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Abstract

Given a simple undirected graph, one can construct from it a c-step nilpotent Lie algebra for every
c ≥ 2 and over any field K, in particular also over the real and complex numbers. These Lie algebras
form an important class of examples in geometry and algebra, and it is interesting to link their properties
to the defining graph. In this paper, we classify the isomorphism classes of K-forms in these real and
complex Lie algebras for any subfield K ⊂ C from the structure of the graph. As an application, we show
that the number of rational forms up to isomorphism is always one or infinite, with the former being
true if and only if the group of graph automorphisms is generated by transpositions.

1 Introduction
Given a field extension K ⊂ L and Lie algebras nL and mK defined over L and K respectively, we say that
mK is a K-form of nL if the tensor product mK⊗K L, so by extending the scalars on mK , is isomorphic to nL

as Lie algebras. For a more detailed discussion of this notion, we refer to section 3 below. Determining all
K-forms up to K-isomorphism of a general Lie algebra over L is a hard problem, which has been solved only
for some specific fields and Lie algebras before. In this paper, we study this problem for the class of nilpotent
Lie algebras associated to graphs, a family generalizing free c-step nilpotent Lie algebras and closed under
taking direct sums. These Lie algebras have recently been studied by many different authors, including their
automorphism group in [7] and their geometric properties in [3, 17, 18].

We first motivate the study of K-forms in (nilpotent) Lie algebras by relating it to several problems in
algebra and geometry. As Grunewald and Segal discuss in [11], determining all rational forms of real nilpotent
Lie algebras is part of the classification problem for finitely generated torsion-free nilpotent groups. This
follows from the classical result of Mal’cev in [16] that gives a one-to-one correspondence between rational
nilpotent Lie algebras up to Q-isomorphism and finitely generated torsion-free nilpotent groups up to abstract
commensurability, i.e. up to having an isomorphic subgroup of finite index. One of the projects suggested
by Grunewald and Segal, see [11, 3.5.], is to characterize rational forms for certain interesting classes of
complex nilpotent Lie algebras, as a first step to understand the finitely generated torsion-free nilpotent
groups corresponding to them. Our results can be seen as an answer to this question in the large class of
nilpotent Lie algebras associated to graphs.

The classification of rational forms in real nilpotent Lie algebras is also of importance in certain geomet-
rical problems on nilmanifolds, i.e. the quotients of a simply connected nilpotent Lie groups by a cocompact
lattice. Indeed, such a lattice is a finitely generated torsion-free nilpotent group and thus gives a unique
rational Lie algebra which in addition is a rational form of the real nilpotent Lie algebra corresponding to
the Lie group. Geometrical problems on the nilmanifold often only depend on the isomorphism type of
the rational form. Examples of such problems are the existence of Anosov diffeomorphisms and expanding
maps, important types of dynamical systems that conjecturally only exist on manifolds finitely covered by
nilmanifolds, see [4, 5, 21] for more details. In a subsequent paper, we will apply the results of this paper to
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find a full characterization of Anosov diffeomorphisms on nilmanifolds modeled on Lie groups associated to
graphs, following previous work in [2, 7].

As real Lie algebras are exactly the ones corresponding to Lie groups, finding real forms of a complex
Lie algebra is important for studying Lie groups. For example, the classification of semisimple Lie groups,
or hence of semisimple real Lie algebras heavily depends on the study of real forms and the relation to the
underlying real Lie algebra of complex Lie algebras, see e.g. [12]. Furthermore, having a real form determines
the structure of the complex conjugate Lie algebras as described in [6] and hence from [8] the number of
distinct almost-complex structures on nilmanifolds having a quasi-Kähler Chern-flat metric in the 2-step
nilpotent case. Note that it is well-known that any complex Lie algebra can have at most finitely many real
forms up to isomorphism, see [8, Remark 4.3.].

So far, the existence of K-forms has only been studied for some specific classes of Lie algebras, mostly in
low dimensions. For example, it is an easy exercise to show that free nilpotent Lie algebras over any field L
have exactly one K-form for every K ⊂ L. In [19] the author considers several classes of 6-dimensional real
nilpotent Lie algebras and shows via direct computations that they have either 1 or infinitely many rational
forms. This paper also gives a method to construct rational forms in the direct sum of two free nilpotent Lie
algebras. Later, Lauret computes rational forms of certain real nilpotent Lie algebras of dimension 8 in [13]
using the Pfaffian form, including a description which ones correspond to a nilmanifold admitting an Anosov
diffeomorphism. Note that all of the Lie algebras in [19], including the direct sum of free Lie algebras, and
some of the Lie algebras in [13] fall in the class of Lie algebras associated to a graph. Our results work for
any subfield K ⊂ C, but below we present them in the special case of K = Q and K = R, as these are the
most important for the applications mentioned above.

Given a graph G, one can define an equivalence relation on the vertices by saying two vertices are
equivalent if and only if their transposition defines a graph automorphism. This gives rise to a quotient
graph G, for which we give the exact definitions in Section 2.2. At the beginning of section 2, we recall how
one can construct for any integer c > 1 a c-step nilpotent Lie algebra nKG,c from the graph G over a field
K ⊂ C. If Gal(L/K) is a Galois extension of subfields of C, then the Galois group Gal(L/K) naturally acts
on nLG,c by semi-linear maps which fix the vertices. This action will be written as σv for any σ ∈ Gal(L/Q)

and v ∈ nLG,c. In Section 4, we define for any field K ⊂ C a group morphism

i : Aut(G)→ Aut(nKG,c),

which is in fact not natural but easy to construct after one chooses an order on the vertices. From now
on, endow Aut(G) with the discrete topology and Gal(L/K) with the Krull topology (which is the discrete
topology if Gal(L/K) is finite). For any continuous morphism ρ : Gal(L/K)→ Aut(G) : σ 7→ ρσ, we define
the subset

nKρ,c = {v ∈ nLG,c | ∀σ ∈ Gal(L/K) : i(ρσ)(σv) = v}

which is a K-Lie algebra if one restricts the addition, K-scalar multiplication and Lie bracket of nLG,c to it.
As mentioned in section 3.1, a classical result states that nKρ,c is a K-form of nLG,c.

As a main result of this paper, it is shown that up to Q-isomorphism, the forms defined above are all the
rational forms of nCG,c. All fields in the theorem are considered as subfields of C.

Theorem A (Rational forms). Let G be a simple undirected graph and nCG,c the associated c-step nilpotent
complex Lie algebra. Any rational form of nCG,c is Q-isomorphic to nQρ,c for some finite degree Galois extension
L/Q and an injective group morphism ρ : Gal(L/Q) → Aut(G). If K/Q is another finite degree Galois
extension with an injective group morphism η : Gal(K/Q) → Aut(G), then nQρ,c and nQη,c are Q-isomorphic
if and only if L = K and there exists a ϕ ∈ Aut(G) such that ϕρ(σ)ϕ−1 = η(σ) for all σ ∈ Gal(L/Q). The
Lie algebra nQρ,c is a rational form of nRG,c if and only if L ⊂ R.

As we show in Theorem 5.5, the above result also implies that nCG,c or n
R
G,c has either one or infinitely many

rational forms. The former is true if and only if the group Aut(G) is trivial, which is the case if and only if
the group Aut(G) is generated by transpositions.

Note that one important restriction to apply Theorem A is that in general it is not known which finite
groups can occur as the Galois group Gal(K/Q) of a finite degree Galois extension Q ⊂ K, a problem known
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as the inverse Galois problem. In the special case where Aut(G) has order 2, all injective group morphisms
are of the form Gal(Q(

√
d)/Q)→ Aut(G) with d ∈ Z \ {0} and hence it is possible to explicitly write down

the structural constants of all rational forms. We illustrate this approach in example 5.2.
For the real forms of the complex Lie algebra, on the other hand, this issue does not occur as the Galois

group Gal(C/R) is known. Let τ ∈ Gal(C/R) denote the complex conjugation automorphism, then for any
involution ϕ ∈ Aut(G) we can define the real form

nKϕ,c := nKρ,c with ρ : Gal(C/R)→ Aut(G) : τ 7→ ϕ.

Theorem B (Real forms). Let G be a simple undirected graph and nCG,c the associated c-step nilpotent
complex Lie algebra. Every real form of nCG,c is R-isomorphic to nRϕ,c for some involution ϕ ∈ Aut(G). If
φ ∈ Aut(G) is another involution then the real forms nRϕ,c and nRφ,c are R-isomorphic if and only if ϕ and φ
are conjugate in Aut(G).

Theorem B thus gives a method to compute the exact number of real forms in nCG,c from only the graph G.
As an application we construct several examples of complex Lie algebras with exactly k different real forms
for every k ∈ N.

A Lie algebra is called decomposable if it is isomorphic to the direct sum of two non-trivial ideals. In
general, a K-form of a decomposable Lie algebra is not always decomposable itself. Any automorphism of
the quotient graph induces a permutation on the set of connected components C(G) of the graph G. This
induces a morphism χ : Aut(G) → Perm(C(G)), for which the exact definition is given in section 6. The
following theorem characterizes the indecomposable K-forms of a Lie algebra associated to a graph.

Theorem C (Indecomposable K-forms). Let G = (S,E) be a graph, L/K a Galois extension of subfields of
C and ρ : Gal(L/K)→ Aut(G) a continuous morphism. The Lie algebra nKρ,c is indecomposable if and only
if the χ ◦ ρ-action on the set of connected components C(G) is transitive.

We start in section 2 by recalling the results from [7] that describe the automorphim group of 2-step nilpotent
Lie algebras associated to graphs and show how this result can be extended to the general c-step nilpotent
case. In order to prove Theorems A and B, we introduce the basic notions of Galois cohomology in Section
3, including some preliminary results on computations for certain semi-direct products. In section 4 the
preceding results are combined to calculated the Galois cohomology of the automorphism group of c-step
nilpotent Lie algebras associated to graphs. Using the principle of Galois descent, Theorems A and B are
proven in sections 5.1 and 5.3, respectively. At last, we give some applications of our main results in section
6, including the proof of Theorem C.

2 Lie algebras associated to graphs and their automorphisms
In this section, all fields will be considered as subfields of C. We start by recalling a construction which
associates to a graph G a Lie algebra, and for every c > 1 a c-step nilpotent Lie algebra. These Lie algebras
are also referred to as free (c-step nilpotent) partially commutative Lie algebras. Let us start by defining
what we mean by a graph and its automorphisms.

Definition 2.1. A simple undirected graph is a pair G = (S,E) with S a finite set and E a subset of
{{α, β} ⊂ S | α 6= β}. A bijection θ : S → S is called an automorphism of the graph G if for any edge
{α, β} ∈ E we have {θ(α), θ(β)} ∈ E. The set of all automorphisms of G forms a group under composition
and is denoted by Aut(G).

Take any subfield K ⊂ C and let fK(S) denote the free Lie algebra on S over the field K. We write IG
for the ideal of fK(S) generated by the set of brackets {[α, β] | {α, β} /∈ E}. We define the Lie algebra gKG
associated to the graph G over the field K by the quotient

gKG := fK(S)/IG . (1)

For any Lie algebra g, we let γi(g) denote the i-th ideal of the lower central series of g which is defined
inductively by γ1(g) = g and γi+1(g) = [g, γi(g)]. We can make gKG c-step nilpotent by taking the quotient

3



by γc+1(gKG ) obtaining the c-step nilpotent Lie algebra associated to the graph G:

nKG,c := gKG /γc+1(gKG ).

The special case of c = 2 was introduced in [2] and has ever since provided a rich class of 2-step nilpotent
Lie algebras. Later these Lie algebras were considered for higher nilpotency class, for example in [15].

With abuse of notation we will write V := spanK(S) for the vector space spanned by the vertices in any
of the Lie algebras fK(S), gKG and nKG,c. Recall that the free Lie algebra has a natural positive grading. If
we define the vector subspaces V i inductively via V 1 = V and V i+1 = [V, V i], this grading is given by

fc(S) =

c⊕
i=1

V i

where [V i, V j ] = V i+j . If we write WG = span({[α, β] | α, β ∈ S, {α, β} /∈ E}) ⊂ fK(S), then the ideal IG
can be written as

IG = W 1
G +W 2

G +W 3
G + . . .

where W i
G is defined inductively by W 1

G = WG and W i+1
G = [V,W i

G ]. Note that we have W i
G ⊂ V i+1 and thus

we find that gKG and nKG,c have a positive grading given by

gKG = V ⊕
∞⊕
i=1

V i+1/W i
G , nKG,c = V ⊕

c−1⊕
i=1

V i+1/W i
G . (2)

2.1 Graded automorphisms of gKG and nKG,c

Now that we know each of the Lie algebras fK(S), gKG and nKG,c has a positive grading, we can consider the
automorphisms of these Lie algebras that preserve this grading, i.e. they map each summand of the grading
onto itself. As it turns out, this condition is equivalent with the weaker assumption that the first summand
V is mapped onto itself. Let us write the subgroups of graded automorphisms of gKG and nKG,c as

TG = {f ∈ Aut(gKG ) | f(V ) = V }
TG,c = {f ∈ Aut(nKG,c) | f(V ) = V }.

For any of the Lie algebras m = fK(S), gKG , n
K
G,c, let p denote the canonical projection morphism

p : Aut(m)→ GL(V ) (3)

which takes an automorphism to its induced map on the abelianization m/[m,m] which can be identified
with V via the isomorphism V → m/[m,m] : v 7→ v + [m,m].

Proposition 2.2. For any c > 1, the groups p(TG), p(TG,c), p(Aut(gKG )) and p(Aut(nKG,c)) are equal.

Proof. Note that any automorphism of gKG must preserve γc+1 and thus must induce an automorphism on
nKG,c. This gives us a map h : Aut(gKG ) → Aut(nKG,c). As is immediate from the definition, h maps TG into
TG,c. We then get a commutative diagram

TG Aut(gKG ) GL(V )

TG,c Aut(nKG,c) GL(V ).

h|TG h

p

Id

p

We thus get the inclusions p(TG) ⊂ p(Aut(gKG )) ⊂ p(Aut(nKG,c)) and p(TG) ⊂ p(TG,c) ⊂ p(Aut(nKG,c)). It thus
suffices to prove the inclusion p(Aut(nKG,c)) ⊂ TG .

Take an arbitrary automorphism f ∈ Aut(nKG,c). By the universal property of the free Lie algebra f(S),
there exists a unique automorphism g ∈ p(TG) with g|V = p(f). If we let π denote the quotient morphism

4



π : fK(S)→ nKG,c, then we get for any v ∈ V ⊂ fK(S) that (π◦g)(v)−(f ◦π)(v) ∈ γ2(nkG,c). As a consequence
we also get for any v ∈ V 2 = [V, V ] that (π ◦ g)(v) − (f ◦ π)(v) ∈ γ3(nkG,c). Thus if w ∈ WG ⊂ V 2, we get
that π(w) = 0 and as a consequence that π(g(w)) ∈ γ3(nkG,c). But since π maps [V, V ] into [V, V ]/WG , we
must have π(g(w)) = 0 and thus that g(w) ∈WG . We conclude that g(WG) ⊂WG .

We can follow the same argument for f−1, giving a graded automorphism g̃ ∈ Aut(fK(S)) with g̃|V =
p(f−1) and g̃(WG) ⊂ WG . Since g̃|V = p(f−1) = p(f)−1 = g|−1

V and g is a graded automorphism of fK(S),
we find that g̃ = g−1. Similarly as before, we find that g−1(WG) ⊂WG , leading to the equality g(WG) = WG .
Inductively we then have that

g(W i+1
G ) = g([V,W i

G ]) = [g(V ), g(W i
G)] = [V,W i

G ] = W i+1
G .

This proves that g(IG) = IG and that g induces a graded automorphism g : gKG → gKG . By construction
p(g) = p(f). Since f was chosen arbitrarily in Aut(nKG,c), this shows that p(Aut(nKG,c)) ⊂ p(TG) which
concludes the proof.

As a consequence of the above lemma, we can define a subgroup G ≤ GL(V ) as

G := p(TG) = p(TG,c) = p(Aut(gKG )) = p(Aut(nKG,c)).

Note that when we restrict p to TG or TG,c we actually get isomorphisms of groups

p̃ : TG
∼=−→ G : f 7→ p(f), p̃ : TG,c

∼=−→ G : f 7→ p(f). (4)

In [7] the group G ≤ GL(V ) was completely determined in terms of the graph G (where the proof was done
for two-step Lie algebras). Let us first recall the necessary definitions in order to state this structure theorem
for G.

Let G = (S,E) be a simple undirected graph. For any vertex α ∈ S, we define the open and closed
neighbourhoods of α by

Ω′(α) = {β ∈ S | {α, β} ∈ E} and Ω(α) = Ω′(α) ∪ {α}, (5)

respectively. This allows us to define a relation ≺ on the vertices by α ≺ β ⇔ Ω′(α) ⊂ Ω(β). An equivalence
relation ∼ is then defined as α ∼ β ⇔ α ≺ β ∧ α � β. Note that α ∼ β if and only if the transposition of α
with β defines an automorphism of G. The equivalence classes of ∼ are called the coherent components of G
and are denoted by Λ := S/ ∼. For α, β ∈ S, let Eαβ ∈ End(V ) denote the linear map which satisfies

Eαβ(γ) =

{
α if γ = β

0 else

for all γ ∈ S. Then define the subgroup M ≤ GL(V ) by

M :=
〈
IV + tEαβ

∣∣∣ t ∈ K, α ≺ β, α � β
〉
,

where IV is the identity on V . For any set X, we denote with Perm(X) the group of permutations of X.
We can then define a group morphism P : Perm(S)→ GL(V ) : θ 7→ Pθ where Pθ is defined by Pθ(α) = θ(α)
for any α ∈ S. At last, for a coherent component λ ∈ Λ, we will write Vλ for the vector subspace of V
spanned by the vertices in λ. We can then view GL(Vλ) as a subgroup of GL(V ) by identifying a linear map
A ∈ GL(Vλ) with the linear map in GL(V ) which maps α to itself whenever α ∈ S \ λ and maps α to A(α)
whenever α ∈ λ.

Theorem 2.3 (Deré, Mainkar [7]). The group G is a linear algebraic subgroup of GL(V ) (with respect to
the basis S) and is given by

G = M ·

(∏
λ∈Λ

GL(Vλ)

)
· P (Aut(G))

where M is equal to the unipotent radical of G.
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2.2 The quotient graph and a splitting morphism r : Aut(G)→ Aut(G)
The concept of a quotient graph on the coherent components was introduced in [14] and is based on the
following observation, also mentioned in [2].

Lemma 2.4. Let G = (S,E) be a graph and λ, µ ∈ Λ coherent components. If there exist α ∈ λ and β ∈ µ
such that {α, β} ∈ E, then it holds that for any α′ ∈ λ and β′ ∈ µ, {α′, β′} ∈ E. This holds in particular
when λ = µ.

We can thus define a new graph which we will call the quotient graph, which has as its vertices the
coherent components of the old graph. First let us define the category where this new object lies in.

Definition 2.5. A simple undirected vertex-weighted graph with loops is a triple (S,E,Φ) where S is a set,
E is a subset of {{s, t} | s, t ∈ S} and Φ : S → R is a map to R. Its automorphism group is defined as

Aut(S,E,Φ) = {ϕ ∈ Perm(S) | e ∈ E ⇔ ϕ(e) ∈ E, Φ ◦ ϕ = Φ}.

Let G = (S,E) be a simple undirected graph and let Λ denote its set of coherent components, then associated
to G is a simple undirected vertex-weighted graph with loops G which we will call the quotient graph of G.
It is defined as G = (Λ, E,Φ) with

E := {{λ, µ} | ∃α ∈ λ, ∃β ∈ µ : {α, β} ∈ E}

and Φ : Λ→ R : λ 7→ |λ|.

Example 2.6. We will make a visual representation of the quotient graph by simply putting the values of
the weights near every vertex and drawing a loop at those λ for which {λ} ∈ E. Below we have drawn a
concrete example.

G

1 23

G

.

Since any graph automorphism θ ∈ Aut(G) preserves the relation ≺, it also preserves the equivalence
relation ∼. Therefore θ induces a permutation θ on the set of coherent components Λ. In fact the induced
permutation θ is an automorphism of the quotient graph G. By consequence we get a morphism Aut(G)→
Aut(G) : θ 7→ θ which fits in the short exact sequence:

1
∏
λ∈Λ Perm(λ) Aut(G) Aut(G) 1

∃r
(6)

where Perm(X) denotes the group of permutations on the set X. In fact, this sequence is right-split, i.e.
there exists a morphism r : Aut(G) → Aut(G) such that r(ϕ) = ϕ for any ϕ ∈ Aut(G). Such a morphism
r is not unique, but let us show how to construct one. First choose an ordering of the vertices inside
each coherent component λ =

{
αλ,1, αλ,2, . . . , αλ,Φ(λ)

}
. Then for ϕ ∈ Aut(G), define r(ϕ) ∈ Aut(G) by

r(ϕ)(αλ,i) = αϕ(λ),i for all λ ∈ Λ and 1 ≤ i ≤ Φ(λ). One can check that r is well-defined and satisfies
r(ϕ) = ϕ for any ϕ ∈ Aut(G). Moreover, if ϕ ∈ Aut(G) has a fixed point ϕ(λ) = λ, then r(ϕ)|λ = Idλ. This
is not necessarily true for any choice of r that makes the short exact sequence right-split, but is true for the
one we constructed above. Let us for the remainder of this paper always fix such a morphism r which does
enjoy this additional property.

Note that this morphism r allows us to write Aut(G) as a semi direct product

Aut(G) ∼=

(∏
λ∈Λ

Perm(λ)

)
or Aut(G). (7)
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Analogous to the morphism P : Aut(G) → G which maps an automorphism of G to its corresponding
permutation matrix in the basis of vertices, we can now also define a morphism P : Aut(G) → G by the
commutative diagram:

Aut(G) G

Aut(G).

P

r
P

(8)

Using the above we find that

P (Aut(G)) = P

((∏
λ∈Λ

Perm(λ)

)
· r(Aut(G))

)
=

(∏
λ∈Λ

P (Perm(λ))

)
· P (Aut(G)).

Together with Theorem 2.3 we thus find that

G = M ·

(∏
λ∈Λ

GL(Vλ)

)
· P (Aut(G))

where the subgroups M ,
(∏

λ∈Λ GL(Vλ)
)
and P (Aut(G)) have pairwise trivial intersections by [7, Lemma

3.10.]. Moreover, we have that P (Aut(G)) normalizes both M and
∏
λ∈Λ GL(Vλ) and that

∏
λ∈Λ GL(Vλ)

normalizes M . We thus have a semi-direct product decomposition of G:

G ∼=

(
M o

(∏
λ∈Λ

GL(Vλ)

))
oAut(G).

Note that G0 := M ·
(∏

λ∈Λ GL(Vλ)
)
is the Zariski-connected component of the identity in G and that by

taking the quotient by it, we get a morphism

q : G→ G/G0 ∼= Aut(G). (9)

3 Galois cohomology
In this section we introduce the tools from Galois cohomology that we will use throughout this paper. We
first give an overview of the main definitions in relation to the study of K-forms of Lie algebras. Next,
we present a technical result on the Galois cohomology of a class of semi-direct products, including wreath
products, which will be fruitful for the computations in the next section. This is the only section in the
paper where we do not require the fields to be subfields of C in general.

3.1 Definitions and relation to K-forms
First we recall some notions from Galois theory of possibly infinite degree field extensions. If L/K is an
extension of fields i.e. K ⊂ L, then we denote with Aut(L/K) the group of field automorphisms of L that
fix every element of K. For any subgroup H ≤ Aut(L/K), we write LH for the field fixed by H, i.e.
LH = {l ∈ L | ∀σ ∈ H : σ(l) = l}.

Definition 3.1. A field extension L/K is called Galois if it is algebraic over K and if LAut(L/K) = K. In
this case we write Gal(L/K) for Aut(L/K).

Note that the field extension in the definition above is not required to be of finite degree. We can put
a topology on Gal(L/K) turning it into a topological group and more specific into a profinite group. This
topology is called the Krull topology and a basis of opens for it is given by{

σGal(L/N)
∣∣∣ σ ∈ Gal(L/K) and N/K is an intermediate field extension of finite degree

}
.

In the special case when L/K is a finite degree extension, the topology on Gal(L/K) is just the discrete
topology. We can now formulate the Galois correspondence for field extensions of infinite degree.
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Theorem 3.2 (Galois correspondence). Let L/K be a Galois extension. The assignment H 7→ LH gives a
bijection between

(i) the closed subgroups of Gal(L/K) and the intermediate field extensions of L/K.

(ii) the open subgroups of Gal(L/K) and the finite degree intermediate extensions of L/K.

(iii) the normal open subgroups of Gal(L/K) and the finite degree intermediate Galois extensions of L/K,
in which case we have an isomorphism Gal(L/K)/H → Gal(LH/K) : σH 7→ σ|LH .

Now let G be a group and L/K a Galois extension. Whenever we have a group morphism φ : Gal(L/K)→
G we will say it is continuous if it is so for the Krull topology on Gal(L/K) and the discrete topology on
G. Note that this implies that for any subgroup H ≤ G, the inverse image φ−1(H) is an open subgroup of
Gal(L/K) and thus by the Galois correspondence fixes a finite degree intermediate extension of L/K.

Next, we give an overview of the notions of Galois cohomology that will be used throughout this paper.
In general, given a Galois extension of fields L/K and an object X defined over L, Galois cohomology can be
used to classify the objects defined over K which become isomorphic to X when extended to L. This method
is also known as Galois descent. The objects in question can be many structures among which Lie algebras.
For the purpose of this paper, we will define everything for Lie algebras, but for a general discussion, we
refer to the books [1] and [20].

We will always assume the fields to be of characteristic zero and the Lie algebras of finite dimension. We
do allow field extensions to be of infinite degree. Recall that given a field extension L/K and a Lie algebra
nK defined over the field K, the tensor product of K-vector spaces nL := nK ⊗K L has a natural Lie algebra
structure (over the field L) defined by

[v ⊗ l, v′ ⊗ l′] = [v, v′]⊗ ll′

for any v, v′ ∈ nK and l, l′ ∈ L.
Definition 3.3. Let L/K be a field extension and nL a Lie algebra defined over the field L. Then we call
a Lie algebra mK defined over the field K a K-form of nL if the Lie algebra mL = mK ⊗ L is isomorphic to
nL. Two K-forms of nL are called equivalent if they are isomorphic over K. We write FK(nL) for the set of
equivalence classes of K-forms of nL.

Let L/K be a Galois extension and nK a Lie algebra defined over the ground field K. Note that we have
a natural inclusion nK ↪→ nL : v 7→ v⊗ 1 and an action of the Galois group Gal(L/K) on nL, which fixes nK
seen as a subset of nL. This action is for any σ ∈ Gal(L/K), v ∈ nK and l ∈ L defined by σ(v⊗ l) := v⊗σ(l)
and by extending this additively to any element of nL. As one can check, this action satisfies for all v, w ∈ nL,
l ∈ L and σ ∈ Gal(K/L):

(i) σ
(lv) = σ(l) σv,

(ii) σ
(v + w) = σv + σw,

(iii) σ
[v, w] = [σv, σw].

Conditions (i) and (ii) tell us that the map v 7→ σv is a so-called semi-linear map on nL. We can thus say
that Gal(L/K) has an action on nL by semi-linear maps.

If nK and mK are two Lie algebras defined over the field K, we denote the set of Lie algebra homomor-
phisms (over L) from nL = nK ⊗K L to mL = mK ⊗K L by Hom(nL,mL). The actions of Gal(L/K) on
nL and mL as described above now also induce an action of Gal(L/K) on Hom(nL,mL) by setting for any
ϕ ∈ Hom(nL,mL), σ ∈ Gal(L/K) and v ∈ nL:

(σϕ)(v) :=
σ(
ϕ
(
σ−1

v
))
.

From the properties (i), (ii) and (iii) above it follows that σϕ is indeed again a Lie algebra homomorphism.
Note that if pK is a third Lie algebra over K, the equality σ

(φϕ) = σφ σϕ holds for any ϕ ∈ Hom(nL,mL) and
φ ∈ Hom(mL, pL). In particular, the action of Gal(L/K) on the invariant subset Aut(nL) ⊂ Hom(nL, nL)
is one by group automorphisms, where the group operation on Aut(nL) is composition. In general, when
Gal(L/K) has an action on a group by group automorphisms, we will call this group a Gal(L/K)-group.
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Definition 3.4. Let L/K be a Galois extension and G a Gal(L/K)-group. A continuous map

ρ : Gal(L/K)→ G,

where we write ρσ = ρ(σ) for simplicity, is called a cocycle if it satisfies the relation ρστ = ρσ
σρτ for all

σ, τ ∈ Gal(L/K). The set of cocycles is denoted with Z1(L/K,G). Two cocycles ρ, η ∈ Z1(L/K,G) are said
to be equivalent if there exists a g ∈ G such that gρσ σg−1 = ησ for all σ ∈ Gal(L/K). The set of equivalence
classes of cocycles is denoted with H1(L/K,G) and is called the first Galois cohomology set.

Remark 3.5. The first Galois cohomology set is never empty, as we always have the equivalence class of
the trivial cocycle Gal(L/K)→ G : σ 7→ eG. In fact this turns H1(L/K,G) into a pointed set, with the class
of the trivial cocycle being the distinguished element. We will call H1(L/K,G) trivial if it only consists of
this one element.

Note that, by our previous discussion, if we start with a Lie algebra nK defined over K, we have a natural
action of Gal(L/K) on Aut(nL) by group automorphisms. Therefore we can talk about the associated
first Galois cohomology set H1(L/K,Aut(nL)). Now we discuss the connection between the first Galois
cohomology set and the K-forms of nL.

We can associate to each cocycle ρ : Gal(L/K)→ Aut(nL) a K-form nKρ ⊂ nL by defining

nKρ := {v ∈ nL | ∀σ ∈ Gal(L/K) : ρσ(σv) = v}. (10)

From properties (i), (ii), (iii) and the fact that each ρσ is an automorphism of nL, it follows that nKρ is closed
underK-scalar multiplication, addition and taking the Lie bracket. Therefore we have that nKρ is indeed a Lie
algebra over K. We still need to check that nKρ ⊗L ∼= nL. For this consider the map nKρ ⊗L→ nL : v⊗l 7→ lv.
It is a standard result that this map is an L-vector space isomorphism as proven for example in [1, Lemma
III.8.21.]. It is then also straightforward to check this map preserves the Lie bracket. As it turns out, the
K-Lie algebras constructed in this way are all the possible K-forms of nL up to K-isomorphism.

Theorem 3.6 (Galois descent for Lie algebras). Let L/K be a Galois extension and nK a Lie algebra defined
over K. The map

H1
(
L/K,Aut

(
nL
))
→ FK

(
nL
)

: [ρ] 7→
[
nKρ
]

is a bijection, which sends the trivial cocycle to [nK ].

Proof. See [11, Theorem 1.3 and 1.4] or [1, Proposition III.9.1., Remark III.9.2. and Remark III.9.8.] for a
proof of this statement.

To see how the inverse of this map works, let mK be a K-form of nL. By definition there exists an
isomorphism f : mK ⊗K L → nL of Lie algebras defined over L. Then we can associate to mK a cocycle
ρm

K ∈ Z1(L/K,Aut(nL)) defined by
ρm

K

σ = f (σf)
−1
.

for all σ ∈ Gal(L/K) and v ∈ nL. Of course the cocycle ρm
K

depends on the choice of isomorphism f , but its
class [ρm

K

] inH1
(
L/K,Aut

(
nL
))

does not. In fact this class only depends on theK-isomorphism equivalence

class of mK . The inverse of the map from Theorem 3.6 is then given by the assignment
[
mK
]
7→
[
ρm

K
]
.

We now present two well-known examples of groups for which the first Galois cohomology set is trivial.
First, consider the general linear group GLn(L) with the coefficient-wise Gal(L/K)-action: σ

(aij)ij :=
(σ(aij))ij for any (aij)ij ∈ GLn(L) and σ ∈ Gal(L/K). From the fact that σ preserves the addition and
multiplication in L, it follows that this is an action by group automorphisms on GLn(L).

Theorem 3.7 (Generalized Hilbert’s theorem 90). Let L/K be a Galois extension and consider the general
linear group GLn(L). Then H1(L/K,GLn(L)) is trivial, i.e. it contains only one element.

Proof. This is exactly [20, p.122, Lemma 1].
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Note that GLn(L) is also the automorphism group of the abelian Lie algebra of dimension n defined over L.
Using Theorem 3.6, this agrees exactly with the fact that an abelian Lie algebra over L has only one K-form
up to K-isomorphism.

Secondly, consider the additive group La of the field L. We can define a Gal(L/K)-action on La by
σl := σ(l) for any l ∈ L and σ ∈ Gal(L/K). It is clear that this is an action by group automorphisms.

Theorem 3.8. Let L/K be a Galois extension and La the additive group of the field L. Then H1(L/K,La)
is trivial.

Proof. This is exactly [20, p.72, Proposition 1].

So far we only considered Galois extensions L/K which are by definition algebraic. The following result
tells us that it is enough to consider algebraic extensions in order to describe all K-forms. We will denote
by K the algebraic closure of K. In the remainder of the paper, every algebraic extension of K will be taken
as a subfield of K. This convention in particular implies that isomorphic field extensions of K are in fact
identical.

Proposition 3.9. Let L/K be any (not necessarily algebraic) field extension and nK , mK Lie algebras over
K. If nK ⊗ L ∼= mK ⊗ L, then so is nK ⊗ K ∼= mK ⊗ K and moreover, there exists a finite degree field
extension N/K such that nK ⊗N ∼= mK ⊗N .

Proof. This is a consequence of Hilbert’s Nullstellensatz, see [11, p.124, (i)] or [22, Lemma 3.3.] for more
details on how to prove this.

Let us apply this result for L = C, K = Q and a rational Lie algebra nQ. Let nQ, nR and nC denote the
Lie algebras nQ ⊗ Q, nQ ⊗ R and nQ ⊗ C, respectively. Proposition 3.9 now gives us a bijection FQ(nQ) →
FQ(nC) : [mQ] 7→ [mQ]. Together with Theorem 3.6, this gives us a bijection

H1
(
Q/Q,Aut

(
nQ
))
→ FQ

(
nC
)

: [ρ] 7→
[
nQρ
]

(11)

which is a useful tool to classify the rational forms of a complex Lie algebra.
If we want a similar result for the rational forms of a real Lie algebra, the question arises which equivalence

classes of H1(Q/Q,Aut(nQ)) are mapped into FQ(nR) under the bijection (11) where we use that FQ(nR) is a
subset of FQ(nC). Note that if we view Q as a subfield of C, we have a continuous morphism ν : Gal(C/R)→
Gal(Q/Q) : σ 7→ σ|Q. This gives a map

ω : H1
(
Q/Q,Aut

(
nQ
))
→ H1

(
C/R,Aut

(
nC
))

: [ρ] 7→ [ρ ◦ ν]. (12)

Now take any cocycle ρ ∈ Z1(Q/Q,Aut(nQ)). From [11, Theorem 1.4], it follows that we have the following
equivalences [

nQρ
]
∈ FQ(nR)⇔ nQρ ⊗ R ∼= nR

⇔ ω([ρ]) = [1]. (13)

This tells us exactly what elements of H1(Q/Q,Aut(nQ)) are being mapped into FQ(nR) under the bijection
(11), namely the inverse image under ω of the class of the trivial cocycle [1] ∈ H1(C/R,Aut(nC)), allowing
us to classify the rational forms of a given real Lie algebra.

3.2 Galois cohomology of certain semi-direct products
In what follows, we prove a result on the Galois cohomology of a certain class of semi-direct products including
wreath products. This result will be useful when calculating the Galois cohomology of the automorphism
group of a Lie algebra associated to a graph in Section 4. Let L/K be a Galois extension. First, note that
if G1 and G2 are two Gal(L/K)-groups and f : G1 → G2 is a Gal(L/K)-equivariant group morphism, then
we get a well-defined induced map on cohomology which we write as f∗ and is defined by

f∗ : H1(L/K,G1)→ H1(L/K,G2) : [ρ] 7→ [f ◦ ρ].
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Let L/K be a Galois extension and A a finite group with a left action on the set {1, . . . , n} which we write
as a · i for any a ∈ A and i ∈ {1, . . . , n}. Let G1, . . . , Gn be Gal(L/K)-groups such that Gi = Gj for any
i ∈ {1, . . . , n} and j ∈ A · i. We define the semi-direct product (

∏n
i=1Gi) o A by letting A act on

∏n
i=1Gi

according to the law
a · (g1, . . . , gn) := (ga−1·1, . . . , ga−1·n)

for any a ∈ A and gi ∈ Gi. Note that if all groups Gi are equal, this group is just a wreath product, which
are studied a lot in the literature. We can turn this group into a Gal(L/K)-group as follows. We endow
A with the trivial Gal(L/K) action and

∏n
i=1Gi with the induced component wise left Gal(L/K)-action,

i.e. σ
(g1, . . . , gn) = (σg1, . . . ,

σgn) for all gi ∈ Gi and σ ∈ Gal(L/K). Clearly, these are actions by group
automorphisms. Note that the actions of A and Gal(L/K) on

∏n
i=1Gi commute:

σ
(a · (g1, . . . , gn)) =

σ
(ga−1·1, . . . , ga−1·n) = (σga−1·1, . . . ,

σga−1·n) = a · (σg1, . . . ,
σgn) = a · (σ(g1, . . . , gn)) .

At last we define a Gal(L/K)-action on (
∏n
i=1Gi)oA by σ

(g, a) = (σg, σa) = (σg, a) for all g ∈
∏n
i=1Gi, a ∈

A and σ ∈ Gal(L/K). This is an action by automorphisms since
σ
((g, a)(h, b)) =

σ
(ga · h, ab)

= (
σ
(ga · h), ab)

= (σg
σ
(a · h), ab)

= (σga · σh, ab)
= (σg, a) (σh, b)

=
σ
(g, a)

σ
(h, b)

for any g, h ∈
∏n
i=1Gi and a, b ∈ A.

We can thus talk about the first Galois cohomology set H1(L/K, (
∏n
i=1Gi)oA). Let π : (

∏n
i=1Gi)oA→

A : (g, a) 7→ a denote the projection morphism and ι : A → (
∏n
i=1Gi) o A : a 7→ ((1, . . . , 1), a) the natural

injection. Note that both π and ι are Gal(L/K)-equivariant. By consequence we have the well-defined maps
on cohomology:

π∗ : H1

(
L/K,

(
n∏
i=1

Gi

)
oA

)
→ H1(L/K,A) : [α] 7→ [π ◦ α]

ι∗ : H1(L/K,A)→ H1

(
L/K,

(
n∏
i=1

Gi

)
oA

)
: [α] 7→ [ι ◦ α].

The set H1(L/K,A) is relatively easy to understand since A is a group with trivial Galois action, so it is
given by all continuous group morphisms from Gal(L/K) to A up to conjugation by an element of A.

Theorem 3.10. Let (
∏n
i=1Gi) o A be the Gal(L/K)-group as defined above. Assume that for any finite

degree intermediate extension N/K and any i ∈ {1, . . . , n}, the first Galois cohomology set H1(L/N,Gi) is
trivial. Then we have that

ι∗ : H1 (L/K,A)→ H1

(
L/K,

(
n∏
i=1

Gi

)
oA

)
: [ρ] 7→ [ι ◦ ρ]

is a bijection with inverse π∗.

Proof. Since π ◦ ι = IdA, it follows that π∗ ◦ ι∗ is the identity on H1(L/K,A) as well. For the other direction,
we need to prove that [ρ] = [ι ◦ π ◦ ρ] for an arbitrary [ρ] ∈ H1(L/K, (

∏n
i=1Gi)oA).

Take any cocycle ρ : Gal(L/K)→ (
∏n
i=1Gi)o A. Let us write ρσ = (gσ, aσ) for all σ ∈ Gal(L/K). We

then have that
ρστ = ρσ

σρτ = (gσ aσ · σgτ , aσaτ ).

Thus we have gστ = gσ aσ · σgτ and aστ = aσaτ . Let us denote for h ∈
∏n
i=1Gi by (h)i the i-th entry of h.

Then we have
(gστ )i = (gσ aσ · σgτ )i = (gσ)i

σ
(gτ )a−1

σ ·i

11



Note that the group morphism π ◦ ρ : Gal(L/K) → A induces an action of the Galois group on the set
{1, . . . , n}. The stabilizers stab(i) for some i ∈ {1, . . . , n} are subgroups of Gal(L/K). Moreover they are
open subgroups since they can be written as the inverse image of {a ∈ A | a · i = i} under the continuous
map π ◦ ρ and A is endowed with the discrete topology. By consequence we have stab(i) = Gal(L/Lstab(i)).

Now note that for σ, τ ∈ stab(i), we have

(gστ )i = (gσ)i
σ
(gτ )i.

This shows that the assignment σ 7→ (gσ)i is a cocycle from Gal
(
L/Lstab(i)

)
to Gi. By assumption,

H1(L/Lstab(i), Gi) is trivial and thus there exists a hi ∈ Gi such that hi(gσ)i
σh−1

i = 1 for all σ ∈ stab(i). This
gives an element h = (h1, . . . , hn) ∈

∏n
i=1Gi. Then define a new cocycle ρ̃ : Gal(L/K) → (

∏n
i=1Gi) o A :

σ 7→ (h, 1)(gσ, aσ)
σ
(h, 1)−1. By the way this ρ̃ is defined, it is clear that [ρ] = [ρ̃]. We also have that

ρ̃σ = (hgσ aσ · σh−1︸ ︷︷ ︸
:=g̃σ

, aσ).

Note that now, for σ ∈ stab(i) we have

(g̃σ)i = hi(gσ)i
σh−1

a−1
σ ·i

= hi(gσ)i
σh−1

i = 1.

Next, let us choose from each orbit of the action defined by π◦ρ (= π◦ρ̃) on {1, . . . , n}, exactly one element
mi, giving a subset {m1, . . . ,mk} ⊂ {1, . . . , n}. For j ∈ orb(mi), we now define the element rj := (g̃σ)−1

j

where σ ∈ Gal(L/K) is chosen such that aσ ·mi = j. This does not depend on the choice of σ. Indeed, if
τ ∈ Gal(L/K) also satisfies aτ ·mi = j, then we get

(g̃τ )j = (g̃σσ−1τ )j = (g̃σ)j
σ
(g̃σ−1τ )a−1

σ ·j = (g̃σ)j
σ
(g̃σ−1τ )mi = (g̃σ)j

where we used that σ−1τ ∈ stab(mi) and thus (g̃σ−1τ )mi = 1. This gives an element r = (r1, . . . , rn) ∈∏n
i=1Gi.
We now have that

(r, 1)ρ̃σ
σ
(r, 1)−1 = (r, 1)(g̃σ, aσ)

(
σr−1, 1

)
= (rg̃σ aσ · σr−1, aσ).

At last we show that rg̃σ aσ · σr−1 = (1, . . . , 1) for all σ ∈ Gal(L/K). Let j ∈ orb(mi) and let τ ∈ Gal(L/K)
such that τ(mi) = j. Then we have for any σ ∈ Gal(L/K):(

rg̃σ aσ · σr−1
)
j

= rj(g̃σ)j
σr−1

a−1
σ ·j

= (g̃τ )−1
j (g̃σ)j

σ
(g̃σ−1τ )a−1

σ ·j

= (g̃τ )−1
j (g̃σ)j

σ(
(g̃σ−1)a−1

σ ·j
σ−1

(g̃τ )j

)
= (g̃τ )−1

j (g̃σ)j
σ
(g̃σ−1)a−1

σ ·j(g̃τ )j

= (g̃τ )−1
j (g̃σσ−1)j(g̃τ )j

= (g̃τ )−1
j (g̃τ )j

= 1.

By consequence we have that (r, 1)ρ̃σ
σ
(r, 1)−1 = ((1, . . . , 1), aσ) for any σ ∈ Gal(L/K). Note that (ι◦π◦ρ)σ =

((1, . . . , 1), aσ) and thus that we have shown that [ι ◦ π ◦ ρ] = [ρ̃] = [ρ].

4 Galois cohomology of Aut(nKG,c)

Let G = (S,E) be a graph and L/K a Galois extension of subfields of C. The natural inclusion fK(S) ↪→ fL(S)
induces an inclusion nKG,c ↪→ nLG,c. Using this inclusion we get an isomorphism nKG,c ⊗ L ∼= nLG,c : v ⊗ l 7→ lv

of Lie algebras over L. Thus nKG,c is a distinguished K-from of nLG,c. As defined in section 3.1, this gives an
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action of Gal(L/K) on nLG,c by semi-linear maps which fix the vectors in the K-form nKG,c. In particular the
action fixes the vertices S ⊂ nLG,c. This action induces a Gal(L/K)-action on Aut(nLG,c) and thus we can talk
about the first Galois cohomology set H1(L/K,Aut(nLG,c)).

The goal of this section is to compute the first Galois cohomology set H1(K/K,Aut(nKG,c)). In order to
do so we will use a known result which reduces this calculation from the full automorphism group to the
normalizer of a Cartan subgroup of Aut(nKG,c), i.e. the Zariski connected centralizer of a maximal torus.

Definition 4.1. For a map Ψ : S → K, we say an automorphism f of nKG,c is a vertex-diagonal automorphism
determined by Ψ if it holds that ∀α ∈ S : f(α) = Ψ(α)α. We will write DG,c for the subgroup of Aut(nKG,c)
of all vertex diagonal automorphisms.

A nice fact about the Lie algebras nKG,c is that for any choice of a map Ψ : S → L, there is a unique vertex-
diagonal automorphism determined by Ψ. This follows immediately from the structure of G (Theorem 2.3).
We will denote this automorphism with fΨ. Using this notation we can also write DG,c = {fΨ | Ψ : S → K}.
It is also a well know fact that DG,c is a maximal (split) torus of the linear algebraic group Aut(nKG,c). Let
us also write DS = p(DG,c) for the projection of the vertex diagonal automorphisms onto V which gives all
diagonal linear maps with respect to the basis of vertices S.

Lemma 4.2. The normalizer of DG,c in Aut(nKG,c) is contained in TG,c.

Proof. Let g be an element of the normalizer of DG,c in Aut(nKG,c). Let f ∈ DG,c be the vertex diagonal
automorphism determined by the constant map Ψ : S → L : α 7→ 2. By definition of the normalizer we know
that gfg−1 is again vertex diagonal with the same eigenvalues as f (counted with multiplicities). Thus we
know that the eigenspace of gfg−1 with eigenvalue 2 has dimension equal to |S|. Note that the eigenvalues
of ghg−1 on the derived algebra [nKG,c, n

K
G,c] will have to be strictly greater than 2 since they are equal to the

product of two eigenvalues of gfg−1. This shows that V is exactly the eigenspace of gfg−1 with eigenvalue
2. Note that for any α ∈ S we have gfg−1gα = gfα = 2gα and thus that g maps V into the eigenspace
of gfg−1 with eigenvalue 2 which we just showed is equal to V . This proves that g(V ) = V and thus that
g ∈ TG,c.

In particular, the above lemma implies that the centralizer of DG,c in Aut(nKG,c) is contained in TG,c.
From the structure of G = p(TG,c) it follows immediately that DG,c is its own centralizer. We thus have that
DG,c is a Cartan subgroup of Aut(nKG,c). The following result proven in [20, Chapter 3, Lemma 6] will thus
come in handy.

Lemma 4.3. Let C be a Cartan subgroup of a linear algebraic group A defined over a perfect field K, and let
N be the normalizer of C in A. The canonical map H1(K/K,N) → H1(K/K,A) induced by the inclusion
is surjective.

For any field K ⊂ C, let us now fix an embedding i : Aut(G)→ Aut(nKG,c) by

i := p̃−1 ◦ P = p̃−1 ◦ P ◦ r. (14)

Recall that p̃ is the morphism that maps any graded automorphism of nG,c to its restriction to V (see (4)),
that P is the morphism that maps a graph automorphism to the corresponding permutation matrix on V
w.r.t. the basis S and that r is the splitting morphism r : Aut(G)→ Aut(G) that was chosen in section 2.2.
We can also define a map π : Aut(nKG,c)→ Aut(G) by

π := q ◦ p (15)

where q and p are the morphisms as defined by (9) and (3). Note that π defines a left inverse to i, indeed
π ◦ i = q ◦ p ◦ p̃−1 ◦ P = q ◦ P = Id.

Now we are ready to calculate the Galois cohomology H1(K/K,Aut(nKG,c)). The subgroups TG,c and
DG,c are first of all algebraic (over Q) and thus can be defined over any subfield of C and second they are
Gal(L/K)-invariant when seen as subgroups of Aut(nLG,c). When working over the field L, the group GL(V )
can be identified with the group GL|S|(L) by using the basis of vertices S. In this way GL(V ) becomes
a Gal(L/K) group. The subgroup G will be Gal(L/K)-invariant and thus a Gal(L/K)-group itself. This
action of Gal(L/K) on G is the same one you would get from the action on TG,c via the group isomorphism
p̃ : TG,c → G.
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Theorem 4.4. Let K ⊂ C be a field and endow Aut(G) with the trivial Gal(K/K)-action. Then the map
i∗ : H1(K/K,Aut(G))→ H1(K/K,Aut(nKG,c)) is a bijection with inverse π∗.

Proof. First note that since π is a left inverse to the map i, we also get for the induced maps on the
cohomology that (π ◦ p)∗ ◦ i∗ = Id. This already proves that i∗ is injective and that if i∗ is a bijection, its
inverse must be given by π∗. Let us now argue for the surjectivity of i∗.

As discussed above, the subgroup of vertex diagonal automorphisms DG,c ≤ Aut(nKG,c) is a maximal torus
and in fact also a Cartan subgroup of Aut(nKG,c). By Lemma 4.2, the normalizer of DG,c in Aut(nKG,c) is
contained in TG,c and since p̃ : TG,c → p(TG,c) = G is an isomorphism of algebraic groups, we can look at the
normalizer of DS = p(DG,c) in G. This normalizer is given by DS · Aut(G) ≤ G. Using Lemma 4.3 and the
fact that subfields of C are always perfect, we thus find that the map

(p̃−1)∗ : H1
(
K/K,DS · P (Aut(G))

)
→ H1

(
K/K,Aut

(
nKG,c

))
is surjective. But then it follows immediately from the inclusion DS ·P (Aut(G) ⊂

(∏
λ∈Λ GL(Vλ)

)
·P (Aut(G)

that also the map

(p̃−1)∗ : H1

(
K/K,

(∏
λ∈Λ

GL(Vλ)

)
· P (Aut(G))

)
→ H1

(
K/K,Aut

(
nKG,c

))
(16)

is surjective.
Recall that in order to define the morphism r, we fixed an ordering of the vertices in each coherent

component λ = {vλ,1, . . . , vλ,|λ|}. Let us also order the coherent components themselves Λ = {λ1, . . . , λn}
with n = |Λ| and write nj = |λj |. We have isomorphisms of groups GLnj (K)→ GL(Vλj ) : B 7→ B, where B is
the linear map which has matrix representation B with respect to the basis vλj ,1, . . . , vλj ,nj . Endow GLnj (K)

with the coefficient-wise Gal(K/K)-action. Note that since we ordered the coherent components, the group

Aut(G) has an action on the set {1, . . . , n}. Thus we can define the Gal(K/K)-group

 n∏
j=1

GLnj (K)

 o
Aut(G) in the same way as we did in section 3.2 for A = Aut(G) and Gj = GLnj (K). As Gal(K/K)-groups, n∏
j=1

GLnj (K)

 o Aut(G) and

(∏
λ∈Λ

GL(Vλ)

)
· P (Aut(G)) are isomorphic by sending ((B1, . . . , Bn), ϕ) to

B1 · . . . · Bn · P (ϕ). By Theorem 3.7, H1(L/K,GLnj (L)) is trivial for any Galois extension L/K and thus
we can apply Theorem 3.10 to get a bijection

P ∗ : H1(K/K,Aut(G))→ H1

(
K/K,

(∏
λ∈Λ

GL(Vλ)

)
· P (Aut(G))

)
.

Composing this map with the surjective map from (16), we find that

i∗ : H1(L/K,Aut(G))→ H1(K/K,Aut(nKG,c))

is surjective, which concludes the proof.

Note that the set H1
(
K/K,Aut(G)

)
is relatively easy to understand. It is equal to the set of equivalence

classes of actions of Gal(K/K) on G by automorphisms of the quotient graph, where two actions are equivalent
if they are conjugated by a fixed automorphism of G. Hence Theorem 4.4 gives us a complete understanding
of H1(K/K,Aut(nKG,c)) from only information of the graph G.

5 Applications for real and rational forms

5.1 Rational forms of nCG,c and nRG,c

In this section we give a description of the rational forms of nRG,c and nCG,c. Consider a Galois extension L/K
of subfields of C and a continuous morphism ρ : Gal(L/K)→ Aut(G). As discussed in previous section i ◦ ρ
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is a cocycle in Z1(L/K,Aut(nLG,c)) and thus by (10) gives us a K-form of nLG,c. For notational purposes, we
will simply denote this form as

nKρ,c = {v ∈ nLG,c | ∀σ ∈ Gal(L/K) : i(ρσ)(σv) = v}

The following theorem now tells us that all rational forms of nCG,c arise in this way, and which ones will
be rational forms of the real Lie algebra nRG,c. Let us write τ ∈ Gal(Q/Q) for the complex conjugation
automorphism on Q.

Theorem 5.1. Let G be a simple undirected graph and c > 1. We have bijections

H1
(
Q/Q,Aut(G)

)
→ FQ

(
nCG,c

)
: [ρ] 7→

[
nQρ,c

]
(17)

and {
[ρ] ∈ H1

(
Q/Q,Aut(G)

) ∣∣∣τ ∈ ker(ρ)
}
→ FQ

(
nRG,c

)
: [ρ] 7→

[
nQρ,c

]
. (18)

Proof. The first bijection follows immediately from combining Theorem 4.4 for K = Q, Theorem 3.6 and
the bijection derived in (11). To prove the second bijection, we will apply the equivalence given in (13).

If we view Q as a subfield of C, we get a continuous morphism ν : Gal(C/R)→ Gal(Q/Q) : σ 7→ σ|Q. This
allows us to define the maps ω1 and ω2 with domain and codomain as in the diagram below and which send
[ρ] to [ρ◦ν]. Note that we have also two maps i∗ in the diagram, induced by the map i : Aut(G)→ Aut(nKG,c)
as defined in (14) for a general field K ⊂ C.

H1(Q/Q,Aut(G)) H1(C/R,Aut(G))

H1(Q/Q,Aut(nQG,c)) H1(C/R,Aut(nCG,c))

ω1

i∗ i∗

ω2

(19)

The diagram is commutative as i◦ (ρ◦ν) = (i◦ρ)◦ν on the level of representatives. From the equivalence in
(13) we know that the classes in H1(Q/Q,Aut(nQG,c)) that give a rational form of nRG,c are exactly the classes
in the inverse image of the class of the trivial cocycle under ω2. Now since the diagram above commutes and
since by Theorem 4.4 the induced maps i∗ are bijections, we get that those classes [ρ] ∈ ω−1

1 ([1]) are exactly
the ones for which [nQρ,c] lies in FQ(nRG,c).

Since we have that

[ρ] ∈ ω−1
1 ([1])⇔ [ρ ◦ ν] = [1]

⇔ ∃ϕ ∈ Aut(G) : ∀σ ∈ Gal(C/R) : ρν(σ) = ϕ IdΛ ϕ
−1

⇔ ρτ = 1

⇔ τ ∈ ker(ρ),

this proves that the second map is a bijection.

We are now ready to prove Theorem A which can be seen as an ‘injective version’ of the above theorem.

Proof of Theorem A. Take any rational form of nCG,c. Then it follows from Theorem 5.1 that up to Q-
isomorphism, the form is given by nQρ,c for some continuous morphism ρ : Gal(Q/Q) → Aut(G). Note that

ker(ρ) is an open normal subgroup of Gal(Q/Q). By Theorem 3.2 we get that Lρ := Qker(ρ)
is a finite degree

Galois extension of Q together with a natural isomorphism of groups

Gal(Q/Q)/ ker(ρ)→ Gal(Lρ/Q) : σ ker(ρ) 7→ σ|ρ.

We therefore get an induced injective morphism of groups

ρ : Gal(Lρ/Q) ∼= Gal(Q/Q)/ ker(ρ)→ Aut(G)
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which gives a class [ρ] ∈ H1(Lρ/Q,Aut(G)). Note that we have a natural injection n
Lρ
G,c ↪→ nQG,c and that

this injection restricts to a Q-Lie algebra isomorphism nQρ,c
∼= nQρ,c. Following Theorem 5.1, we also have that

[nQρ,c] ∈ FQ(nRG,c) if and only if τ ∈ ker(ρ) and thus if and only if Lρ is a real extension of Q.
For the second statement, if η : Gal(Q/Q) → Aut(G) is another continuous morphism, we have the

equivalences

nQρ,c
∼= nQη,c ⇔ nQρ,c

∼= nQη,c

⇔ [ρ] = [η]

⇔ ker(ρ) = ker(η) and [ρ] = [η]

⇔ Lρ = Lη and [ρ] = [η].

At last, note that if L′/Q is any finite degree Galois extension and ρ′ : Gal(L′/Q)→ Aut(G) is any injective
group morphism, we can define the continuous morphism ρ : Gal(Q/Q) → Aut(G) : σ 7→ ρ′σ|L′

which now
satisfies ρ = ρ′. This shows all that needed to be proven.

The following example shows that Theorem A can be used to simplify certain classifications of Lie
algebras, especially for quadratic extensions.

Example 5.2 (Direct sum of two 3-dimensional Heisenberg Lie algebras). Consider the graph G = (S,E)
defined by S = {α1, α2, β1, β2} and E = {{α1, β1}, {α2, β2}}. The set of coherent components is then given
by Λ = {λ1 := {α1, β1}, λ2 := {α2, β2}}. A figure of the graph and quotient graph are given below.

β1 β2

α1 α2

G

2
λ1

2
λ2

G

There are only two automorphisms of the quotient graph, namely the identity and ϕ ∈ Aut(G) which is
defined by ϕ(λ1) = λ2 and ϕ(λ2) = λ1. We can define the morphism r : Aut(G) → Aut(G) by letting
r(ϕ)(α1) = α2, r(ϕ)(α2) = α1, r(ϕ)(β1) = β2 and r(ϕ)(β2) = β1. The associated 2-step nilpotent Lie
algebra nLG is then isomorphic to a direct sum of two 3-dimensional Heisenberg Lie algebras with basis
{α1, α2, β1, β2, γ1, γ2} where γ1 := [α1, β1] and γ2 := [α2, β2].

It is clear that if Gal(L/Q) → Aut(G) is an injective group morphism, L/Q must have degree 2 or 1.
All non-isomorphic degree 2 or 1 Galois extensions of Q are given by Q(

√
d) for d a square free non-zero

integer. Note that if d = 1, Q(
√
d) = Q. For all square free non-zero integers d, let ρd denote the uniquely

determined injective group morphism ρd : Gal(Q(
√
d)/Q) → Aut(G). For simplicity, let us write nQd for the

associated rational form nQρd,2 of nCG,2. From Theorem A we then get that the sets

{nQd | d 6= 0 square free} and {nQd | d ≥ 1 square free}

give us a complete set of pairwise non-isomorphic rational forms of nCG,2 and nRG,2, respectively. Note that
nQ1
∼= nQG,2 is the standard rational form of nCG,2. We thus get an alternative proof of [13, Proposition 3.2.]

without using the Pfaffian form on 2-step nilpotent Lie algebras.
For non-zero square-free d, a basis for nQd ⊂ nCG,2 can be given by

X1 := α1 + α2 Y1 := β1 + β2 Z1 := γ1 + γ2

X2 :=
√
d(α1 − α2) Y2 :=

√
d(β1 − β2) Z2 :=

√
d(γ1 − γ2).

The bracket relations of the rational Lie algebra nQd in this basis are then given by

[X1, Y1] = Z1 [X2, Y1] = Z2

[X1, Y2] = Z2 [X2, Y2] = dZ1.
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We can also consider the complement graph.

Example 5.3. Let G = (S,E) be the graph from Example 5.2 and G∗ its complement graph, i.e. G∗ = (S,E∗)
with E∗ = {{α, β} | α, β ∈ S, α 6= β, {α, β} /∈ E}. A figure of G∗ and its quotient graph are given below.

β1 β2

α1 α2

G∗

2
λ1

2
λ2

G∗

Since Aut(G∗) = Aut(G), it follows that the only injective group morphisms Gal(L/Q)→ Aut(G∗red) are the
morphisms ρd : Gal(Q(

√
d)/Q) → Aut(Gred) from Example 5.2 where d is any square free non-zero integer.

Again, let us simply write nQd,∗ for the associated rational form nQρd,2 of nCG∗,2. From Theorem A it thus
follows that the sets

{nQd,∗ | d 6= 0 square free} and {nQd,∗ | d ≥ 1 square free}

give us a complete set of pairwise non-isomorphic rational forms of nCG∗,2 and nRG∗,2, respectively. A basis
for nCG∗,2 can be given by {α1, α2, β1, β2, γ1, γ2, γ3, γ4} where γ1 := [α1, β2], γ2 := [α2, β1], γ3 = [α1, α2],
γ4 = [β1, β2]. For non-zero square-free d, a basis for the form nQd,∗ can then be given by:

X1 := α1 + α2 Y1 := β1 + β2 Z1 := γ1 + γ2 Z3 = −2
√
dγ3

X2 :=
√
d(α1 − α2) Y2 :=

√
d(β1 − β2) Z2 :=

√
d(γ2 − γ1) Z4 = −2

√
dγ4.

The bracket relations of the rational Lie algebra nQd,∗ in this basis are then given by

[X1, X2] = Z3 [X2, Y1] = Z2

[X1, Y1] = −Z1 [X2, Y2] = dZ1

[X1, Y2] = −Z2 [Y1, Y2] = Z4.

We thus get an alternative proof of [13, Proposition 4.5.].

5.2 Number of different Q-forms
We apply Theorem A to show that the Lie algebras nRG,c and nCG,c have either exactly one or infinitely many
rational forms. In order to prove this, we need a lemma that ensures the existence of enough non-isomorphic
cyclic Galois extensions of a certain degree.

Lemma 5.4. For every positive integer d > 1, there exist infinitely many real Galois extensions Li/Q with
i ∈ N such that Gal(Li/Q) ∼= Z/dZ and Li ∩ Lj = Q for any i, j ∈ N with i 6= j.

Proof. By Dirichlet’s theorem [9], there are infinitely many different primes pi for i ∈ N such that pi = 1
mod 2d for all i ∈ N. If we denote by ζk = e2πi/k the primitive k-th root of unity, we can define the
cyclotomic field extensions Ki = Q(ζpi), for which the Galois group Gal(Ki/Q) is cyclic of order pi − 1.
Since 2d | pi − 1, there exists a (unique) cyclic subgroup Hi ⊂ Gal(Ki/Q) of index 2d. Let KHi

i denote
the field which is fixed under Hi. Since Gal(Ki/Q) is abelian, Hi is a normal subgroup and thus we have
Gal(KHi

i /Q) ∼= Gal(Ki/Q)
Hi

∼= Z/2dZ.
Note that Gal(KHi

i /Q) has a unique element σ of order 2 and in case KHi
i is not totally real, this must be

the complex conjugation automorphism. Let Li be the subfield of KHi
i which is fixed by {1, σ}. As before we

have that {1, σ} is a normal subgroup of Gal(KHi
i /Q) and thus that Gal(Li/Q) ∼= Gal(K

Hi
i /Q)

{1,σ}
∼= Z/dZ. Note

that, even if Ki was not totally real, the fields Li must be real since they are fixed by complex conjugation.
We have thus constructed infinitely many real Galois extensions Li/Q, i ∈ N such that Gal(Li/Q) ∼= Z/dZ.
Moreover since for i 6= j, the primes pi and pj are different, we know that Ki ∩ Kj = Q(ζpi) ∩ Q(ζpj ) =
Q(ζgcd(pi,pj)) = Q. By consequence also Li ∩ Lj = Q.
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Theorem 5.5. The Lie algebras nRG,c and nCG,c associated to a simple undirected graph G have either exactly
one or infinitely many rational forms up to Q-isomorphism. The former is true if and only if Aut(G) is
trivial.

Proof. If Aut(G) is trivial, then clearly H1(Q∩R/Q,Aut(G)) is trivial as well which implies by the discussion
above that both FQ(nR) and FQ(nC) count only one element. So from now on we assume that Aut(G) is
non-trivial and show that there infinitely many rational forms.

Since Aut(G) is not trivial, there exists an element ϕ ∈ Aut(G) of prime order p. Let Li with i ∈ N be
the finite degree Galois extensions of Q with Galois group Z/pZ as in Lemma 5.4. Choose for all i ∈ N a
generator σi ∈ Gal(Li/Q) and define the injective morphisms

ρ′i : Gal(Li/Q)→ Aut(G) : σki 7→ ϕk.

The fields Li are all different and hence the corresponding rational forms are non-isomorphic by Theorem
A. Since each Li is a real field, complex conjugation lies in the kernel of each ρi and thus nQρi,c is a rational
form of nRG,c for all i ∈ N. This proves that FQ(nRG,c) counts infinitely many elements. Because we have
an injection FQ(nRG,c) → FQ(nCG,c) : [mQ] 7→ [mQ], this proves as well that FQ(nCG,c) counts infinitely many
elements.

As a consequence, we present a family of graphs such that the corresponding real and complex Lie algebras
have a unique rational form, up to Q-isomorphism.

Example 5.6. Let p, q be two non-negative integers with q > 1. Take two disjoint sets S1 and S2 which
have cardinalities p and q, respectively. We can define a simple undirected graph G = (S1 ∪ S2, E) where
E = {{α, β} | α ∈ S1, β ∈ S2} ∪ {{α, β} | α, β ∈ S1, α 6= β}. These type of graphs are called magnet graphs
and we say S1 is the core of G. The quotient graph of G is equal to

p q
.

From this it is clear that Aut(G) is trivial and thus that the c-step nilpotent Lie algebras over R (or C) which
are associated to magnet graphs have only one rational form up to Q-isomorphism. Note that these graphs
were also considered in [2] in the study of Anosov diffeomorphisms.

Question 5.7. Does Theorem 5.5 hold for all real and complex (nilpotent) Lie algebras? The authors do
not know any example of a (nilpotent) Lie algebra having at least two non-isomorphic rational forms, but
only a finite number of them.

5.3 Real forms of nCG,c
In this section we prove Theorem B and apply it to some examples. Recall that if G is a group, an element
g ∈ G is said to be an involution of G if g2 = 1. Note that the neutral element e ∈ G in particular is
considered as an involution.

Proof of Theorem B. Combining Theorem 4.4 for K = R and Theorem 3.6 we get a bijection

H1(C/R,Aut(G))→ FR(nCG,c) : [ρ] 7→ [nRρ,c].

Let τ ∈ Gal(C/R) denote the complex conjugation automorphism. Then it is clear that any ρ ∈ Z1(C/R,Aut(G))
is determined by the involution ρ(τ). Conversely, every involution of ϕ ∈ Aut(G) gives a unique morphism
ρϕ : Gal(C/R) → Aut(G) : 1 7→ Id, τ 7→ ϕ. If we write nRϕ,c for the real form nRρϕ,c, then the statements in
the theorem follow immediately.

The following fact about symmetric groups is easily verified and thus we omit the proof.

Lemma 5.8. For any k ∈ Z>0, the number of involutions up to conjugation in the symmetric group Perm(X)
with |X| = 2k or |X| = 2k + 1 is equal to k + 1.
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In what follows, we will give examples of graphs for which we discuss the real forms of the associated
complex Lie algebra.

Example 5.9 (n-fold direct sum of Heisenberg Lie algebras). Let n > 1 be an integer and let Gn = (Xn, En)
denote the graph defined by Xn = {1, . . . , 2n} and En = {{2i− 1, 2i} | 1 ≤ i ≤ n} as drawn below.

. . . {
n times

Gn

If we let hK3 denote the 3-dimensional Heisenberg Lie algebra over the field K, then it is not hard to see
that for c = 2 we get a decomposition

nCGn,2
∼= hC3 ⊕ . . .⊕ hC3︸ ︷︷ ︸

n times

.

The set of coherent components of Gn is given by Λn = {{2i − 1, 2i} | 1 ≤ i ≤ n}. It is straightforward
to verify that the automorphism group Aut(Gn) is isomorphic to the permutation group on a set with n
elements. By lemma 5.8, we thus find for any integers c > 1 and k ≥ 1 that the number of real forms of nCGn,c
is equal to k + 1 both for n = 2k and n = 2k + 1. In particular, we can achieve every natural number ≥ 1.

In the special case of c = 2, we can even describe the Lie algebras explicitly. Let nQ−1,∗ be the rational Lie
algebra as defined in Example 5.3 and write nR−1,∗ = nQ−1,∗ ⊗Q R. Note that nR−1,∗ is a 6-dimensional real Lie
algebra that is also isomorphic to the underlying real Lie algebra of hC3 , so by restricting scalar multiplication
on hC3 to the real numbers. Every real form of nCGn,2 is isomorphic to a direct sum Lie algebra of the form

hR3 ⊕ . . .⊕ hR3︸ ︷︷ ︸
k times

⊕ nR−1,∗ ⊕ . . .⊕ nR−1,∗︸ ︷︷ ︸
l times

for some non-negative integers k, l which satisfy k + 2l = n.

In the example above, the real forms arise from permuting the summands in the direct sum decomposition.
To show that any number of real forms can also be present in an indecomposable Lie algebra (see section
6), we give the following example.

Example 5.10. Let n > 1 be an integer and let Tn = (Yn, Fn) denote the graph defined by Yn = {1, . . . , 2n+
1} and Fn = {{1, 2i} | 1 ≤ i ≤ n} ∪ {{2i, 2i+ 1} | 1 ≤ i ≤ n} as drawn below.

. . . {

n times

Tn

The set of coherent components is given by all singletons Λn = {{i} | 1 ≤ i ≤ 2n+1}. It is straightforward
to verify that the automorphism group Aut(Tn) is isomorphic to the permutation group on a set with n
elements. By lemma 5.8, we thus find for any integers c > 1 and k ≥ 1 that the number of real forms of nCTn,c
is equal to k + 1 both for n = 2k and n = 2k + 1. In particular, we can achieve every natural number ≥ 1.
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6 Indecomposable forms
Example 5.2 illustrates that the direct sum of two complex Heisenberg Lie algebras has rational forms that
do not admit a direct sum of two non-trivial rational Lie algebras, in contrast to the original complex Lie
algebra. We say those rational forms are indecomposable and in what follows we determine which forms of a
Lie algebra associated to a graph have this property. First, let us give a rigorous definition of indecomposable
Lie algebras.

Definition 6.1. A Lie algebra gK over a field K is said to be decomposable if there exist two non-trivial Lie
ideals h, k ⊂ gK such that gK = h⊕ k. We say a Lie algebra is indecomposable if it is not decomposable.

Note that if a Lie algebra gL is indecomposable, then any K-form gK for K ⊂ L is indecomposable as well.
As mentioned above, the converse does not hold.

If a Lie algebra is decomposable, one can decompose it into its indecomposable summands. Such a
decomposition is not unique in general, but in [10, Theorem 3.3.], uniqueness was proven in case the Lie
algebra is centreless, i.e. in case Z(g) = {X ∈ g | ∀Y ∈ g : [X,Y ] = 0} = {0}. The theorem was proven
for real Lie algebras, but the proof works for any subfield of C. We can restate the result that we need as
follows:

Theorem 6.2 (Fisher, Gray, Hydon). Let g be a Lie algebra over a field K ⊂ C, s, t positive integers and
h1, . . . , hs, k1, . . . , kt ⊂ g indecomposable ideals such that

g = h1 ⊕ . . .⊕ hs and g = k1 ⊕ . . .⊕ kt,

then s = t and up to reordering the summands hi, we have hi ⊂ ki + Z(g) for all i ∈ {1, . . . , s}.

We want to apply the above theorem to Lie algebras associated to graphs. In order to do so we first need
to determine some decomposition of nKG,c into decomposable summands. For any two Lie algebras g1, g2, the
direct sum Lie algebra is the vector space g1⊕g2 endowed with a Lie bracket defined by [X1 +X2, Y1 +Y2] :=
[X1, Y1] + [X2, Y2] for any X1, Y1 ∈ g1 and X2, Y2 ∈ g2.

Note that the Lie algebra nKG,c satisfies the universal property that for any other c-step nilpotent Lie
algebra g over K and a map i : S → g which satisfies [i(α), i(β)] = 0 for any α, β ∈ S with {α, β} /∈ E, there
exists a unique Lie algebra morphism f : nKG,c → g such that f restricts to i on S. Using this property, it is
not hard to show the following:

Lemma 6.3. Let G = (S,E) be a graph and K ⊂ C a field. Let S1, S2 ⊂ S be disjoint sets such that
S = S1 ∪ S2 and ∀α ∈ S1, β ∈ S2 : {α, β} /∈ E. Write G1, G2 for the subgraphs of G spanned by S1, S2,
respectively. There exists a unique Lie algebra isomorphism

nKG,c
∼=−→ nKG1,c ⊕ nKG2,c

which restricts to the identity on S.

Recall that for a graph G = (S,E), we say two vertices α, β ∈ S are connected if there exists a positive
integer k and vertices γ1 = α, γ2, . . . , γk−1, γk = β ∈ S such that {γi, γi+1} ∈ E for all i ∈ {1, . . . , k − 1}.
We say the graph G is connected if all pairs of vertices in S are connected.

Lemma 6.4. Let G = (S,E) be a graph and K ⊂ C a field. The following are equivalent:

(i) G is connected,

(ii) nKG,2 is indecomposable,

(iii) nKG,c is indecomposable for any c > 1.

Proof. (i)⇒ (ii). This is essentially [2, Lemma 6.6] which deals with K = R but works for an arbitrary field.
(ii) ⇒ (iii). Take any c > 1 and assume that there exist ideals h, k ⊂ nKG,c such that nKG,c = h ⊕ k. Note

that both h and k are also nilpotent Lie algebras. It follows that we have a sequence of isomorphisms:

nKG,2
∼= nKG,c/γ3(nKG,c)

∼= h/γ3(h)⊕ k/γ3(k).
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Since nKG,2 is assumed to be indecomposable, this implies that h/γ3(h) = {0} or k/γ3(k) = {0}. By nilpotency
of h and k, we then get that h = {0} or k = {0}.

(iii) ⇒ (i). We prove this by contraposition. Assume G is not connected, then there exist a partition of
the vertices S = S1 ∪ S2 with S1 and S2 non-empty, such that for any α ∈ S1 and any β ∈ S2 it holds that
{α, β} /∈ E. It then readily follows from Lemma 6.3 that nKG,c is decomposable and concludes the proof.

Note that, as mentioned in section 2, there is a canonical vector space isomorphism V ∼= nKG,c/[n
K
G,c, n

K
G,c] :

v 7→ v + [nKG,c, n
K
G,c]. Let us write

πab : nKG,c → V

for the projection onto the abelianization. The projection of the centre to the abelianization can be described
by the following lemma. The degree of a vertex α ∈ S is defined as the number of vertices adjacent to α.

Lemma 6.5. For any graph G = (S,E) and field K ⊂ C we have

πab

(
Z
(
nKG,c

))
= spanK ({α ∈ S | α has degree 0}) .

Proof. Take any α ∈ S of degree 0. It is clear that [α, β] = 0 in nKG,c for any β ∈ S and thus since S generates
nKG,c that α ∈ Z(nKG,c). By consequence we get the inclusion

spanK ({α ∈ S | α has degree 0}) ⊆ πab

(
Z
(
nKG,c

))
.

For the other inclusion, take any v ∈ πab

(
Z
(
nKG,c

))
. Then there exists a w ∈ [nKG,c, n

K
G,c] such that

v + w ∈ Z
(
nKG,c

)
. By consequence, for any β ∈ S it must hold that [β, v + w] = [β, v] + [β,w] = 0. From

the grading of nKG,c as given in (2) it follows that [V, V ] ∩ [V, [nKG,c, n
K
G,c]] = {0} and thus that ∀β ∈ S it

holds that [β, v] = 0. Let f : S → K be the unique function such that v =
∑
α∈S

f(α)α. We then get

that
∑
α∈S

f(α)[β, α] = 0 for any β ∈ S. Using the relations in nKG,c, this reduces to
∑

α∈Ω′(β)

f(α)[β, α] = 0,

where we remind the reader of the definition of Ω′(β) in (5). Since the set {[β, α] | α ∈ Ω′(β)} is linearly
independent in nKG,c, it follows that f(α) = 0 for all α ∈ Ω′(β) and all β ∈ S. This exactly means that
v ∈ spanK ({α ∈ S | α has degree 0}), which proves the other inclusion.

The relation ‘being connected’ as defined above is an equivalence relation on S. The equivalence classes
are called the connected components of G. We let C(G) denote the set of all connected components of G. We
can now combine Theorem 6.2, Lemma 6.3, Lemma 6.4 and Lemma 6.5 to prove the following result for the
decomposition of Lie algebras associated to graphs.

Proposition 6.6. Let G = (S,E) be a graph with no vertices of degree 0, K ⊂ C a field k a positive integer
and h1, . . . , hk ⊂ nKG,c ideals such that nKG,c = h1 ⊕ . . .⊕ hk. Then k = |C(G)| and there exists an ordering of
the connected components C(G) = {C1, . . . , Ck} such that πab(hi) = spanK(Ci) for all i ∈ {1, . . . , k}.

Proof. Let {C1, . . . , Cl} be some ordering of the connected components of G with l = |C(G)|. Let ni ⊂ nKG,c
be the Lie subalgebra in nKG,c generated by Ci for all i ∈ {1, . . . , l}. By Lemma 6.3, it is clear that the
ni’s are ideals, that nKG,c = n1 ⊕ . . . ⊕ nk and if Gi denotes the subgraph spanned by Ci, that ni ∼= nKGi,c.
Moreover, since each graph Gi is connected, Lemma 6.4 implies that ni ∼= nKGi,c is indecomposable for each
i ∈ {1, . . . , l}. By Theorem 6.2, we have k = l = |C(G)| and we can fix a reordering of the connected
components of G such that hi ⊂ ni + Z(nKG,c) for all i ∈ {1, . . . , k}. Since G has no vertices of degree 0, we
find by Lemma 6.5 that πab(Z(nKG,c)) = {0} and thus that πab(hi) ⊂ πab(ni) for all i ∈ {1, . . . , k}. Note
that πab(ni) = spanK(Ci) and thus that V = πab(n1) ⊕ . . . ⊕ πab(nk). Since πab is surjective we must have
V = πab(h1 + . . . + hk) = πab(h1) + . . . + πab(hk) which implies that πab(hi) = πab(ni) = spanK(Ci) for all
i ∈ {1, . . . , k}. This concludes the proof.

Let G = (S,E) be a graph and L/K a Galois extension of subfields of C. Recall the natural action of
Gal(L/K) on nLG,c. Note that spanL(S) = V ⊂ nLG,c is preserved under this action and thus that we have an

21



induced action of Gal(L/K) on V . The vertices S ⊂ V are fixed under this action. If ρ : Gal(L/K)→ Aut(G)
is a continuous morphism and nKρ,c the associated K-form of nLG,c, one can check that

πab(nKρ,c) = {v ∈ V | ∀σ ∈ Gal(L/K) : P (ρσ)(σv) = v} (20)

where P : Aut(G)→ GL(V ) is the morphism as defined in section 2.2.
Let Λ denote the set of coherent components of G. As one can check, every connected component which

counts at least two vertices is a disjoint union of coherent components. On the other hand, the union of
all connected components which are singletons is equal to a coherent component. This is illustrated by the
example drawn below. Dashed lines represent coherent components while full lines (apart from de edges)
represent connected components.

For any ϕ ∈ Aut(G), the images of two coherent components which are subsets of the same connected
component are again subsets of the same connected component. Let C ∈ C(G) be a connected component.
In case C counts at least two vertices, there exist coherent components λ1, . . . , λk such that C = λ1t . . .tλk
and we define χ(ϕ)(C) = ϕ(λ1)t . . .t ϕ(λk). In case C is a singleton, we define χ(ϕ)(C) = C. This gives a
morphism

χ : Aut(G)→ Perm(C(G)).

Recall that an action is called transitive if it has only one orbit.

Theorem 6.7. Let G = (S,E) be a graph, L/K a Galois extension of subfields of C and ρ : Gal(L/K) →
Aut(G) a continuous morphism. The Lie algebra nKρ,c is indecomposable if and only if the χ ◦ ρ-action on the
set of connected components C(G) is transitive.

Proof. Assume nKρ,c is indecomposable. Let C ∈ C(G) be a connected component. We write S̃ for the vertices
which lie in a connected component which lies in the χ ◦ ρ-orbit of C, i.e. S̃ = {α ∈ S | ∃σ ∈ Gal(L/K) :
α ∈ χ(ρσ)(C)}. Let n1 and n2 denote the subalgebras of nLG,c generated by S̃ and S \ S̃, respectively. It
follows that r(ρσ)(S̃) = S̃ and by consequence that i(ρσ)(n1) = n1 and i(ρσ)(n2) = n2 for any σ ∈ Gal(L/K).
Moreover, since n1 and n2 are generated by sets of vertices, we have that i(ρσ)(σn1) = n1 and i(ρσ)(σn2) = n2

for any σ ∈ Gal(L/K). By Lemma 6.3, n1 and n2 are ideals and we have a direct sum nLG,c = n1 ⊕ n2. Thus,
for an arbitrary v ∈ nLG,c there exist unique vectors v1 ∈ n1 and v2 ∈ n2 such that v = v1 + v2. For any
σ ∈ Gal(L/K), we then have the equivalences

i(ρσ)(σv) = v ⇔ i(ρσ)(
σ
(v1 + v2)) = v1 + v2

⇔ i(ρσ)(σv1) + i(ρσ)(σv2) = v1 + v2

⇔ i(ρσ)(σv1) = v1 and i(ρσ)(σv2) = v2.

where the last equivalence uses i(ρσ)(σnj) = nj for j = 1, 2. Since n1, n2 are themselves Lie algebras
associated to a graph, we know that

mj = {v ∈ nj | ∀σ ∈ Gal(L/K) : i(ρσ)(v) = v}

defines a K-form of nj . The above equivalences then imply that nKρ,c = m1 ⊕m2. Moreover, since n1 and n2

are ideals, the same holds for m1 and m2. Since we assumed nKρ,c to be indecomposable and m1 6= {0} by
construction, we must have that m2 = {0} and thus that S \ S̃ = ∅. This proves that the χ ◦ ρ-action on
C(G) is transitive.

Conversely, assume that the χ◦ρ-action on C(G) is transitive. Since this action fixes connected components
which are singletons, transitivity implies that either there are no connected components which are singletons
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or that S itself is a singleton. In the latter case, the Lie algebra nLG,c is itself indecomposable and by
consequence so are all of its forms. Thus we can assume that there are no connected components which
are singletons. This is equivalent to saying there are no vertices of degree 0. Assume there are ideals m1,
m2 of the Lie algebra nKρ,c such that nKρ,c = m1 ⊕ m2. Define nj = spanL(mj) for j = 1, 2. Since nKG,c is a
form of nLG,c, it follows that n1, n2 are ideals of nLG,c and that nLG,c = n1 ⊕ n2. By Proposition 6.6, we must
have subsets of vertices S1, S2 ⊂ S, each a union of connected components, such that S = S1 t S2 and
πab(nj) = spanL(Sj) for j = 1, 2. Take σ ∈ Gal(L/K) arbitrarily. Note that σ

(spanL(Sj)) = spanL(Sj)
for j = 1, 2 since these subspaces are spanned by vertices. Using that πab(mj) ⊂ spanL(Sj), we thus find
that σ(πab(mj)) ⊂ spanL(Sj) for j = 1, 2. From equation (20) it follows that P (ρσ)−1(πab(mj)) = σmj ⊂
spanL(Sj). But since spanL(mj) = spanL(Sj), we also have P (ρσ)−1(spanL(Sj)) = spanL(Sj). Since σ was
chosen arbitrarily, this implies that r(ρσ)(Sj) = Sj for all σ ∈ Gal(L/K). Since we assumed that the χ ◦ ρ-
action on C(G) is transitive, it follows that either S1 or S2 is the empty set and thus that either m1 = {0}
or m2 = {0}.
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