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Adaptive algorithm for gait segmentation using a
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Marco H. Terra, Member, IEEE , and Adriano A. G. Siqueira, Member, IEEE

Abstract— Gait segmentation may help monitoring the evolution
of patients during rehabilitation treatment through the analysis of
properly defined metrics. Many algorithms detect gait events using
Inertial Measurement Units (IMUs). However, most of them require
the IMUs to be attached to the body, or to assistive devices. Often
individuals must go to a gait laboratory which owns specialized
equipment so that gait analysis can be performed. IMUs are present
in modern smartphones. An IMU/smartphone carried in the pocket
during daily activities could allow the analysis of much more data
in a more comfortable setting. We address the detection of four gait
events: Heel-Strike (HS), Flat-Foot (FF), Heel-Off (HO) and Toe-Off
(TO) using a single noisy IMU attached to a smartphone placed
inside the thigh pocket. Gait was modelled as a four-state left-right Hidden Markov Model (HMM) whose observations
follow multivariate Gaussian distributions. The decoding in post-processing was performed with a modified Viterbi
decoder that accounts for a rule-based (RB) detection of TO. To validate the approach, experiments were performed
in nine subjects with no gait abnormalities. Our algorithm obtained median F1-Scores ≥ 0.955 for all events in intra-
subject evaluation and median F1-Scores ≥ 0.757 in inter-subject evaluations (with fast training and with a populational
model). It demonstrated high generalization capability in our dataset and competitive performances when compared to
other algorithms using high-quality IMUs attached to the body. This work is a step towards accurate and refined gait
segmentation using a smartphone carried in the pocket.

Index Terms— Gait analysis, hidden Markov model, inertial measurement units, machine learning, wearable sensors.

I. INTRODUCTION

GAIT segmentation refers to the process of dividing the
human gait cycle into phases that indicate changes in

the foot-ground dynamics. Gait events are time instants where
transitions between those phases occur. Detection of these
events is possible through algorithms that process gait signals
allowing gait segmentation to be performed automatically.

Gait segmentation has many applications in gait analysis
for physical therapy and rehabilitation. For example, metrics
derived from the event detection may indicate the degree of
gait impairment [1], which could help monitoring the evolution
of patients during rehabilitation treatment. Many types of
sensors have been utilized to capture gait data [2]. Usually
considered gold standards include footswitches, foot pressure
insoles, force platforms and optoeletronic systems. The first
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two have short service life, while the last two are only suitable
for indoor applications at specialized gait laboratories [3].

Inertial Measurement Units (IMUs) have become increas-
ingly attractive because they are cheap, durable, mobile, re-
liable [2] and present in modern-day smartphones. Previous
algorithms for gait segmentation using IMUs achieved high
performances for the foot, shank [2] and thigh [4] locations.
However, most of them require the IMUs to be attached
either to the body by straps, or to another device, such as
exoskeletons or adapted shoes.

Since smartphones contain IMUs and are often carried in
the thigh pocket, accurate detection of gait phases using a
single IMU inside a trouser/skirt/shorts pocket could bring new
applications for gait analysis, such as continuous monitoring
of patients in rehabilitation treatment. Much more data from
natural daily activities could be analysed, contrarily to gait
laboratory settings which are more artificial and limited data
can be acquired [5].

Therefore, we address here the problem of detecting four
gait events: Heel-Strike (HS), Flat-Foot (FF), Heel-Off (HO)
and Toe-Off (TO) using a single noisy IMU placed inside the
thigh pocket.

II. BACKGROUND
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A. Gait phases
Human gait is a cyclic pattern [6] that has been segmented

from two to eight phases in the literature [3]. Gait events
correspond to the transitions between phases, therefore gait
segmentation and detection of gait events are equivalent prob-
lems. The majority of the existing approaches to detection of
gait events include at least the two events: Heel-Strike (HS),
when the foot first touches the floor, also denominated Initial
Contact (IC), and Toe-Off (HS), when the foot loses contact
with the floor, also denominated End Contact [7]. We consider
two more events: Flat-Foot (FF), when the complete sole of the
foot contacts the floor, and Heel-Off (HO), when the heel loses
contact with the floor. Although the pattern HS-FF-HO-TO is
usually observed in normal gait, it may vary in pathological
gait. The gait phases are then defined as the time interval
between two subsequent events, as shown in Fig. 1.

B. Previous approaches
Algorithms for detection of gait events may be split into

machine learning-based or rule-based. Learning-based meth-
ods have the advantage of not requiring careful hand tuning
of parameters nor the knowledge of specific characteristics
of the signals used to detect the events. They may grasp
patterns and relations between signals and gait events that
would be imperceptible even to human experts. Examples
include Hidden Markov Models (HMMs) [8], [9], Genetic
Algorithms [10], Gaussian Mixtures [11], Decision Trees [12]
and Neural Networks [13].

Rule-based approaches assume that gait events occur when
input signals match a set of rules, which are often defined by
a specialist. They have the advantage of being interpretable,
very simple to implement and frequently suitable to online
applications because low computational power is required.
For example, [4] is based on the search of a min-max-min
sequence in the sagittal angular velocity of the shank.

Many algorithms are capable of accurately detecting gait
events in healthy [2], [14] and recently in impaired sub-
jects [10], [15] using IMUs attached to the foot, shank and
thigh. The classification accuracy of four gait phases in [13]
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S4
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Fig. 1. Human gait modelled as a HMM with four states. The transitions
to subsequent states happen when a gait event is detected (HS, FF, HO,
TO). The cyclic pattern in usual gait is enforced on the model’s structure.
aij is the transition probability from state Si to state Sj . HMM diagram
redrawn from [8].

was (97.2±0.8)% using thigh-only signals acquired from a
3D motion capture system. In [16], 98.9% of the HS and TO
events were recognized using an IMU attached on the thigh
area of a wearable device. These works often assume that the
gait cycle is segmented into a finite number of states.

Instead of discretizing the gait cycle, another approach
to gait segmentation consists of finding a continuous cor-
respondence between the gait cycle and a so-called phase
variable. Several studies obtained promising results using this
technique. In [17]–[19] , the authors showed that the thigh - or
hip - angle, possibly along with its integral or derivative can
accurately track human gait cycle. They used motion capture
cameras in [18] and an IMU attached to a prosthetic limb
in [17], [19]. In [20], the gait phase estimation error on slow
walking was 1.67±1.36% using a LSTM-based neural network
using inputs from IMUs attached to the thigh and torso.

Smartphones, often carried in the thigh pocket, have already
been employed to gait analysis because they contain sensors
such as GPS, microphone, cameras and IMUs. Common
applications include activity recognition [21], energy expen-
diture estimation, fall detection, step counting, pedestrian
tracking [22], user authentication [23] and monitoring of
medicine intake [24]. Many of the current approaches rely
on machine learning, for example to: 1. classify the signals
on an activity category (e.g. walking, running, etc...) [21], 2.
identify an user [23] or 3. infer whether a patient is following
the treatment [24]. Other methods are able to quantify gait
features such as gait velocity [25], step frequency, step length
and step cycle regularity [26], which may for example be used
to characterize Parkinson’s gait [27]. These techniques may be
based on frequency domain, time domain analysis or both [24].

Detection of gait events plays an essential role in time
domain analysis, since the events may be used to calculate gait
features over time. Although important features such as the
aforementioned ones can already be estimated by the existing
methods, they currently do not allow a refined description
of the gait cycle, since their segmentation algorithms are
intended to identify the entire cycles (e.g. [24], [28]). A finer
segmentation is relevant, for example, to detect a longer flat-
foot phase that is associated with metabolic inefficiency [29].
In this direction, the authors in [30] discussed the suitability
of fine-grained gait segmentation using an IMU in the thigh
pocket, but an algorithm was not proposed. In [31], the authors
introduced a generic approach to detect user-defined points
from any IMU/smartphone positioning, but the performance
was only tested for the shoe-mounted location.

In an attempt to overcome the current lack of algorithms
for accurate and refined gait segmentation using an in-the-
pocket IMU/smartphone, we present here a method to detect
four gait events using a single noisy IMU in the thigh pocket
(section III). Our method is an unifying approach between
HMM-based and rule-based algorithms that combines ideas
from:

1) Machine learning-based approach from Mannini et al.,
(2011) [9]: They modelled human gait as a four-state left-right
HMM (Fig. 1) whose hidden states are the gait phases and the
corresponding observations are the sagittal angular velocity of
the foot captured by a single foot-mounted gyroscope. The
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gait phases were decoded in post-processing using the Viterbi
algorithm. In [8], the authors made an online implementation.

2) Rule-based approach from Piriyakulkit et al., (2017) [16]:
They detected three gait events (HS, TO, and Terminal-Swing)
using the sagittal angular velocity and the forward linear
acceleration of the thigh from an IMU placed on an assistive
device on the side of the leg. The algorithm requires hand-
tuning of 9 parameters (2 filters, initialization of 3 windows,
3 thresholds and 1 window length). They considered a negative
angular velocity and a positive linear acceleration when the leg
is going forward.
• TO is detected when the filtered angular velocity achieves

a local minimum below an adaptive threshold.
• Terminal Swing occurs when the filtered angular velocity

achieves a local maximum above an adaptive threshold.
• HS point corresponds to the local maximum above an

adaptive threshold of the filtered linear acceleration.
In the next section we describe our proposed algorithm to

detect four gait events using an IMU in the thigh pocket.

III. METHODS

A. Modeling Human Gait using a Hidden Markov Model
We model human gait as a discrete-time, four states S =

{S1, S2, S3, S4} left-right HMM as in [9], (Fig. 1). It mathe-
matically represents the idea that we do not have direct access
to the actual gait phases (or states), but rather to observations
derived from the sensor measurements that are related to the
corresponding hidden gait phases. The sequence of hidden
states is denoted by Q = {q1, ..., qN}, where N is the number
of time instances in the data series. We adopt the same notation
used in [32].

The transition probabilities aij = P {qn+1 = Sj |qn = Si},
n ∈ {1, ..., N}, from state Si to state Sj are arranged in the
transition probability matrix A = [aij ](Si,Sj)∈S2 . Assuming
that human gait is a cyclic pattern going uniquely in the
forward direction, A has non-zero terms only on the main
diagonal and on the diagonal immediately above:

A =


a11 a12 0 0
0 a22 a23 0
0 0 a33 a34
a41 0 0 a44

 (1)

At each time instance tn we assume to have access to the
observation On, which is a vector in RN composed of signals
derived from an IMU in the thigh pocket.

We assume that the observations associated to each state
Si∈{1,...,4} follow a multivariate Gaussian distribution with
mean vector µi and covariance matrix Σi. This assumption
is a generalization of previous works which modelled the
observations as a univariate Gaussian distribution [8], [9]. The
probability distributions of the observations are arranged in the
observation vector:

B =
{
bi∈{1,...,4} = N (qn|µi,Σi, qn = Si)

}
(2)

The model λ is fully described by 3 parameters: λ =
(π,A,B), where π = [0.1, 0.4, 0.1, 0.4] is the prior proba-
bilities vector, which we take as an approximate probability
distribution of the four states.

B. Modified Viterbi decoder and TO-Rule

Having the model λ and a sequence of observations
O = {O1, ...,ON}, the sequence of hidden states Q∗ =
{q∗1 , ..., q∗N} that optimally explains the observations in the
data series can be estimated efficiently by the Viterbi algo-
rithm. It finds the maximum likelihood state sequence and is
composed of two main steps: In the first step, a forward pass
over the data points calculates the partial likelihood (score)
of the most probable path ending at each state at each time
instance. A matrix of back-pointers is constructed indicating
the most probable previous state of each possible state at
time step tn. In the second step, a backtracking is performed
over the back-pointers to find the most probable path [8]. We
adopted log probabilities to avoid numerical problems [32].

In addition, we observed that the pure HMM in Fig. 1
decoded by the standard Viterbi algorithm has a major weak-
ness in detecting TO using data from an IMU in the thigh
pocket. Therefore we designed a TO-Rule based on [16]. We
consider that TO event corresponds to a local maximum of the
signal ωs, which is the sagittal angular velocity of the thigh ωs
(here positive when the leg is going forward) once filtered and
normalized (section IV). ωs is captured by the IMU located
in the thigh pocket. The local maximum in ωs is detected as
a change in the signal of its derivative α = dωs

dt , which is
estimated using the first-order finite difference of ωs.

The standard Viterbi decoder was modified in order to
detect TO using this rule. During the forward pass step,
our algorithm is identical to the standard Viterbi decoder.
During the backtracking step, TO event is detected by TO-Rule
regardless of the backward pointers. Our algorithm allows the
incorporation of expert knowledge through rules that may be
added into the decoding. However, by doing this, the optimal
state sequence in the criterion of maximum likelihood is no
longer ensured.

The main steps of the algorithm are shown in Algorithm 1.
Additional minor steps can be found in [32]. Note that since
the backtracking runs in the opposite direction of the time
instances, TO event is characterized by a transition from S4

to S3 in the TO-Rule. It was implemented in MATLAB based
on the HMM Toolbox [33].

IV. OBSERVATION VECTOR

In this section we present signals used as observations
for HMMs. In addition to the proposed approach which
considers signals derived from the IMU in the thigh pocket, we
evaluated several HMMs with different inputs from different
sensor placements. We also compared the results with some
algorithms taken from the literature. Signals used as inputs to
algorithms from the literature were filtered according to the
original works.

A. Filtering

The signals used in this study as observations were filtered
with second order butterworth filters that are applied forwards
and backwards, according to Table I, where a means acceler-
ation and ω angular velocity.
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Algorithm 1 Modified Viterbi decoder

1: Forward pass :
2: for n← 1, ..., N do
3: for all Sj ∈ S do
4: δn(j)← max

Si∈S
{δn−1(i) + log[aij ])}+log[bj(On)]

5: ψn(j)← arg max
Si∈S

{δn−1(i) + log[aij ])}

6: end for
7: end for

8: Modified backtracking :
9: for n← N − 1, ..., 1 do

10: if q∗n+1 = S4 then
11: q∗n ← TO-RULE(α, n)
12: else
13: q∗n ← ψn+1(q∗n+1)
14: end if
15: end for

16: function TO-RULE(α, n)
17: if αn ≥ 0 ∧ αn+1 < 0 then
18: return S3 . TO detected (Local maximum of ωs)
19: else
20: return S4 . Waiting for detection of TO
21: end if
22: end function

TABLE I
SIGNALS USED FOR HMMS AT DIFFERENT SENSOR PLACEMENTS

IMU Location Signals Lower cut-off
frequency (Hz)

Higher cut-off
frequency (Hz)

Foot-mounted [9] ωs - 15
Shank-attached ωs - 15
Thigh-attached ωs 0.2 1.5

Pocket ωs 0.2 1.5
Pocket ωx,y,z , ax,y,z 0.2 15

z: Vertical axis. y: Anterior-posterior axis. x: Medio-lateral axis. ωs: sagittal
angular velocity.

The low-pass filter parameter (15 Hz) for the foot was
taken from previous literature [9]. Since the amplitude spectra
of gait signals is concentrated below 15 Hz [34], this cut-
off frequency was also used for shank-attached and some
pocket signals. In addition, based on discussions in [35], we
found that including the thigh-attached and pocket ωs signals
filtered at 1.5 Hz significantly improved the results. This
filter extracts the fundamental component of the gait, which
is usually below 1.4 Hz for fast walking when the walking
frequency is measured from a single leg [34], [36], [37]. We
also removed low frequency components (below 0.2 Hz) to
reduce slow drifts in inertial sensors [38] and to make our
algorithm invariant to constant biases. The thigh-attached IMU
was only used for comparison, since our interest lies on the
pocket location. Note in Table I that ωs and ωx pocket signals
are derived from the same output (gyro in the medio-lateral
direction), but filtered at different frequencies. The resultant
angular velocity ωr is calculated using the filtered ωx, ωy and

ωz:
ωr =

√
ω2
x + ω2

y + ω2
z (3)

Similarly for the resultant linear acceleration ar:

ar =
√
a2x + a2y + a2z (4)

Finally, ωr and ar are filtered with band-pass filters with
pass-band of [0.2, 1.5] Hz. This additional filter removes
components originated from the squaring operation. From now
on, filtered signals are denoted with a tilde (e.g. ω̃s). Note that
all filter parameters are given, therefore the algorithm does not
need subject-specific tuning of filters.

B. Adaptive normalization
After being filtered according to the previous section, the

thigh signals were normalized in an adaptive fashion as
follows. Let s̃(n) be the filtered signal at time instance n and
W (n) = [s̃(n − k), ..., s̃(n), ..., s̃(n + k)] a sliding window
centered at s̃(n) with length (2k + 1) corresponding to 2.5
s. This length was chosen to be larger than one stride for
slow gait considering all prediction intervals in [36], which
is the scenario where the stride has the largest duration.
This parameter does not need to be tuned since it is based
on population statistics. The normalized signal s̄(n) at time
instance n is given by Eq. 5:

s(n) =
s̃(n)−min(W (n))

max(W (n))−min(W (n))
(5)

C. Observation
In our algorithm we defined the observation vector as:

On = [ωs(n), ωr(n), ar(n)]T (6)

We tested several different combinations of outputs using data
from a single subject and these are the variables that provide
the best results.

D. Gold standard
Since the usually considered gold standards (e.g. pressure

sensors and optoeletronic systems) were not available in our
dataset, we adopted a set of rules using a foot-mounted IMU
to be gold standard, based on the rules presented in [9].

New rules were added in order to make the original rules
in [9] more robust to artifacts and to the variability of gait
patterns among individuals. Our gold standard is presented in
the following.

Let azfoot
(n) and ωfoot(n), n ∈ {1, ..., N} be the raw

signals of the vertical acceleration and the sagittal angular
velocity of the foot, respectively. First, a pre-processing of
ωfoot(n) substitutes points having an absolute value greater
than 1200°/s by the linear extrapolation of their two predeces-
sors, since we found by visual inspection that two points in
our entire foot dataset were on the extremes of the IMU scale
(±1500°/s). This is way beyond the normal range for gait data
and is likely due to errors on the IMU.

Then, let ω̃F ;O
foot(n) be ωfoot(n) filtered by a butterworth

low-pass filter with cutoff frequency F (given in Hz) and order
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O which is applied forwards and backwards. The gold standard
events are detected in sequence according to the following
rules:
• FF: |ω̃15;2

foot(n)| ≤ λFF ∧
dω̃5;10

foot(n)

dt > 0

• HO: |ω̃15;2
foot(n)| > λHO ∧

dω̃3.5;2
foot (n)

dt < 0

• TO: ω̃15;2
foot(n− 1) ≤ 0 ∧ ω̃15;2

foot(n) > 0
• HS point tHS is found by Algorithm 2, where tTO is

the last TO point and L is a searching window length
corresponding to 0.1 s

where |.| denotes the absolute value, λFF = λHO = 50°/s [9]
and thyst = 0.1 s is a temporal hysteresis that does not allow
the swing phase to last less than 0.1 s, which is reasonable
since the swing phase corresponds to approximately 40% of
the gait cycle [6].

Algorithm 2 HS algorithm for gold standard

1: if ω̃15;2
foot(n) ≤ 0 ∧ (tn − tTO) > thyst then

2: tHS = arg max
n≤i≤n+L

azfoot
(n)

3: end if

In [9], the rules are only based on the signal ω̃15;2
foot(n). We

added rules for FF and HO to ensure that FF occurs at the
ascending part of the foot saggital angular velocity and HO
on the descending part. As shown on the top pannel of Fig
2, small oscillations on the angular velocity can cause false
detections by the original algorithm [9]. Therefore, we also
consider the signal filtered at lower frequencies to overcome
those oscillations. These filters were tuned by visual inspection
of the foot dataset to correct cases in which [9] failed. Our HS
rule differs from [9] since in our study the acceleration was
available. As shown in Fig 2, the vertical acceleration of the
foot has a distinct peak when HS occurs, which our algorithm
starts to look for after the angular velocity has crossed zero
to negative side.

Fig. 2 shows an example of signals acquired from the foot-
mounted IMU and the corresponding states based on our rules
(orange) and on the original rules in [9] (black).

V. MODEL TRAINING

Given a sequence of training observations O =
{O1, ...,OT } and the corresponding training gold standard
states G = {g1, ..., gT }, where T is the number of training
samples, the transition probability matrix A is estimated by:

aij =
Nstrides
N |gn=Si

, j = i+ 1 (mod 4) (7)

aii = 1− aij , (8)

where Nstrides is the number of training strides and N |gn=Si

the number of appearances of state Si in the training gold
standard sequence. Note that N |gn=Si

depends on the sam-
pling frequency. The conversion of af1ij on frequency f1 to
frequency f2 is: af2ij = af1ij ·

f1
f2

.
The parameters µi and Σi are estimated as the sample

average and the sample covariance matrix, respectively:

µi = Avg[On|gn=Si
] , n ∈ {1, ..., T} , i ∈ {1, ..., 4} (9)

Fig. 2. Rule-based gold standard using the sagittal angular velocity
(top) and the vertical acceleration (bottom) of the foot from a foot-
mounted IMU. The improved rules are more robust to artifacts in com-
parison to the rules proposed by Mannini et al., 2011 [9]. Here, the HS
detection corresponds to the positive peak in the vertical acceleration of
the foot.

Σi = Cov[On|gn=Si
], n ∈ {1, ..., T} , i ∈ {1, ..., 4} ,

(10)
where On|gn=Si

is the observation at time n so that the
corresponding gold standard state is Si.

VI. EXPERIMENTS

In this section we describe the experiments that were
conducted to validate our algorithm and the performance
metrics that were computed. The results are then presented
in comparison to other algorithms in the literature that were
run on the same data.

The tests were approved by the ethics committee
of the University of São Paulo, School of Physical
Education and Sport of Ribeirão Preto, EEFERP-USP,
CAAE #41150620.7.0000.5659, decision statement (approval)
#4.579.836. The experiments were explained to the subjects
and they provided informed consent prior to participation.

A. Experimental protocol

Nine subjects (7 males, 2 females, 23-59 years, 1.54-2.00
m, 57-92 kg, no gait abnormalities) performed three walking
sessions at different speeds, either on a non-tilted treadmill
or overground (8 treadmill, 1 overground). Walking sessions
lasted 4.2±2.5 min. The subjects were asked if they wanted
to rest for a few minutes between each walking session.

1) Treadmill: First, the subjects were asked to select the
most comfortable walking speed (Self-Selected Walking Speed
(SSWS)), then at 1.2·SSWS and finally at 0.8·SSWS. One
of the subjects had two walking sessions at SSWS since the
chosen SSWS was the lowest speed on the treadmill scale.

This article has been accepted for publication in IEEE Sensors Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JSEN.2022.3177951

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



6 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2022

2) Overground: One of the subjects walked overground on
a corridor instead of at the treadmill due to an unavailability of
the treadmill on the test day. This subject was asked to walk
first at Overground Self-Selected Walking Speed (OSSWS),
then slightly faster than OSSWS and finally slightly slower
than OSSWS, according to self perception of speed.

SSWSs varied from 1.0 to 4.5 km/h, with average±SD of
3.11±1.19 km/h. The total number of strides was 5074 (on
average 188±129 per walking session), counted automatically
as the number of TO events in the gold standard.

B. Experimental setup
Inertial data was captured at 100 Hz by Xsens MTw Awinda

wireless IMUs. Data was transferred to a laptop (Intel® Core™
i5-8250U, 8 Gb RAM, Ubuntu 18.04) through the Awinda™
protocol which ensures data synchronization within 10 µs.
The receiver station was kept close to the treadmill (< 4 m).
The subjects were asked to wear a trouser or shorts having a
pocket either at the front or at the side of the thigh. Since our
envisioned application is to perform gait segmentation using
a smartphone, one Xsens IMU was attached to a smartphone
(Moto G8 Power) by adhesive tape so that the Xsens IMU
captured the movements of the smartphone. Then, the IMU-
smartphone group was placed inside the thigh pocket on the
dominant leg. The positioning of the pocket IMU-smartphone
group was not readjusted between walking sessions in order
to allow the natural change in orientation inside the pocket. It
is important to remark that we only recorded and used data
from the Xsens IMUs in this study.

One IMU was foot-mounted (gold standard), one was at-
tached to the front of the shank, one attached to the thigh, all
on the dominant leg (Fig. 3). The pocket, (shank and thigh)-
attached IMUs were upright-oriented. The foot-mounted IMU
was oriented on the logitudinal axis. The IMUs were attached
to the body by velcro straps that come within the sensors
kit. To avoid mechanical interference/contact from the thigh-
attached IMU on the pocket IMU, the thigh-attached IMU was
attached to the side of the thigh if the pocket was frontal and
to the front of the thigh if the pocket was lateral.

C. Noise Simulation of Smartphone MEMS IMU
Since we only recorded data from the Xsens IMUs, we

added simulated noises to the pocket Xsens signals in order
to mimic the signal quality from a smartphone MEMS IMU.
We considered two noise terms - bias instability (B) and
angle/velocity random walk (N) - which often dominate in
timescales varying from seconds to hours [39], [40].

We used parameters for the Honor Play smartphone (Huawei
Technologies Co., Ltd.). The angle/velocity random walk was
modelled as a white Gaussian random noise with power
spectral density N2 and the bias instability as a Gauss-Markov
Error Model as in Eq. 11. For a detailed explanation on
modeling IMU errors, we refer the reader to [41].

żG(t) = − 1

TB
zG(t) + ωB(t) (11)

where zG(t) is the bias instability noise, TB is the correlation
time and ωB(t) a white Gaussian noise with power spectral

Fig. 3. Experimental setup: IMUs positioning to capture gait data.
The foot-mounted IMU is used as reference. An IMU is attached to a
smartphone placed inside the thigh pocket. The IMU-smartphone group
is shown partially out of the pocket to facilitate visualization.

density 2B2ln(2)
π(0.4365)2TB

. The parameters and their source are
given in Table II.

TABLE II
PARAMETERS FOR SMARTPHONE MEMS IMU NOISE SIMULATION

IMU Outputs Bias instability (B) Noise density (N) Correlation time (TB)
(mg) (°/s) (µg/

√
Hz) (°/

√
h) (s)

Accelerometers 150 180 70
Gyroscopes 3 0.42 400

B and N parameters were taken from [42] and TB from [43].

VII. PERFORMANCE EVALUATION PROTOCOL

The performance metrics that were computed and the three
types of evaluation are described in the following.

A. Metrics
1) F1-Score: This metric is commonly used in the litera-

ture to evaluate event detection algorithms (e.g. [12], [15]).
For each gait event, the F1-Score ∈ [0, 1] is defined as
the harmonic mean of Precision (P) and Recall (R): P =

TP
TP+FP , R = TP

TP+FN , F1 = 2·P·R
P+R , where TP are the True

Positives, FP the False Positives and FN the False Negatives.
TP are the first events correctly detected by an algorithm
that lie within a tolerance window of ± 200 ms around the
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corresponding gold standard events. FP are the detected events
that lie outside the tolerance window or additional detections
after a first correct detection. FN are the gold standard events
that were not detected within the tolerance window. Higher
F1-Scores are better.

2) Mean squared error (MSE): First we define the error
between two states, corresponding to the minimum number
of jumps between them in any direction:

error(Sa, Sb) =

{
1, if (a, b) ∈ {(1, 4), (4, 1)}
|a− b|, otherwise

(12)

Let G = {g1, ..., gN} be the gold standard state sequence and
Q = {q1, ..., qN} the sequence of hidden states found by an
algorithm. The MSE of Q is:

MSE =
1

N

N∑
n=1

error(gn, qn)2 (13)

Lower MSEs are better. This metric is very fast to compute
and has the advantage that the delays in the decoded sequence
degrade the final performance in a more continuous way than
in the F1-Score. Of note, similar metrics have been utilized
in the gait segmentation literature (e.g. [20], [44]).

B. Types

1) Evaluation 1 (Eval. 1) - Intra-subject: The model is trained
with the first 20 s of one walking session performed by
a subject and the performance is tested with the remaining
data of the same subject (including the remaining data of the
walking session used to train the model and the other two
walking sessions). For each subject, this procedure is repeated
3-fold, using at each repetition the nth ∈ {1, 2, 3} walking
session performed by the subject to train the model.

2) Evaluation 2 (Eval. 2) - Inter-subject, fast training: The
model is trained with the first 20 s of one walking session
performed by a subject and the performance is tested on the
walking sessions performed by all the remaining subjects. This
procedure is repeated using every walking session of every
subject as the training data. Here we intended to test if it is
possible to train the model fast with a single subject and apply
the model in different subjects.

3) Evaluation 3 (Eval. 3) - Inter-subject, populational model:
For each testing subject, (N-1) subjects are randomly picked
with replacement from the remaining subjects. For each of the
(N-1) picked subjects, 3 models are trained using the first 20 s
of three walking sessions picked randomly with replacement.
The final populational model is considered as the average of
the (N-1)*3 randomly selected models. Note that the average
of stochastic matrices is still a stochastic matrix. The same
holds for the average of covariance matrices. This procedure is
repeated 250 times for each testing subject. Here we evaluated
how well the model performs when being trained with several
subjects and being tested on an unseen subject.

Training data is never used in evaluation. We computed the
F1-Score and the MSE at each testing walking session (3 per
subject) for every cross-validation (Eval. 1 and 2) or pooling
(Eval. 3) and we report the median and the interquartile

interval [Q1 Q3] obtained for the metrics. In this manner it is
possible to evaluate the repeatability of the performance. All
analyses were run in post-processing on MATLAB R2018a.
The start and end of each walking session were identified
manually.

Fig. 4. Example results of the proposed algorithm in comparison to
the gold standard (a) and thigh signals - sagittal angular velocity (b) and
resultant acceleration (c) - acquired from a thigh-attached and an in-the-
pocket IMU. Angular velocity is positive when the leg is going forward.
The left axes correspond to the raw signals. On b and c, the right axis
show the pocket signals after the filtering and adaptive normalization
processes described in section IV, marked with an upper-bar on the
legend. They are part of the proposed observation vector. The peak of
ωs corresponds to the rule-based detection of TO.

VIII. RESULTS

Fig. 4 presents example results from the gait event detection
along with raw outputs from the pocket and thigh-attached
IMUs. It also shows processed signals utilized in our algo-
rithm.

A. Algorithms from the literature

Table III shows the F1-Scores and MSEs obtained by
different algorithms at different IMU placements. The algo-
rithms from [4], [9], [16] performed well, having obtained
median F1-Scores ≥ 0.876 for all events. The algorithm by
Piriyakulkit [16], although designed for an IMU placed on
an assistive device on the side of the thigh, achieved a good
performance using an IMU in the thigh pocket. Of note, in
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TABLE III
PERFORMANCE OBTAINED FOR EACH ALGORITHM AT DIFFERENT IMU PLACEMENTS

Foot-mounted (n=9) Shank-attached (n=8)* Thigh-attached (n=9) Thigh pocket with simulated smartphone noises (n=9)

[9] HMM [ω̃s]** HMM [ω̃s] HMM [ωs] Proposed HMM-RB [ωs, ωr, ar]T

Eval. 1 Eval. 1 Eval. 1 Eval. 1 Eval. 2 Eval. 3
HS 0.996 [0.982 1.000] 0.961 [0.856 0.996] 0.995 [0.986 0.997] 0.987 [0.952 0.994] 0.930 [0.769 0.986] 0.964 [0.910 0.990]
FF 0.996 [0.983 1.000] 0.910 [0.751 0.991] 0.949 [0.793 0.994] 0.955 [0.878 0.991] 0.797 [0.553 0.946] 0.757 [0.594 0.909]
HO 0.996 [0.982 1.000] 0.954 [0.832 0.991] 1.000 [0.987 1.000] 0.996 [0.990 1.000] 0.986 [0.921 0.997] 0.995 [0.973 1.000]

F
1

-S
co

re

TO 0.997 [0.983 1.000] 0.964 [0.856 0.997] 0.000 [0.000 0.570] 0.997 [0.992 1.000] 0.995 [0.981 1.000] 0.997 [0.989 1.000]
MSE 0.051 [0.040 0.075] 0.173 [0.133 0.259] 0.327 [0.265 0.382] 0.169 [0.126 0.218] 0.350 [0.252 0.517] 0.282 [0.240 0.340]

[9] (RB) [4] (RB) [16] (RB) [16] (RB) HMM [ωs] HMM-RB [ωr, ar]T

Eval. 1 Eval. 1
HS 1.000 [0.995 1.000] 0.997 [0.974 1.000] 0.900 [0.521 0.987] 0.876 [0.801 0.923] 0.994 [0.981 0.997] 0.801 [0.423 0.888]
FF 1.000 [0.995 1.000] - - - 0.914 [0.461 0.990] 0.828 [0.701 0.922]
HO 1.000 [0.992 1.000] - - - 1.000 [0.991 1.000] 0.881 [0.785 0.950]

F
1

-S
co

re

TO 1.000 [0.995 1.000] 0.989 [0.953 1.000] 0.935 [0.527 0.990] 0.929 [0.870 0.958] 0.735 [0.030 0.972] 0.920 [0.848 0.979]
MSE 0.025 [0.017 0.036] - - - 0.968 [0.359 1.621] 0.412 [0.323 0.537]

Results shown as median [Q1 Q3] (lower and upper quartiles). Observation vectors used for HMMs are shown in brackets. n: number of subjects,
ωs: sagittal angular velocity, ωr : resultant angular velocity, ar : resultant linear acceleration. As defined in section IV, filtered signals are marked with a
tilde, while signals filtered and adaptively normalized are marked with an upper-bar. *One of the subjects did not carry the shank IMU. **Our
implementation does not include the heuristic strategy in [9] which ignores strides lasting less than 0.35 s.

the original work of Piriyakulkit, the parameters were tuned
for each subject, while here we used the same parameters for
all subjects (given in Supplementary Appendix), which were
tuned until good results were achieved for a single subject.

B. Pure HMMs

Pure HMMs (decoded by the standard Viterbi algorithm,
without additional rule) performed well for the foot and shank
locations (median F1-Scores ≥ 0.910 for all events). The
MSE of the pure HMMs using a single input increased in
the following order of sensor placement: foot, shank, thigh-
attached and thigh pocket. For the thigh-attached and pocket
locations, the performance of TO detection was poor (median
F1-Scores of 0.000 and 0.735, respectively). This illustrates
our motivation to design the TO-Rule.

C. HMM-RB algorithm using an IMU in the thigh pocket
with simulated smartphone noises

Here we present the results for the proposed HMM-RB ap-
proach (observation vector [ωs, ωr, ar]

T and TO-Rule verified
on ωs).

In Eval.1, the lower quartile F1-Scores were ≥ 0.878 and
median F1-Scores were ≥ 0.955 for all events. In Eval. 2
and Eval. 3, the lower quartile F1-Scores for HS, HO and TO
events were ≥ 0.769 and median F1-Scores were ≥ 0.930,
while for FF the F1-Scores were 0.797 [0.553 0.946] and
0.757 [0.594 0.909], respectively. The TO-Rule detected the
TO event robustly, having obtained a lower quartile of the F1-
Score ≥ 0.981 in all evaluation types. The raw results for all
walking sessions for all repetitions for all evaluation types are
shown in Supplementary Fig. S1.

Applying the same approach but using the observation
vector [ωr, ar]

T and verifying the TO-Rule on ωr, lower
performances were achieved in Eval. 1 in comparison to the
proposed observation vector. Lower quartile F1-Scores were
0.423 and median F1-Scores were ≥ 0.801 for all events. This

was an attempt to develop an orientation-free algorithm, since
in this case all inputs are resultant quantities.

Table IV shows the time agreement (median [Q1 Q3]) be-
tween the proposed HMM-RB [ωs, ωr, ar]

T algorithm and the
gold standard. Positive delays mean that the algorithm detected
an event after the gold standard. Only TP are considered. The

TABLE IV
DELAYS BETWEEN ALGORITHM AND GOLD STANDARD

Delays [ms] (median [Q1 Q3])
ET HS FF HO TO

Eval. 1 -30 [-80 10] 40 [00 80] -10 [-40 10] 00 [-30 20]
Eval. 2 -40 [-110 50] -10 [-100 90] 00 [-70 60] -10 [-30 20]
Eval. 3 -40 [-110 20] 40 [-80 120] -10 [-60 50] -10 [-30 20]

ET: Evaluation type.

proposed algorithm showed a bias towards detecting HS in
advance (median delay of -30 ms in Eval. 1) and FF after
the gold standard (median of 40 ms in Eval. 1). HO and TO
showed small delays (medians of -10 ms and 00 ms in Eval.
1, respectively). The normalized frequency distributions of the
delays between the events detect by the algorithm and the gold
standard for each evaluation type are shown in Supplementary
Fig. S2. Only TP are considered.

IX. DISCUSSION

Our goal was to develop an algorithm capable of detecting
four gait events (HS-FF-HO-TO) using a single IMU in the
thigh pocket, because this is a common carrying position of
a smartphone. Instead of acquiring directly the signals from
the smartphone’s IMU, we attached to it a high quality Xsens
IMU, which captured the smartphone’s movements. We then
added simulated noises to the pocket IMU to mimic the signal
quality of a smartphone MEMS IMU. This experimental setup
was designed to overcome problems in the acquisition of
smartphone signals that could interfere on the quality of the
measurements, and therefore, on the reliability of the algorithm
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validation. Notably, IMUs from smartphones may be hard to
synchronize with a gold standard and may have unstable/low
sampling frequencies. We consider that the setup was suitable
to validate our algorithm.

The results were promising and comparable to previous
algorithms in the literature designed for positions known to
achieve high performances, such as the (foot, shank and
thigh)-attached IMU locations. [13] obtained F1-Scores ≥
0.94 for the classification of four gait phases from thigh
kinematics using high precision motion capture system. Our
algorithm also showed better performances for the HS and
TO detection in comparison to [16] when using the IMU in
the thigh pocket with simulated smartphone noises. Due to
the lack of algorithms in the literature for smartphone-based
gait segmentation it is difficult to further compare our results.
In light of the results from the three types of evaluation,
we observed that our algorithm had a high generalization
capability, given that our data was highly variable with respect
to walking speeds. These results pave the way for future work
which may evaluate the performances using signals directly
from smartphones. Monitoring the evolution of patients in
rehabilitation treatment and detection of neurological diseases
are potential future applications of algorithms that consider an
IMU/smartphone in the thigh pocket.

This work has limitations. The performances were evaluated
in a small number of subjects with no gait abnormalities.
Usually the performances decrease in impaired subjects [14].
Also, instead of the usual gold standards, we considered a set
of rules using a foot-mounted IMU as our reference. These
rules are not perfect, despite being an improved version of
rules previously utilized in the literature as a surrogate for
gold standard. If usual gold standards such as motion capture
system were available, we would have used them in our study.

Although we aimed to use resultant quantities (ωr and ar)
as input signals, our method is not completely orientation-free
because the sagittal angular velocity ωs was also used both for
the observation vector and for the TO-rule. This requires the
sensitivity axis of the gyroscope to be oriented in the medio-
lateral direction so that ωs is positive when the leg is going
forward. Depending on the sizes of the pocket and of the
IMU/smartphone, the orientation of the sensors may change
over time, possibly causing distribution shifts in their outputs.
Moreover, changes in walking speed cause changes in the sig-
nals’ amplitudes and waveforms. The adaptive normalization
was an attempt to solve the distribution shift issue and the
results were satisfactory. We also applied our algorithm to an
observation vector containing only resultant quantities but the
performance decreased.

The method was implemented in post-processing, but some
modifications could allow an online implementation. It would
be necessary to use the online Viterbi algorithm [45]. The
TO-rule would have to be verified in the forward direction, not
backwards as in our modified backtracking. Moreover, it would
be necessary to design online filters for each of the signals.
The adaptive normalization would have to be implemented in
a causal window.

Our method could also be used in a system designed to
help the identification of diseases or estimate the degree of

gait impairment. The detailed knowledge of gait phases given
by our method has not yet been seen in the literature of
smartphone-based gait analysis and it is relevant because it
opens new possibilities for clinical applications. To test these
applications, clinical trials would be required. For example,
patients with intermittent claudication may have a prolonged
flat-foot [29] phase, which previous smartphone-based gait
segmentation algorithms cannot identify. For such an appli-
cation, an implementation in post-processing as here would
be the most adequate. The raw smartphone signals could be
sent to the cloud where they would be processed and then a
report would be later provided to the user, after acquisition
of large amounts of data that wouldn’t be available on a real-
time implementation. One possible source of interference and
artifacts in our method is when the user is performing other
activities rather than walking. To avoid this, here we identified
the beginning and end of each walking session manually. To
detect and isolate them automatically on a dataset containing
several daily-life activities, it would be necessary to implement
an activity recognition algorithm capable of identifying the
walking sessions, such as those presented in [21].

X. CONCLUSIONS

We proposed an adaptive Hidden Markov Model/Rule-
Based algorithm to detect four gait events using a single IMU
in the thigh pocket. The IMU was attached to a smartphone
to capture the smartphone’s movements in the pocket. We
added simulated noises to the pocket IMU to mimic the signal
quality of MEMS IMUs found in smartphones. The approach
was evaluated in nine subjects with no gait abnormalities. Our
algorithm using the pocket IMU demonstrated high perfor-
mances, comparable to other algorithms in the literature for
IMUs attached to the body or to assistive devices. This work is
a step towards allowing accurate and refined gait segmentation
from a smartphone carried in the pocket during daily activities.
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France. He received the Best Students Award
in 2020 from Instituto de Engenharia, Brazil. His
research interests include computational mod-
elling, machine-learning and signal processing
applied to manufacturing and healthcare.
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