). None of the DMC islands arose from the drought treatment. Instead, they were 

inherited from the parental plants growing along a steep altitudinal gradient, and contained on average 

10 DMCs (up to 29 DMCs) within 1kb linkage blocks. Drought stress gave rise to 19 solitary DMCs (Fig. 

1b). The drought-induced DMCs were enriched for stress-related GO terms including response to 

oxidative stress and sulfate transport, which are key plant responses to drought stress (Chan et al., 

2013) (Table S8). The inherited DMCs were overrepresented by responses to environmental stimuli 

(e.g. light detection and response to osmotic stress), in addition to reproduction (e.g. pollination and 

seed dormancy). This overrepresentation of fitness-related processes suggests the involvement of 



natural selection in the maintenance of inherited DMCs. Islands of DNA methylation were not enriched 

for notable ecological processes, although a transcription factor  (FvH4_2g01260, MCM1) with DNA 

replication-related GO terms was differentially methylated at six cytosines (Table S5, Table S8). We 

finally found two significant DMCs within or near a putative flowering time gene encoding red/far red 

light photoreceptor FvPhyB (Fig. 1b, Fig. 2a), suggesting their involvement in constitutive, altitude-

dependent expression of flowering. 

A multivariate co-inertia analysis aiming to elucidate the degree of covariation between SNP allele 

frequencies and DMC methylation levels across the 20 samples revealed significant covariation 

between genome-wide SNP and DMC signatures (RV-coefficient = 41.97%, p<0.001, Fig. 2), and most 

covariation aligned with the altitudinal gradient (first axis in Fig. 2c). Although genotypes raised under 

drought stress clustered together with genotypes that did not receive a drought treatment (light blue 

genotypes in Fig. 2c), drought-induced DMCs showed markedly high covariation with SNPs (i.e. they 

clustered together with the SNPs, Fig. 2a and 2b). A total of 15 drought-induced DMCs (78.95%) and 

148 inherited DMCs (24.67%) co-varied with a total of 2550 SNPs (35.46%), indicating that DMCs 

typically have a broad genetic basis (on average 16 SNPs co-vary with a DMC). The proportion of 

drought-induced DMCs co-varying with SNPs is notably high (Fig. 2d), and linear mixed models 

confirmed that SNPs were significantly more likely to co-vary with drought-induced DMCs than with 

inherited DMCs (Fig. 3a, Table 1, Table S8).  

Contrary to the expectation that adaptive evolution facilitates SNP-DMC covariation, significantly 

higher covariation with DMCs was found for background SNPs as opposed to outlier SNPs (Fig. 3b and 

3c), and covariation of DMCs with SNPs was higher for solitary DMCs than for DMC islands (Fig. 3c, 

Table 1, Table S9). In addition, covariation between a DMC and a SNP did not translate into obvious 

associations between allele frequencies and methylation frequencies. Instead, co-varying SNPs were 

associated with differential methylation variability, but only for inherited DMCs (Fig. 4, Table 1, Table 

S9). Drought-induced DMCs did not display altered methylation variability, likely because drought 

stress canalized methylation levels. In all co-varying SNP-DMC pairs involving inherited DMCs (n=35 

with a covariation index > 0.9; Table S11), SNPs resulted in higher vs. lower methylation variability 

when they were homozygous vs. heterozygous for the reference allele. We did not consider the 

homozygous state of the alternative allele because it was underrepresented (<1% of all SNPs). 

Interestingly, the amount of covariation between SNPs and DMCs did not depend on their pairwise 

genomic distance (Fig. 5a, Table 1, Table S9), suggesting that the degree of SNP-DMC covariation has 

a functional basis. We thus tested whether SNPs and DMCs sharing the same GO category (e.g. both 

involved in reproduction) were featured by increased covariation, and whether covariation depended 



on SNP or DMC GO category. We found that shared GOs were not responsible for high SNP-DMC 

covariation (partial R² <0.1%), and SNP-DMC covariation did not vary according to SNP GO category 

(partial R² = 1.3%, Fig. 5a, Table S9). However, there was a marked difference in SNP-DMC covariation 

depending on DMC GO category (partial R² = 9.5%). Reproduction DMCs in particular manifested 

consistently low SNP-DMCs covariation (Fig. 5c and 5d). SNPs and DMCs involved in growth and 

genome regulation on the other hand had the highest SNP-DMC covariation (Fig. 5d). DMCs co-varying 

with SNPs were particularly enriched for GOs related to stress responses (e.g. response to abiotic 

stimulus, response to oxidative stress, light detection) and to genome regulation (e.g. regulation of 

histone modification) (Table S8). Interestingly, DMCs involved in stress responses typically only 

rendered average SNP-DMC covariation unless the associated SNP was involved in genome regulation 

and reproductive processes (Fig. 5d). Likewise, reproductive SNPs only rendered high SNP-DMC 

covariation where the associated DMC was involved in stress or in genome regulation (Fig. 5d). Our 

GO analysis on co-varying SNPs and DMCs furthermore allowed us to detect a functional link for a 

specific co-varying SNP-DMC pair, where the DMC is involved in responses to oxidative stress while the 

co-varying SNP is embedded in a cellular (aerobic) respiration gene (Table S8). Aerobic respiration has 

been shown to cause oxidative stress (Anand et al. 2019). It is thus most likely that SNPs in genes 

affecting aerobic respiration cause changes in oxidative stress and associated methylation patterns, 

particularly under stress.  

Both DMCs co-varying with SNPs and DMCs that do not co-vary with SNPs were significantly associated 

with adaptive trait variation along the altitudinal gradient (Fig. 6). However, the association was 

stronger for the DMCs not co-varying with SNPs (R²adj = 61.77% vs. 42.05%), which corresponds to the 

decreased SNP-DMC covariation for loci with signatures of adaptation (Fig. 3C). The tendency of 

genotypes to form runners (asexual reproduction) and SLA had the most pronounced association with 

these DMCs (Fig. 6B). Altitude and drought treatment also contributed considerably to the methylation 

patterns, which is in line with the observation that drought DMCs in particular co-varied with SNPs 

along the sampling gradient (Fig. 2). 

 

Discussion 

Epigenetic variation is tightly linked to environmental and fitness differences, implying its involvement 

in adaptive evolution. Understanding the genetic and environmental mechanisms driving adaptive 

epigenetic variation therefore is key to evolutionary and molecular biology. It nevertheless remains 

unclear to what extent epigenetic evolution can occur independent of genetic polymorphisms. 

However, demonstrating the degree of interdependence between DNA sequence and DNA 



methylation signatures is challenging, particularly because DNA methylation marks can be triggered by 

multiple genetic polymorphisms each affecting to various extent environment-dependent methylation 

signatures. Here, we used Fragaria vesca as a model species and applied multivariate and comparative 

genomics-epigenomics analyses to show that (i) many SNPs are linked to one or several DMC(s), with 

higher covariation when SNPs are not currently targeted by selection, (ii) inherited DMCs frequently 

co-vary with many SNPs, and (iii) this covariation is functional, and mostly linked to fitness-related 

processes, genome regulation and stress responses. All results point to differential DNA methylation 

marks representing quantitative traits that can be the target of selection rather than sources for gene-

independent evolution. Based on our findings, we propose a framework of polygenic adaptation 

shaping genome-wide methylation levels.  

Along a steep environmental gradient, 127 SNPs were found to significantly deviate from background 

genetic structure while methylation levels of ca. 600 cytosines were significantly differentiated. The 

adaptive nature of these genetic and epigenetic polymorphisms was corroborated by enrichment of 

ecological processes such as responses to environmental stimuli and flowering (Table S8). Inherited 

epigenetic signatures differed markedly from those arising from drought stress. Specifically, drought 

only induced 19 DMCs (as opposed to 600 inherited DMCs) that were still detectable after one week 

of rehydration, suggesting that most environmentally induced epigenetic marks, as detected in studies 

without rehydration (e.g. Kuromori et al. 2021; Zhao et al. 2022), are short-lived and non-heritable. 

Inherited DMCs, on the other hand, may be stable enough to persist through meiosis (Calarco et al., 

2012; Ragunathan et al., 2015; Gehring, 2019). However, they can also re-establish across generations 

under genetic influence following meiotic erasure (Richards, 2006; Wang & Moazed, 2017; Walker et 

al., 2018). While it is challenging to disentangle these competing processes, it becomes increasingly 

clear that epigenetic signatures are under strong genetic control (Lemire et al., 2015; Tikhodeyev, 

2018; Danchin et al., 2019; Adrian-Kalchhauser et al., 2020; Medrano et al., 2021). Here, many DMCs 

co-varied with multiple SNPs, supporting the notion that non-genetic inheritance is at least partly 

genetically determined.   

Theoretical and empirical data show that adaptive evolution typically is a polygenic process, whereby 

many SNPs can have the same impact on gene expression and fitness (Jain & Stephan, 2017; Barghi et 

al., 2020; Fagny & Austerlitz, 2021). This genomic redundancy allows individuals with distinct genetic 

backgrounds to evolve to similar environmental stressors. In our study, many putatively adaptive DMCs 

(N=51, 8.5%) each co-varied with over 15 SNPs - predominantly in different genes (Table S11) and not 

currently targeted by natural selection (PCadapt) - indicating that multiple genes can alter the 

susceptibility of a cytosine to environmental stress. This altered susceptibility to stress was reflected 

by changes in methylation variability (Fig. 4), and corresponds to earlier studies proposing that most 



epigenetic inheritance is probabilistic rather than linear and deterministic (Jones & Liang, 2009; 

Marchal & Miotto, 2015; Adrian-Kalchhauser et al., 2020). A polygenic basis underlying this 

environmental susceptibility allows for natural selection targeting different SNPs associated with the 

same DMC in different populations, consequently reducing SNP-DMC covariation across populations, 

and is in line with studies demonstrating polygenic adaptation of gene expression (He et al., 2016; 

Hämälä et al., 2020). Thus, low SNP-DMC covariation does not necessarily imply SNP-independent 

evolution of DMCs, but may indicate polygenic selection on a broad genetic basis shaping genome-

wide methylation levels. Although many of these SNPs may coincidentally rather than causally co-vary 

with the same DMC due to similar allele frequency distributions, additional findings suggest that at 

least part of the SNP-DMC associations are functional and involved in polygenic adaptation.  

First, we found significantly reduced SNP-DMC covariation for SNPs with signatures of divergent 

selection, indicating that adaptive evolution is involved in the maintenance of relatively long-lived 

(inherited) methylation signatures. In the framework of polygenic adaptation shaping genome-wide 

methylation levels, DMCs that are key to fitness arise from divergent selection on multiple SNPs, 

consequently reducing SNP-DMC covariation. We found markedly low SNP-DMC covariation where 

DMCs are embedded in sequences associated with reproduction (Fig. 5). Considering that fitness is 

shaped by highly complex traits (e.g. sexual and asexual reproduction) that have been found to be 

under strong selection along the fine-scale gradient studied here (De Kort et al. 2020b), the lack of 

SNP-DMC covariation across reproduction genes suggests a role for adaptation in uncoupling 

epigenetic from genetic variation. Moreover, we found that methylation profiles associated with low 

SNP-DMC covariation were markedly similar to adaptive trait patterns (Fig. 6b), further corroborating 

a role for adaptive evolution underpinning reduced SNP-DMC covariation. Methylation patterns 

associated with high SNP-DMC covariation, on the other hand, were significantly but less markedly 

linked to adaptive trait patterns. This may point to a broad epigenetic basis underpinning adaptive 

traits upon which natural selection can act, through their association with genetic variants, when 

environmental conditions change. 

Second, high SNP-DMC covariation was found where DMCs were involved in responses to drought (Fig. 

2d, 2f) and to environmental stress (response to stimuli, pH regulation, response to oxidative stress; 

Inzé and Montagu 1995; Isaksson 2015; Zhu 2016; Table S8), particularly when the co-varying SNPs 

were associated with genome regulation and reproduction (Fig. 5c). Such SNP-DMC associations may 

confer stress-responsiveness to fitness traits, thereby allowing a species to adjust key fitness traits 

while allowing appropriate stress responses under changing environmental conditions (Agarwal et al., 

2010; Lasky et al., 2014; Le et al., 2014). Stress-responsive elements have frequently been identified 

near flowering genes (Kim et al., 2004; Andrés & Coupland, 2012), and genetic polymorphisms in 



transcription factor binding sites of fitness genes have been shown to affect responsiveness of these 

genes to various environmental stressors (Lasky et al. 2014). Previously observed drought stress-

dependent flowering vigour along the same altitudinal gradient reinforces a putative role for SNP-DMC 

associations in conferring stress-responsiveness to fitness traits (De Kort et al. 2020b). One particular 

SNP-DMC pair exemplifies such functional covariation. The respective drought-induced DMC is 

embedded in a gene responding to oxidative stress, and co-varied with a SNP in a gene involved in 

aerobic respiration (Table S8). This SNP did not manifest any signature of adaptation along our 

sampling gradient, but is embedded in a gene involved in a key fitness trait (aerobic respiration, Anand 

et al. 2019) governing responses to drought and oxidative stress more than 300 kbp away. Taken 

together, SNP-DMC covariation most likely is functional because (i) it is independent of genomic 

proximity but instead associated with many SNPs with diffused trans-effects, (ii) it is significantly 

associated with drought stress-induced epigenetic signatures (Fig. 2d, 3a), (iii) it is significantly affected 

by the involvement of DMCs in reproductive genes, (iv) co-varying DMCs are enriched for processes 

related to stress responses and genome regulation, (v) co-varying SNPS are enriched for processes 

related to respiration and hormone regulation, and (vi) these findings align with patterns of adaptive 

divergence of stress-responsive fitness-related traits observed previously along the same 

environmental gradient (Fig. 6, De Kort et al. 2020b). 

Our findings suggest that stress-responsive cytosines can be targeted by many fitness genes across the 

genome, allowing the same DMC to orchestrate a versatile stress response that depends on the 

genomic and environmental context. For example, drought-responsive DMCs each co-varied with an 

average of 113 SNPs as compared to inherited DMCs, which had on average three co-varying SNPs. 

Two of these drought-induced DMCs were involved in oxidative stress and oxidation-reduction 

processes and co-varied with 217 and 381 SNPs, respectively (Table S8). Genome-wide trans-acting 

epigenetic properties have correspondingly been proposed to provide populations with the flexibility 

of allowing adaptive responses to various stresses (Hou et al., 2014; Liu et al., 2019).  

We expected part of the SNPs to be associated with many DMCs through affecting genome-wide 

methylation levels (e.g. SNPs in methyltransferase genes). Only 22 SNPs (0.31%), however, co-varied 

with more than 10 DMCs (on average less than 1 DMC), and none of these SNPs were associated with 

genome regulation (Table S8). It has been suggested that mutations with pleiotropic effects on gene 

expression are often deleterious due to their genome-wide impact (Denver et al., 2005; Wittkopp et 

al., 2008), possibly explaining the lack of SNPs co-varying with large numbers of DMCs. Alternatively, 

we did not capture the SNPs with genome-wide impact due to the removal of genetic variants by the 

bisulfite treatment and/or overly stringent SNP filtering parameters. In a model where most DMCs 

arise from a few trans-acting SNPs with multiple and interactive downstream effects (Denver et al., 



2005; Lyko, 2017), it becomes extremely challenging to detect SNPs with genome-wide impact. 

Importantly, our finding that one SNP typically co-varies with only few DMCs suggests that the fitness 

effects inferred by such SNPs work through a limited number of epigenetic marks. This would imply 

that individual DMCs can have important fitness effects. While experimentally testing the phenotypic 

impact of individual epigenetic marks is particularly challenging, we here show that (i) the identification 

of DMCs co-varying with SNPs can elucidate important candidate epi-variants that are expected to 

have detectable fitness impacts, and (ii) our DMCs collectively manifest strong associations with 

adaptive traits (Fig. 6).  Our findings thus suggest that solitary DMCs are frequently inherited (through 

inheritance of co-varying SNPs) and associated with putatively adaptive functions, and should 

therefore not be ignored when studying epigenetic evolution. 

Islands of differential methylation are thought to be more likely than solitary DMCs to affect gene 

expression and biological functions (Paun et al., 2019; Teschendorf & Relton, 2019). Although we found 

more divergent methylation patterns for DMCs in genomic islands than for solitary DMCs (De Kort et 

al. 2020a), we found little indication for DMC islands to be involved in adaptive evolution (e.g. no 

enrichment of adaptive functions, Table S8). However, a total of seven out of 12 islands of differential 

methylation, including the top three largest islands, were associated with annotated transposable 

elements (Table S5), indicating that transposable elements contribute to the divergence of 

methylation islands along our steep environmental gradient. Adopted transposable elements have 

been demonstrated to exert important phenotypic effects (e.g. Quadrana et al. 2019), which could 

explain why the seven transposable elements identified here have distinct methylation levels across 

the samples.   

Our SNP-DMC covariation estimates probably are highly conservative. First, the bisulphite treatment 

of our genomes eliminated many genetic variants across the genome (76% missing data), consequently 

decreasing the number of SNPs that could contribute disproportionally to the SNP-DMC covariation 

matrix. Second, false positive SNP calls that may have arisen from the bisulphite treatment likely have 

caused additional genomic noise, to some extent blurring the evolutionary signals present in our 

samples. However, this effect has been shown to be limited as compared to the loss of variants due to 

bisulphite treatment (Lindner et al. 2022). We nevertheless acknowledge that SNP calling methods 

specifically designed for bisulphite treated genomes (see e.g. Xu et al. 2019; Wiener et al. 2020) could 

have rendered stronger results, particularly when comparison with untreated genomes is possible. 

Third, while multi-variate tools have high potential for detecting subtle and polygenic signals (Forester 

et al., 2018), they do not capture interactive effects between markers that likely contribute 

considerably to the SNP-DMC interdependence. Dense panels of genetic and epigenetic variants could 

explore the evolutionary basis of SNP-DMC covariation in more depth. Fourth, our methylomes were 



restricted by tissue (leaves) and treatment (one environmental stressor), most likely causing 

underestimated SNP-DMC covariation estimates. Fifth, genetic variants other than SNPs, such as copy 

number variations (CNVs), insertions and deletions can render differential methylation and thus 

contribute to the interdependence between methylation status and genomic variation (Huang & 

Chain, 2021). Finally, much of the gene-dependent epigenetic variation may be linked to genetic 

elements other than SNPs. Transposable elements, for example, are among the most abundantly 

methylated regions in the genome and may thus explain part of the “missing” SNP-DMC covariation. 

In our study, the assignment of transposable elements to most of our DMC islands confirms the 

epigenomic importance of transposons. Transposable elements, rather than SNPs, being the driving 

force of genomic islands of differential methylation likely explains why SNP-DMC covariation decreases 

with increasing DMC clustering (Fig. 3). While DMCs in transposable elements generally had low 

covariation with SNPs, we did observe two transposable elements with high SNP-DMC covariation 

(>0.9; Tables S5 and S11). This could result from methylation-directed TE mobilization causing genetic 

variation across the genome (Baduel & Colot 2021). Considering that at least 22% of the F. vesca 

genome sequence consists of transposable elements (Shulaev et al. 2011; Edger et al. 2018), studying 

the role of transposable elements as drivers of SNP-DMC covariation and adaptive evolution 

represents a promising research avenue. 

Conclusion and research opportunities 

The interdependence between genetic and epigenetic variation and its evolutionary significance 

remains largely unexplored. Based on our findings, we proposed a framework of polygenic adaptation 

shaping genome-wide methylation levels. This framework assumes that inherited and stress-

responsive epigenetic signatures are inseparably from organismal fitness and play a key role in 

adaptive evolution. While validation of our framework, e.g. through expression analyses, functional 

validation and/or experimental evolution, is required for making general statements regarding the role 

of genetic variation and polygenic selection in driving genome-wide methylation patterns, the 

framework paves the way for addressing key questions in ecology and evolution. For example, do 

genetic variants in presumably pleiotropic genes such as methyltransferase genes drive adaptive 

evolution in response to environmental stressors through affecting methylation levels across specific 

genomic regions? And does polygenic adaptation towards increased methylation at DMCs facilitate 

genetic assimilation through increased mutation rates at these DMCs? Through our framework, we 

also stress that experimentally testing hypotheses on the phenotypic impact of individual DMCs, while 

considering their dependence upon trans-acting genetic polymorphisms, represents an important 

research avenue (see e.g. Taudt et al. 2016). Finally, our study is based on methylation differentiation 

between pre-defined conditions (populations and drought). While this is the most commonly used 



approach to study ecologically relevant epigenetic signatures, outlier detection methods applied to 

single methylation polymorphisms without a priori definition of population structure (similar to 

PCadapt) could reveal a more complete set of potentially adaptive patterns. Together, we provide 

important exploratory insights into the evolutionary interplay between genetic and epigenetic 

variants, but further research is required to make conclusive statements with respect to the genetic 

and evolutionary basis of genome-wide methylation. 

We further propose that our framework can inform on evolutionary potential in the context of global 

change. Specifically, we found that stress-induced DMCs co-varied more readily with SNPs than 

inherited DMCs, suggesting that environmental stress exposes the genetic basis of stress 

responsiveness. Stress-induced DMCs may thus reflect the potential of a population to evolve stress 

responses and, as such, maintain fitness under changing stress levels. The number of DMCs identified 

following a specific environmental stressor may correspondingly approximate the potential of a 

population to evolve in response to environmental change. Although we only subjected one population 

to drought stress in our study, comparison of stress-induced methylomes between populations could 

inform on their adaptive potential.   
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Table 1. Mixed model results.  

 

SNP-DMC covariation variables (Fig. 3) DMC signature associated with SNP-DMC 
covariation (Fig. 4) 

 F R²  F R² 
Genomic distance (Log10) 5.70*  

18.55/ 
73.18 

Δ methylation frequency [1] 0.58  

10.07/ 
82.76 

Selection (outlier vs. backgr. SNPs) 21.25*** Δ methylation variability [2] 851*** 

DMC (drought vs inherited) 56.61*** DMC (drought vs inherited) 60.53*** 

DMC clustering (sqrt) 19.12*** [1] × DMC type 41.80*** 

Selection × DMC clustering 65.91*** [2] × DMC type 523*** 

 

The left model tested which SNP (single nucleotide polymorphism) and DMC (differentially methylated cytosine) 

features explain SNP-DMC covariation in Fragaria vesca. The right model tested whether high SNP-DMC 

covariation results in differential methylation frequency rather than differential methylation variability. The table 

provides ANOVA F-values with asterisks representing significance (* for p<0.05 and *** for p<0.001), and R² 

showing marginal (fixed effects only) and conditional (full  model) explained variance (%), respectively. The 

strongest effects are in bold. See Table S9 for model details (e.g. degrees of freedom), and Figs. 3 and 4 for 

visualization of patterns. 

 

Fig. 1. Genome-wide distribution of genetic (A) and methylation (B) polymorphisms along a fine 
spatial gradient in Fragaria vesca. Differential methylation represents the absolute difference in 
methylation between the two populations with the highest methylation difference. The blue SNPs 
are outliers with consistent signatures of selection along a series of “leave-one-out” analyses. 
Alternate grey-colors represent the seven chromosomes. The two most extreme flowering SNPs are 
located in FvH4_3g08390 (ATVOZ1,VOZ1: positive regulation of long-day photoperiodism), and 
FvH4_6g07870 (VIP5: vernalization, DNA binding), but do not show consistent signatures of selection 
along the series of “leave-one-out” analyses. The two flowering DMCs are located in FvH4_4g19750 
(PhyB: red/far-red light photoreceptor). 

 

Fig. 2. SNP-DMC covariation patterns along two coinertia axes (A-E) and between inherited vs. 
drought-induced DMCs (F) in Fragaria vesca. The coinertia patterns (panels C-E) are based on a 
multivariate analysis aiming to reveal covariation between two multivariate matrices, including a 
DMC methylation frequency matrix (epigenetic population structure depicted in panel A), and a SNP 
allele composition matrix (genetic population structure depicted in panel B). Population genetic 
structure is higher than population epigenetic structure, pointing to strong genetic relatedness and 
the influence of environmental heterogeneity on epigenetic signatures. Panel C shows population 
structure based on SNP-DMC covariation. Here, the transparent dots represent DMC patterns, while 
the darker dots represent SNP patterns. The red dots in panels D and E represent drought stress-
induced DMCs, and frequently co-vary with many SNPs (close to grey dots along both coinertia axes). 
The orange and green dots represent inherited DMCs and tend to cluster together as expected for 
DMCs defined along the same elevation gradient (i.e. part will have increased methylation at high 
elevation, while part will have decreased at high elevation, and vice versa for low elevation). Boxplots 



(panel F) show medians with interquartile ranges (boxes), data ranges (whiskers) and outliers (small 
grey dots). 

 

Fig. 3. The amount and distribution of covariation between pairs of SNPs and DMCs across the 
Fragaria vesca genome, depending on DMC features (drought-induced vs. inherited: A, DMC 
clustering: B), and on SNP features (background vs. outlier SNPs: B and C). Marginal covariation was 
used to exclude pseudoreplication of shared SNPs and DMC islands across SNP-DMC pairs. DMC 
clustering (panel B) varied from 1 to 29 DMCs per cluster (Table S5); clusters of at least five DMCs 
within blocks of 1 kb were considered DMC islands. DMC islands typically have lower co-variation 
with SNPs than solitary DMCs (panel B), and outlier SNPs typically have lower co-variation with DMCs 
than neutral SNPs (panels B and C). Boxplots (panel B) show medians with interquartile ranges 
(boxes), data ranges (whiskers) and outliers (small grey dots). 

 

Fig. 4. Relationships between pairwise SNP-DMC covariation and differential DMC methylation 
associated with the allelic composition of the respective SNP in Fragaria vesca. Differential 
methylation is represented by methylation variability (panel A) and frequency (B). SNP-DMC 
covariation is positively correlated with methylation patterns only for methylation variability at 
inherited DMCs (see Fig. S9 for relationships for drought vs. inherited DMCs separately). The full and 
dashed line represent a significant (p<0.05) and insignificant (p>0.05) correlation, respectively. 

 

Fig. 5. The physical and functional aspects of SNP-DMC covariation in Fragaria vesca, including the 
genomic distance between co-varying SNPs and DMCs (A), the difference in SNP-DMC covariation 
between SNP (B) and DMC (C) gene ontology categories, and the Pearson correlation between SNP 
vs. DMC GO categories in terms of SNP-DMC covariation (D). The dashed red line in (B) and (C) 
represents the average SNP-DMC covariation across all possible SNP-DMC pairs. Boxplots (panel B) 
show medians with interquartile ranges (boxes), data ranges (whiskers) and outliers (small grey 
dots). DMCs in reproductive genes are featured by particularly low covariation with SNPs (panels C 
and D). 

 

Fig. 6. Relationship between DMCs (differentially methylated cytosines, red dots) and predictors 
(arrows: traits, elevation and treatment) for each of 19 Fragaria vesca genotypes with trait 
information (Table S1). Length of arrows represent strength of relationship with predictors. Small red 
dots depict DMCs. Redundancy axes represent the epigenetic variation explained by the predictor 
variables (e.g. RDA1 contains most of the DMC variation explained by the predictors). DMCs that do 
not co-vary with any SNP (panel B) are associated with traits to a larger extent than DMCs co-varying 
with at least five SNPs (panel A). 

 



NPH_18225_Fig. 1.tif



NPH_18225_Fig. 2.tif



NPH_18225_Fig. 3.tif



NPH_18225_Fig. 4.tif



NPH_18225_Fig. 5.tif



NPH_18225_Fig. 6.tif


	New Phytologist NPH-MS-2021-38470  Research article



