
Algebraic compressed sensing

Paul Breiding1

University Osnabrück, Fachbereich Mathematik/Informatik Albrechtstr. 28a, 49076 Osnabrück, Germany

Fulvio Gesmundo

Saarland University, Saarland Informatics Campus, 66123 Saarbrücken, Germany

Mateusz Micha lek2

University of Konstanz, Dept. of Mathematics and Statistics, Universitätsstrasse 10, 78457 Konstanz, Germany
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Abstract

We introduce the broad subclass of algebraic compressed sensing problems, where structured signals are
modeled either explicitly or implicitly via polynomials. This includes, for instance, low-rank matrix and
tensor recovery. We employ powerful techniques from algebraic geometry to study well-posedness of suf-
ficiently general compressed sensing problems, including existence, local recoverability, global uniqueness,
and local smoothness. Our main results are summarized in thirteen questions and answers in algebraic
compressed sensing. Most of our answers concerning the minimum number of required measurements for
existence, recoverability, and uniqueness of algebraic compressed sensing problems are optimal and depend
only on the dimension of the model.
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1. Introduction

Compressed sensing investigates inverse problems in which a structured signal in a Euclidean space is to
be reconstructed from a smaller number of (typically linear) measurements. Such inverse problems are well
posed in the sense of Hadamard if there exists a unique, continuous solution.

The general setting consists of a model X ⊂ Rn and a measurement map

µ : X → Rs. (IP)

Given a measurement y ∈ µ(X ), one is interested in reconstructing a signal x ∈ X such that y = µ(x). This
setting is schematically depicted in Figure 1.
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Figure 1: Schematic description of the geometry. On the right is the model X . On the left is the set of measurements µ(X ) taken
from X using the measurement map µ. In the picture we have µ(x1) = y. We are concerned with the question whether x1 is the only
point in X mapping to y, or whether there exists another point x2 ∈ X with µ(x2) = y.

We mainly focus on linear measurements, but we also consider the case where µ is nonlinear. Recall that
µ is a linear measurement map if

µ = µ̂|X , where µ̂ : Rn → Rs is a linear map.

We say that s is the number of measurements. The forward map µ that takes a signal x ∈ X to the observed
measurement y = µ(x) is usually easy to compute (and sometimes is even implemented in hardware [1]). On
the other hand, the inverse problem that consists of computing x ∈ µ−1(y) on input y ∈ µ(X ) is generally
a more difficult problem, and in fact it is not always possible to solve.

According to Kirsch [2], an inverse problem is well posed in the sense of Hadamard at y ∈ Rs if the
following conditions simultaneously hold:

(E) Existence: there exists a solution, i.e., there exists x ∈ X , with y = µ(x);

(I) Identifiability: the solution is locally unique at y, that is, there is an open neighborhood U of y in
µ(X ) such that, for every y′ ∈ U , there is a unique x′ ∈ X with y′ = µ(x′);

(C) Continuity: the solution x′ = µ−1(y′) is continuous as a function of y′ ∈ U .

It is argued in [2, Chapter 1] that well-posedness is a practical necessity for numerically solving the inverse
problem associated with (IP).

Special cases of the inverse problem (IP) were extensively studied in compressed sensing [3–7]. In the
original formulation, X ⊂ Rn is a (special) union of linear subspaces and µ is the restriction to X of a linear
map µ̂ : Rn → Rs, x 7→ Ax [1, 8]. Later, more general models for X were investigated, such as smooth
manifolds [8, 9]. See Examples 2 to 4 below for further examples of compressed sensing.

Many techniques were developed in compressed sensing to prove well-posedness of a problem, such as
mutual coherence, the restricted isometry property (RIP), the nullspace property, or bi-Lipschitz continuity
[10]. Arguably, the most popular of these is the RIP [3–5]. However, as we discuss in Section 2, it seems
that RIP-based analyses require a number of measurements s ≥ O(d log n) to guarantee well-posedness,
where d is the intrinsic dimension of the model X and n is the dimension of the ambient space. One main
contribution of this paper is reducing the number of required samples for (almost everywhere) well-posedness
to the minimal value for an important class of models X and measurement maps µ that includes the original
union of subspaces and certain smooth manifolds.

This paper studies the well-posedness of algebraic compressed sensing ; that is, inverse problems where
the model X is explicitly or implicitly defined by polynomials and µ is a polynomial map. Our main tools
rely on fundamental techniques from classic algebraic geometry.

We treat the following two complementary settings simultaneously in this work:
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(IS) Implicit setting : X is defined as the real vanishing locus of a real polynomial system of equations.
More precisely,

X = {x ∈ Rn : f1(x) = · · · = fk(x) = 0},
where f1, . . . , fk ∈ R[x1, . . . , xn] are polynomials with real coefficients in n real variables.

(ES) Explicit setting : X is defined as the image of a polynomial map, so that

X = {x = ϕ(t) = (ϕ1(t), . . . , ϕn(t)) : t ∈ Rℓ},

where ϕ1, . . . , ϕn ∈ R[t1, . . . , tℓ] are polynomials with real coefficients in ℓ real variables.

Most of our results hold for complex models as well, so for completeness we also cover this case. For
convenience and clarity of expression, we assume that X is irreducible: this technical condition is explained
in Section 4. Intuitively, it means that X cannot be expressed as a finite union of such sets. As the affine
space Rℓ is irreducible and images of irreducible sets are irreducible, irreducibility always holds in the setting
(ES). With some carefulness about the interpretation of genericity, most of our results can be extended to
reducible varieties in setting (IS) as well.

In setting (IS) we say that X is implicitly defined by polynomials, and in setting (ES) we say that X
is explicitly parametrized by polynomials. In the language of algebraic geometry, a set implicitly defined
by polynomials is called a real algebraic variety, while sets explicitly parameterized by polynomials are
semi-algebraic sets. Though note that not all semi-algebraic sets arise in this way.

These two classes of polynomial models cover a wide range of specific cases, many of which were already
studied individually in a compressed sensing context. The following examples demonstrate that our as-
sumptions on X are not very restrictive and the results of this work can be applied in a number of different
settings. For an overview of polynomial models in the sciences see also [11].

Example 1 (Classic compressed sensing). The original formulation of compressed sensing assumed that
an observed signal y ∈ Rs is a k-sparse linear combination of a set of m vectors v1, . . . , vm in Rn. That
is, there exist indices ij , j = 1, . . . , k, so that y = µ̂(λ1vi1 + λ2vi2 + · · · + λkvik), where µ̂ : Rn → Rs is a
linear map. This is an algebraic compressed sensing problem where X ⊂ Rn is the union of the

(
m
k

)
linear

subspaces of dimension k spanned by the subsets of k vectors from v1, . . . , vm. Such a union of subspaces
can be formulated as set of solutions of a polynomial system in setting (IS). The sensing map is µ = µ̂|X .

Note that X is not irreducible. Nevertheless, the well-posedness of such compressed sensing problems
is well known [10] and it can be verified that for a union of equidimensional varieties, the main result,
Theorem 1.1, applies verbatim. ♦

Example 2 (Matrix completion). The algebraic variety of bounded-rank matrices in Rm×n is a model for
compressed sensing that was studied in [12]. When the measurement map is a coordinate projection, the
associated inverse problem is also called a matrix completion problem, which has many applications, including
data analysis and recommender systems [13]. Polynomials that implicitly define m× n matrices of rank at
most r are all the (r+1)×(r+1) minors. One can also view low-rank matrices in the explicit setting, via the
polynomial parameterization given by ϕ : Rm×r ×Rn×r → Rm×n, (A,B) 7→ ABT . Related low-rank matrix
models that our analysis covers include low-rank matrices with sparseness constraints [14] and low-rank plus
sparse matrix recovery [15, 16]. The case of measurement maps that are coordinate projections is addressed
in [17–22] using a variety of techniques from rigidity theory, algebraic combinatorics, and matroid theory. ♦

Example 3 (Tensor completion). Other examples are various bounded-rank tensor decompositions [23, 24],
such as the tensor rank decomposition or canonical polyadic decomposition [25], Tucker decomposition [26],
tensor trains [27, 28], hierarchical Tucker [29, 30], and even general tensor network decompositions [31]. All
of these examples can be parameterized straightforwardly by polynomials. These decompositions feature in
data analysis applications as an a priori model for filling in missing data [23, 32]. The compressed sensing
literature already investigated well-posedness conditions for the tensor rank decomposition with sparsity
constraints [33], unconstrained tensor rank decomposition [34], and Tucker decomposition, tensor trains,
and hierarchical Tucker decompositions were studied jointly in [35]. ♦
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Example 4 (Moment varieties). Our final example is from (algebraic) statistics [36]. Multivariate probabil-
ity distributions are characterized by an infinite sequence of symmetric tensors of increasing degree, namely
their sequence of moments, or, alternatively, cumulants [37]. Many probability distributions belong to a
parameterized family; for example, k-variate Gaussian distributions are parameterized by the mean vector
m ∈ Rk and the covariance matrix Σ ∈ Rk×k. Pearson [38] observed that for some families a finite se-
quence of moments suffices to identify the parameters of the distribution from empirical moments. In recent
years, it was realized that the set of possible dth order moments of a parameterized family is sometimes
defined by polynomials [39–41], thus carving out a moment variety X in the space of dth order symmetric

tensors in k variables SdRk ≃ R(k+d−1
d ). Estimating all

(
k+d−1

d

)
entries of the dth order empirical moment

in SdRk is computationally challenging. However, since the probability distribution is represented by a
point on X ⊂ SdRk, we could instead compute a linear projection of the empirical moment. This leads
to an algebraic compressed sensing problem. Only recently, the well-posedness of this problem was studied
by Lindberg, Amendola, and Rodriguez [42]. For mixtures of Gaussians, Guo, Nie and Yang [43] recently
presented an efficient numerical algorithm to estimate the parameters from coordinate projections of the
third-order moment. ♦

Let
d := dimX

denote the dimension of the model X . The notion of dimension is introduced formally in Section 4.2. This
is the formal way to measure the “intrinsic size” of the model X ; it coincides with the dimension of the set
of non-singular points of X , which is a smooth manifold embedded in Rn [44]. In the explicit setting (ES),
dimX is the maximal rank of the Jacobian of the parametrization ϕ at points in Rℓ [45]; in particular, in
this setting, dimX is bounded from above by ℓ, which is often called the number of degrees of freedom in
the parameterization. The latter can be strictly larger than the dimension; the explicit parameterization in
Example 2, for example, has (m+n)r degrees of freedom, while the dimension of the variety of bounded-rank
matrices is only (m+n−r)r [46, Proposition 12.2]. As we will see, the dimension of the model X determines
the required number of measurements s so that the inverse problem is well posed. Throughout this paper,
the dimension d is fixed and the number of measurements s can vary, reflecting the design choice of the
measurement map.

The heart of this paper is Section 3. We discuss and explore thirteen questions and answers about
the well-posedness of algebraic compressed sensing problems. The questions are divided into four themes:

(E) Existence: Given y ∈ Rs when are there signals x ∈ X with y = µ(x)?

(R) Recoverability : When are there finitely many points in µ−1(y) for y ∈ µ(X )?

(I) Identifiability : When is µ−1(µ(x)) equal to {x}?

(C) Continuity: When is µ−1 locally (Lipschitz) continuous at µ(x)?

If (E), (I) and (C) hold at y, the inverse problem is well posed at y by the definition we gave above. The
main reason to consider recoverability as well is that it enables localized well-posed algebraic compressed
sensing problems. Indeed, if only (E), (R) and (C) hold at y, then the inverse problem can be made well
posed by further restricting the variety X to a neighborhood of one of the elements in the fiber of µ.

The engine that powers our answers in the Q&A section is a fundamental result from commutative
algebra called the Noether Normalization Lemma; see Theorem 4.12 below. The proof of this result is
sketched in Section 4 and we refer to [47] for a comprehensive discussion on the proof and the lemma’s deep
implications.

Many of our answers use the notion of a “generic point in X”. This is a subtle concept, which we carefully
explain in Section 4. For the moment, a reader with an affinity to probability may think of a generic point
as a point being chosen with probability 1 from a probability measure that is absolutely continuous with
respect to the Lebesgue measure; a reader with a background in analysis can interpret the set of generic
points as an open dense subset in X . Nevertheless, being a generic point is a strictly stronger property.
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As a teaser of the questions and answers, we summarize in the next theorem the answers to Questions 1,
2, 7 and 13. In Section 3, we list nine additional questions and answers, which shed light on different aspects
of algebraic compressed sensing.

Theorem 1.1. Let X be given as in (IS) or (ES), and let µ be a generic linear map µ : X → Rs. Then:

(E) the fiber µ−1(y) ̸= ∅ at y ∈ Rs if and only if a particular system of polynomial equations has a solution:

• in the implicit setting (IS), this system of equations in the variables x = (x1, . . . , xn) is defined
by f1(x) = · · · = fk(x) = µ(x) − y = 0;

• in the explicit setting (ES), this system in variables t = (t1, . . . , tℓ) is defined by µ(ϕ(t)) − y = 0;

(R) if s ≥ d, the fiber µ−1(µ(x)) of a generic point x ∈ X is finite;

(I) if s ≥ d+ 1, the fiber µ−1(µ(x)) of a generic point x ∈ X is equal to {x};

(C) if s ≥ d+ 1, the fiber µ−1(µ(x)) of a generic point x ∈ X is C∞ continuous.

The paper is structured as follows. In the next section, we offer a glimpse of what lies beyond the
restricted isometry property for establishing (local) well-posedness of inverse problems like (IP). Thereafter,
in Section 3, the main results of this paper are presented as a sequence of thirteen basic questions and
answers related to the well-posedness of algebraic compressed sensing problems. Section 4 recalls the main
techniques from algebraic geometry that are employed in Section 5 to furnish proofs of the main results
from Section 3. Numerical experiments in Section 6 illustrate the minimal requirements on the number of
measurements for well-posedness in algebraic compressed sensing. The paper is concluded in Section 7 with
an outlook and open problems in algebraic compressed sensing.

2. What lies beyond the restricted isometry property?

The ϵ-restricted isometry property (ϵ-RIP) of the measurement map µ : X → ks [3–5], where k = R or
k = C, is a core concept in compressed sensing. For general models X ⊂ kn, it can be defined as follows [9]:
for all x, y ∈ X we have

0 < 1 − ϵ ≤ ∥µ(x) − µ(y)∥ks
∥x− y∥kn

≤ 1 + ϵ <∞, (RIP)

where ϵ ∈ [0, 1) is a constant depending on the measurement map µ, and ∥ ·∥A denotes a norm on the vector
space A. The ϵ-RIP implies that the measurement map µ is everywhere identifiable. Maps satisfying the
RIP are a special type of global bi-Lipschitz embeddings. Such embeddings were studied earlier for general
metric spaces in [48–51]. Recall that a map µ : X → Y between metric spaces (X ,distX ) and (Y,distY) is
bi-Lipschitz if there exist constants c, C such that

0 < c ≤ distY(µ(x), µ(y))

distX (x, y)
≤ C <∞

for all x ̸= y [52]. Geometrically this means that µ is an injective map into ks that does not stretch or
bend X too much. For this reason, bi-Lipschitz embeddings are sometimes called stable embeddings [8, 9].
A bi-Lipschitz map has a bi-Lipschitz inverse map µ−1 with lower and upper Lipschitz constants equal to
respectively C−1 and c−1. Bi-Lipschitz embeddings are fundamental in compressed sensing because they
offer two complementary global properties:

(I) the map is everywhere injective, and

(II) the inverse map is Lipschitz continuous.
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The first property ensures that for all measurements y ∈ µ(X ), the inverse problem has a unique solution.
The second property guarantees that the inverse problem has a bounded sensitivity, i.e., the inverse map has
a bounded variation from one point to another, relative to the distance between the points. Indeed, both
the ϵ-RIP and the (1 − ϵ, C)-bi-Lipschitz condition offer the uniform upper bound

distX
(
µ−1(y1), µ−1(y2)

)
≤ distY(y1, y2)

1 − ϵ
(Lip)

for all measurements y1, y2 ∈ µ(X ). Taken together, (I) and (II) thus guarantee that the inverse problem
(IP) is well posed.

While properties (I) and (II) are certainly desirable, demanding that the measurement map is globally
bi-Lipschitz can be challenging to verify theoretically and imposes severe geometric constraints on X and
µ. Moreover, computing the optimal RIP constant for classic compressed sensing of k-sparse vectors is an
NP-hard problem [53]. Our viewpoint is that these constraints can sometimes be relaxed. We believe that
the more flexible, localized, easily implementable analysis as the one presented in this work can better cater
to practical situations.

2.1. How many measurements do we need?

As the intrinsic dimension of the inputs is only d = dimX , we could a priori hope that s = d mea-
surements would suffice to recover x from µ(x). However, ϵ-RIP-based analyses of stable recovery of linear
maps µ : X → ks in the literature ultimately lead to a required number of samples s that scales at least
like d · log

(
n
ϵ2

)
when X ⊂ kn is a collection of d-dimensional linear spaces; see, e.g., [1, 8]. For compact

d-dimensional manifolds a similar requirement is needed [8, Theorem 3.1].
The ratio between the intrinsic dimension d and the required number of measurements s for recoverability

is called the oversampling rate. So this rate seems to scale logarithmically in nϵ−2 in the case where X is
a union of linear spaces. When considering more general models X , insisting on a bi-Lipschitz embedding
could lead to even higher oversampling rates. For general Lipschitz manifolds X , the best upper bound
we are aware of on the minimal number of measurements s to recover any model X with (only) a local4

bi-Lipschitz embedding µ is s ≥ d(d+ 1) [50]. Such a quadratic growth is often too high in applications.
As bi-Lipschitz embeddings preserve much more information about the model X than mere injective

maps, it is not surprising that RIP or bi-Lipschitz conditions lead to an oversampling factor greater than 1.
But is this really necessary for recoverability? By relaxing the requirement of bi-Lipschitz embeddability,
recoverability and identifiability can often be guaranteed with a smaller number of measurements.

This observation is neither new nor controversial. In 1936, Whitney [54] proved that a smooth d-
dimensional manifold X can be smoothly embedded (in particular, the map is injective and its inverse is
smooth) into a Euclidean space of dimension s = 2d for some smooth µ. The oversampling rate is thus
2. With such a measurement map, every point is identifiable and µ−1 is a local Lipschitz map, but µ−1

is not necessarily a (global) Lipschitz map. Birbrair, Fernandes, and Jelonek [55] recently proved that if
X is a closed semi-algebraic set then there exist bi-Lipschitz linear maps µ into R2d+1. Hence, even with
bi-Lipschitz embeddings one can get to an oversampling factor as low as 2+o(1) for some models X . Yet, we
show that for a generic linear map d measurements suffice for generic recoverability and d+ 1 measurements
suffice for generic identifiabilty; see Theorem 1.1(R) and (I).

2.2. How much does the reconstruction move?

Besides identifiability, the other main use of the RIP is deriving upper bounds on the reconstruction
error of specific algorithms [10, Chapter 6]. In most of such analyses, a reconstruction algorithm is called
stable or robust if, in some norm, the reconstruction error ∥x − x♯∥ is small. Here, x♯ is the algorithm’s
output on input y = µ(x)+e and e is a small error. For statements about the main algorithms in traditional
compressed sensing see also [10, Theorems 6.12, 6.21, 6.25, 6.28].

4A map f is a local embedding if every point in the domain has a neighborhood such that f restricted to that neighborhood
is an embedding.

6



The concept of stability has many meanings in numerical analysis. Robustness of a reconstruction
algorithm in compressed sensing is different from but closely related to the forward stability of an algorithm
in numerical linear algebra. Forward stability of an algorithm f̂ for a function f is defined in terms of
condition numbers [56]. Following [57], the condition number κ[f ](x) of a map f : X → Y between metric
spaces (X ,distX ) and (Y,distY) at a point x ∈ X is

κ[f ](x) = lim
ϵ→0

sup
y∈X ,

distX (x,y)≤ϵ

distY(f(x), f(y))

distX (x, y)
. (CN)

The condition number is an intrinsic property of the function f . It measures how much an infinitesimal
perturbation of the input is amplified in the output of the function f . It is a standard way to measure
the sensitivity to perturbations of a computational problem modeled by the function f [56–58]. If f is a
differentiable function, the condition number provides an error bound of the form

distY(f(x), f(y)) ≤ κ[f ](x) · distX (x, y) + o(distX (x, y))

and this bound is asymptotically sharp as distX (x, y) → 0. Aside from the foregoing error bound, the
condition number is also viewed as a measure of complexity or hardness of computing the output of f
[58, 59].

In our setting, the role of f is played by the measurement map µ. An algorithm µ̂−1 for the function
µ−1 is called forward stable [56, 60] if its reconstruction error is “not much larger” than the backward error
(the difference between µ(x) and µ(x♯)) multiplied by the condition number. More precisely, a compressed
sensing reconstruction algorithm is forward stable if

∥x− x♯∥kn︸ ︷︷ ︸
output error

≤ K︸︷︷︸
algorithm-specific

·κ[µ−1](µ(x♯))︸ ︷︷ ︸
problem-specific

· ∥µ(x) − µ(x♯)∥ks︸ ︷︷ ︸
backward error

, (FS)

where 1 ≤ K <∞ is a constant, κ[µ−1](µ(x♯)) is the condition number relative to the distances distX (x, x′) =
∥x− x′∥kn and distks(y, y′) = ∥y− y′∥ks , and the backward error is ∥µ(x)−µ(x♯)∥. As indicated above, the
condition number is a mathematical property of µ−1. The constant K quantifies how much the algorithm
µ̂−1 amplifies the inherent sensitivity of the problem µ−1. Note that the algorithm-specific part of the
error must be constant, while the problem-specific part depends on the problem instance that is solved. An
algorithm is forward stable if K is a constant that is “small” in the eye of the beholder.

Inspecting [10, Theorems 6.12, 6.21, 6.25, 6.28], for example, it is not difficult to prove that all these
bounds imply that the corresponding algorithms are forward stable, with an undetermined constant K in
(FS). The reason is as follows.

From the vantage point of numerical analysis, the RIP and bi-Lipschitz embeddings guarantee a very
strong property: every reconstruction problem instance is well conditioned. Informally, an instance of a
computational problem locally modeled by a function is called well conditioned if the condition number is
small, e.g., κ ≈ 1, and ill conditioned if the condition number is large, e.g., the inverse of typical backward
errors. If µ is a bi-Lipschitz map, then one has a global upper bound on the condition numbers of both µ
and µ−1. We include the precise statement of this result for completeness; see [61, Proposition 6.3.10].

Proposition 2.1. Let µ : X → Y be a (c, C)-bi-Lipschitz map, then we have

c ≤ κ[µ](x) ≤ C and 1
C ≤ κ[µ−1](µ(x)) ≤ 1

c

for all x, where the condition number κ is relative to the metrics of (X ,distX ) and (Y,distY) in (CN).

A finite condition number κ also implies the existence of the local Lipschitz constant κ+ δ for arbitrary
δ > 0 of f in a neighborhood of x.

Instead of relying on the RIP or bi-Lipschitz embeddings to guarantee every reconstruction problem
instance is well conditioned, we propose to rely on the condition number of specific problem instances to
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quantify how difficult the reconstruction problem is. For forward, backward, and mixed stable numerical
algorithms [60], the bound (FS) then provides a good upper bound on the reconstruction error of a specific
problem instance, even if the true solution x is not known.

In the answer to Question 13 below, we show that κ[µ−1](µ(x)) can be computed from the singular
values of the derivative of µ. Therefore, it can be approximated numerically for differentiable measurement
maps using standard numerical linear algebra algorithms. If an explicit expression of the differential of µ is
unknown, one could even apply numerical differentiation techniques to approximate it. Hence, computing the
condition number is often significantly easier than determining global lower and upper Lipschitz constants
of µ (or µ−1).

By relying on the condition number to furnish reconstruction error bounds (for forward stable algorithms)
and moving away from the RIP or bi-Lipschitz embeddings, we sacrifice the global upper bound on the
condition number of µ−1. That is, we allow that some reconstruction problems are very sensitive to tiny
perturbations of the input; hence, they are numerically hard or even impossible to solve [58]. Because of
(FS), this also means that these instances should not be expected to be solved with a small forward error
[62]. However, this does not mean that most, typical, or average problem instances are difficult to solve
accurately!

2.3. Summary

The ϵ-RIP may be difficult or impossible to establish for complicated models X . We therefore believe that
trading a global bound on the reconstruction error and global identifiabilty for an algorithmically computable
local upper bound and corresponding local identifiabilty (recoverability) can often be a worthwhile tradeoff.
This viewpoint is developed further in the rest of the paper.

3. Questions & Answers

We answer several individual questions about recoverability, identifiability, and continuity. Combining
these in the appropriate ways establishes the well-posedness of an algebraic compressed sensing problem.
The proofs for the statements in this section are given in Section 5. The background in algebraic geometry
used in the proofs is introduced in Section 4. The questions and answers, however, can mostly be understood
without this background.

Throughout this section, let X ⊆ kn, where k = R or k = C, be specified either implicitly as in (IS) or
explicitly as in (ES). The definition of these models in the complex case is obtained by replacing R by C in
both settings. Our answers are general: they do not rely on specific properties of a particular model.

The following discussion centers around the numbers d, s > 0. The first is the dimension of X (real
dimension if k = R, and complex dimension if k = C). This number d is fixed, as the model X specifying
the signal structure is assumed to be fixed beforehand. The number s is the number of measurements and
can be varied through the design of the measurement map µ : X → ks in (IP). Of particular interest is the
case where µ is the restriction to X of a linear or an affine linear map µ̂ : kn → ks. An affine linear map
has the form µ̂(x) = Ax + b, where A ∈ ks×n and b ∈ ks. Since shifting by a vector is an isomorphism of
ks (as an affine variety), geometric properties of the map µ̂ are directly related to the analogous properties
of the linear map x 7→ Ax. For this reason, we restrict the analysis to linear maps. Some of the questions
below concern the case where µ is a polynomial map.

We first discuss existence. This consists of deciding whether a given y ∈ ks sits in the image of the model
X under the measurement map µ. Next, we consider recoverability, which consists of determining under
which conditions the preimage µ−1(µ(x)) is finite for a point x ∈ X . Then, we discuss identifiability, which
consists of determining when the preimage is a single point. Finally, we investigate the local continuity of
the elements in the fiber of µ.

Many of the statements below are formulated for “generic” data points. This concept is explained
formally in Section 4.1 below. In particular, in all the questions below, generic points form an open dense
subset of all points.
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3.1. Existence

The first question concerns the existence of solutions.

Question 1. Under what conditions do there exist solutions y = µ(x) for a given point y ∈ ks? ?

Answer 1. First, suppose that X is the zero locus of the polynomials f1, . . . , fk as in (IS). Then for a fixed
measurement y = (y1, . . . , ys) the equality y = µ(x) holds for some x ∈ X if and only if the following system
of k + s polynomial equations in the variables x1, . . . , xn has a solution:

f1(x) = · · · = fk(x) = y1 − µ1(x) = · · · = ys − µs(x) = 0.

Now suppose that X is given as image of a polynomial parameterization as in (ES). Then for a fixed y, the
equality y = µ(x) holds for some x ∈ X if and only if the following system of s polynomial equations in the
variables t1, . . . , tℓ has a solution:

y1 − µ1(ϕ1(t), . . . , ϕn(t)) = · · · = ys − µs(ϕ1(t), . . . , ϕn(t)) = 0.

The existence of solutions of a polynomial system g1 = · · · = gN = 0 as above is characterized as follows.
For k = C, the system has solutions if and only if the ideal ⟨gi : i = 1, . . . , N⟩ does not contain 1.

Explicitly, this condition can be tested using Gröbner basis methods [45, 63–66], which are implemented in
most computer algebra systems.

For k = R, the system has a solution if and only if the real radical, in the sense of [67, Section 4.1], does
not contain 1. ✓

We note that neither for k = R nor for k = C it is enough to check if some polynomials vanish only
at y to guarantee the existence of x ∈ X with y = µ(x). The reason is that a projection of a variety is
not necessarily a variety. However, a consequence of Chevalley’s Theorem (see Theorem 4.4) is that, in the
case k = C, there exists a finite number of polynomials {hi(y) : i = 1, . . . ,M}, such that the vanishing or
non-vanishing of hi(y) for a fixed y determines whether there is x ∈ X with y = µ(x). Algorithms providing
these hi were implemented in [68, 69]. For k = R one needs to check a finite number of polynomial equations
and polynomial inequalities; an implementation is provided in the Maple package RegularChains.

While the above answer is necessary and sufficient, it is substantially less practical than all of the
Q&As that will follow. In fact, deciding whether a solution to a system of polynomial equations exists
is an NP-hard decision problem, see, e.g., [70]. Nevertheless, one can resort to numerical methods such as
certified homotopy continuation [71, 72], which can find approximate numerical roots. In practice, uncertified
homotopy continuation can be a faster alternative with similar accuracy in many cases of practical interest
[73–78]. Lairez [79, 80] proved that finding one approximate root of (certain) random polynomial systems
has a quasi-linear time complexity in the Blum–Shub–Smale model of computation [81].

3.2. Recoverability

We start with a remarkable, fundamental result about recoverability of generic linear measurement maps.
We call a map µ : X → ks recoverable at a point x ∈ X if the fiber µ−1(µ(x)) is finite. A map is everywhere
recoverable if it is recoverable at every point x ∈ X . A map is generically recoverable if it is recoverable for
generic points x ∈ X .

Question 2. Under what conditions is a generic affine linear map µ : X → ks everywhere recoverable? ?

Answer 2. A generic affine linear map is everywhere recoverable if and only if the number of measurements
is s ≥ d.

In fact, if k = C and s = d, the number of solutions of (IP) at a generic problem instance y ∈ µ(X )
equals a constant δ, called the degree of X , see Section 4.3. In the real case (i.e., k = R), the number of real
solutions for a generic problem instance is bounded above by that same δ. ✓

The previous Q&A can be extended to certain polynomial maps.

Question 3. Under what conditions is a measurement map µ : X → ks defined by s generic (non-
homogeneous) polynomials of degree p everywhere recoverable? ?
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Answer 3. A map defined by s generic polynomials of degree equal to p is everywhere recoverable if and
only if s ≥ d.

For k = C and s = d, the number of solutions of (IP) at a generic problem instance y ∈ µ(X ) equals
δ · pd where δ is the degree of X . If k = R, the number of real solutions for a generic problem instance is
bounded from above by δ · pd. ✓

The answer to Question 3 is implied by applying the Veronese embedding to the setting of Question 2.
We believe the answer to Question 3 to hold in the more general case where µ is a generic polynomial map
with components of possibly different degrees. We expect that a proof should follow by adapting the proof
of Noether’s Normalization Lemma (Theorem 4.12) to this general setting. We leave this for future work.

Example 5 (Random maps). The space of linear maps and the space of polynomial maps with a fixed degree
are finite dimensional vector spaces. One can randomly sample such maps from a probability distribution
that is absolutely continuous with respect to the Lebesgue measure. The answers to Questions 2 and 3
guarantee that such randomly sampled maps are recoverable with probability 1. This includes all linear
and polynomial maps whose coefficients are sampled identically and independently distributed from any
continuous probability distribution, such as randn and rand in Julia, Matlab, Octave, and Python.

There is a vast body of literature on robust recovery from random measurements. For instance, the
case of low-rank matrix recovery from Gaussian measurements is discussed in [82]: the authors show that
10r(m + n) Gaussian measurements suffice to robustly recover rank-r matrices in Rm×n via nuclear norm
minimization. However, the dimension of the variety of rank-r matrices is d = r(m+ n− r), so the answer
to Question 2 guarantees that s = d measurements are enough for recoverability. This provides a significant
improvement over [82], albeit with only local guarantees on the robustness of the reconstruction. ♦

In data completion or imputation, one tries to recover a structured signal x ∈ X from partially observed
data, i.e., a subset of the coordinates of kn. In this case, the measurement map is a coordinate projection.
These are specific linear maps for which the foregoing Q&A’s do not apply a priori. Even randomly selecting
the s coordinates on which to project does not guarantee a generic linear measurement map in the sense of
Questions 2 and 3. Nevertheless, for coordinate projections we have the following result.

Question 4. Under what conditions does there exist a coordinate projection µ̂ : kn → ks that is generically
recoverable when restricted to X? ?

Answer 4. There exists a generically recoverable coordinate projection if and only if s ≥ d. ✓

The following example shows that everywhere recoverability is not possible in general for coordinate
projections. More precisely, the only everywhere recoverable coordinate projection is in general the identity
map µ̂ : kn → kn.

Example 6. We provide an example of a variety X ⊆ kn with the property that every coordinate projection
µ : X → ks, with s < n, has at least one infinite fiber. Consider the parameterization ϕ : k2 → kn defined by
ϕ(t1, t2) = (ϕ1(t1, t2), . . . , ϕn(t1, t2)), where ϕj(t1, t2) = t2 ·

∏
i ̸=j(t1− i). It is easy to show that the Jacobian

matrix of ϕ has rank 2 for every (t1, t2) with t2 ̸= 0. Let X = im(ϕ), where the overline denotes the closure
in the Euclidean topology. This is an algebraic variety of dimension d = 2. For j = 1, . . . , n, we have

ϕ(j, t2) = t2(0, . . . , 0,
∏

i ̸=j(j − i)︸ ︷︷ ︸
j-th entry

, 0, . . . , 0).

In particular, the lines corresponding to the coordinate axes of kn are contained in X . Now, every coordinate
projection maps at least one coordinate axis to 0. Therefore, if µ : X → ks is a coordinate projection with
s < n, the fiber µ−1(y) for y = 0 ∈ ks is always infinite, containing at least one of these lines. ♦

We stress that the answer to Question 4 only guarantees existence of a generically recoverable coordinate
projection. We do not claim that most or even several coordinate projections with s ≥ d are generically
recoverable. In fact, constructions similar to the one of Example 6 provide examples of algebraic varieties
with the property that only some specific coordinate projections are generically recoverable. An example of
this behavior is presented next.
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Example 7 (Rank-1 matrix recovery). Let X be the variety of 2 × 3 matrices of rank at most 1, that is
X = ϕ(k5), with

ϕ : k5 → k2×3, (t1, . . . , t5) 7→
[
t1
t2

] [
t3 t4 t5

]
. (1)

One can verify that d = dimX = 4. Let µ be the measurement map defined by restricting the coordinate
projection

µ̂ : k2×3 → k4,
[
x1 x2 x3
x4 x5 x6

]
7→ (x1, x2, x4, x5)

to X . There is no point y ∈ k4 at which this coordinate projection is recoverable. Indeed, if A =[
t1
t2

]
[ t3 t4 t5 ], then µ−1(µ(A)) ⊇

{[
t1
t2

]
[ t3 t4 t′ ] : t′ ∈ k

}
; hence, every fiber has dimension (at least) one.

On the other hand, every coordinate projection that forms a “cross” as discussed in [17], like

µ̃ : k2×3 → k4,
[
x1 x2 x3
x4 x5 x6

]
7→ (x1, x2, x3, x4),

is generically recoverable on X . Note that µ̃ is not everywhere recoverable: if x1 = x4 = 0, the fiber
µ−1(µ(A)) is at least 1-dimensional. Like Example 6, there is no everywhere recoverable coordinate projec-
tion except for the identity map.

Conditions under which recoverability and identifiability of low-rank matrix completion problems holds
were discussed in [17–22], among others. ♦

Given a polynomial measurement map, one can explicitly determine whether it is generically recoverable
by computing the rank of the differential of a suitable map. This is discussed next.

Question 5. Given a specific polynomial map µ : X → ks, how can one determine whether µ is generically
recoverable? ?

Answer 5. First consider the implicit setting (IS) and let the variety be given as X = {x ∈ kn : f1(x) =
· · · = fk(x) = 0}. Write f = (f1, . . . , fk), which can be regarded as a polynomial map from kn to kk. A
sufficient condition to guarantee that µ is generically recoverable is that there exists a point x ∈ X satisfying

ker(dxµ) ∩ ker(dxf) = 0.

Explicitly, regarding dxµ as an s× n matrix and dxf as a k × n matrix, this condition is equivalent to the

(s+ k) × n matrix
[
dxµ
dxf

]
having rank n.

Now consider the explicit setting (ES), and let X be parameterized explicitly by ϕ = (ϕ1, . . . , ϕn) : kℓ →
kn. Then a sufficient condition to guarantee that µ is generically recoverable is that there exists a point
t ∈ kℓ such that the Jacobian matrix of µ ◦ ϕ : kℓ → ks at t has rank d = dimX . ✓

Remark 3.1. There may be several ways to present X = {x ∈ kn : f1(x) = · · · = fk(x) = 0} and even the
ideal (f1, . . . , fk) generated by the fi’s may change. It is always best to choose the fi’s that generate the
whole ideal of polynomial functions that vanish on X .

Remark 3.2. We note that the condition that a map µ : X → ks is generically recoverable is equivalent to
the fact that the dimension of the image µ(X ) is equal to d.

The second criterion is especially convenient for low-dimensional varieties embedded in a high-dimensional
ambient space. In this case, it suffices to compute the rank of an ℓ × s matrix, where ℓ is the number of
parameters in the parameterization of X and s the number of measurements, both of which can be similar in
size to d = dimX . In a numerical setting, computing the rank consists of counting the number of significant
singular values.

The following question addresses explicitly the case of coordinate projection, in the setting of parame-
terized models.
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Question 6. If X is explicitly parameterized by ϕ : kℓ → kn as in (ES), how can one determine a subset of
s ≥ d coordinates such that the coordinate projection on these s coordinates is generically recoverable? ?

Answer 6. The s distinct coordinates i1, . . . , is should be selected so that the s × ℓ matrix
[
∂ϕip

∂tj

]
p=1,...,s
j=1,...,ℓ

has rank exactly d for at least one t ∈ kℓ. ✓

We can now use this answer to understand Example 7.

Example 8 (Rank-1 matrix recovery, continued I). Write ϕij for the components of the map ϕ of (1).
In Example 7, we claimed that the coordinate projection defined by µ̂([ x1 x2 x3

x4 x5 x6
]) = (x1, x2, x4, x5) is not

recoverable. We verify that the sufficient condition from Question 5 is not satisfied. Indeed, the Jacobian
matrix of µ ◦ ϕ : (t1, . . . , t5) 7→ (t1t3, t1t4, t2t3, t2t4) is

J = dt(µ ◦ ϕ) =

∂1 ∂2 ∂3 ∂4 ∂5


ϕ1,1 t3 0 t1 0 0
ϕ1,2 t4 0 0 t1 0
ϕ2,1 0 t3 t2 0 0
ϕ2,2 0 t4 0 t2 0

,

which has rank at most 3 for every choice of (t1, . . . , t5) because t1∂1 + t2∂2 = t3∂3 + t4∂4.
On the other hand, the coordinate projection µ̃ is generically recoverable. In this case µ̃ ◦ϕ(t1, . . . , t5) =

(t1t3, t1t4, t1t5, t2t3) and its Jacobian matrix is

J̃ = dt(µ̃ ◦ ϕ) =

∂1 ∂2 ∂3 ∂4 ∂5


ϕ1,1 t3 0 t1 0 0
ϕ1,2 t4 0 0 t1 0
ϕ1,3 t5 0 0 0 t1
ϕ2,1 0 t3 t2 0 0

. (2)

For t1 = t3 = 1 and t2 = t4 = t5 = 0, the rk (J̃) = 4. Hence, µ̃ is generically recoverable by Question 5. ♦

3.3. Identifiability

Recall that a map µ : X → ks is identifiable at a point x ∈ X if the fiber µ−1(µ(x)) = {x} consists of
a single point. We say that µ is everywhere identifiable if it is identifiable at every x ∈ X and that it is
generically identifiable if it is identifiable at generic points x ∈ X .

In this section we discuss three settings. The first one considers identifiability for generic maps and
generic points on X . This is the same setting as the one discussed in the case of recoverability in the
previous subsection.

Question 7. Under what conditions is a generic linear map µ : X → ks generically identifiable? ?

Answer 7. If X is a linear space, then µ is generically identifiable if and only if s ≥ d. If X is not a linear
subspace and if s ≥ d + 1, then µ is generically identifiable. If k = C, then the condition s ≥ d + 1 is also
necessary. ✓

The analogous question for polynomial maps has a similar answer.

Question 8. Under what conditions is a map µ : X → ks defined by s generic polynomials of degree p
generically identifiable? ?

Answer 8. Such a polynomial map is generically identifiable if s ≥ d+ 1. When k = C, d > 0, and p > 1,
the condition s ≥ d+ 1 is necessary as well. ✓
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Now, we move from questions about generic data to questions about properties that hold everywhere.
In Question 9 we wonder when a generic linear map is everywhere identifiable and Question 10 asks for the
existence of a Euclidean open set of such maps.

A key role in these questions is played by the set of differences

∆(X ) := {x1 − x2 : x1, x2 ∈ X} ⊆ kn.

This is the image of the map X × X → kn, (x1, x2) 7→ x1 − x2. The closure of ∆(X ) is an algebraic variety
of dimension at most 2d. When X is a cone over 0 ∈ kn, then ∆(X ) is the Minkowski sum of X with itself,
and its closure is called the secant variety of X [46, 83].

One can immediately observe that for a linear map µ̂ : kn → ks, one has

µ̂(x1) = µ̂(x2) if and only if µ̂(x1 − x2) = 0.

In other words, µ = µ̂|X is everywhere identifiable if and only if the kernel ker(µ̂) intersects ∆(X ) only at
0 ∈ kn.

Question 9. Under which conditions is a generic linear map µ : X → ks everywhere identifiable? ?

Answer 9. A generic linear map µ is everywhere identifiable if s ≥ 1+dim ∆(X ). In particular, if s ≥ 2d+1,
µ is everywhere identifiable. ✓

We provide two interesting examples; one where the answer to Question 9 is not optimal, and one where
it is.

Example 9 (Nonoptimality of Answer 9 for cones). Suppose X is a cone over 0 ∈ kn: for every x ∈ X
and every t ∈ k, one has tx ∈ X . Then, ∆(X ) is also a cone over 0; let d′ be its dimension. In this case, a
generic projection to kd′

is injective on X , and therefore everywhere identifiable. ♦

Example 10 (Optimality of Answer 9 for the twisted cubic). Let X be the curve in C3 defined as the image
of ϕ : C → C3, t 7→ (t, t2, t3). In classic algebraic geometry this is called the twisted cubic curve in C3. The
set of differences is

∆(X ) = {(t1 − t2, t
2
1 − t22, t

3
1 − t32) : t1, t2 ∈ C}.

In this case, a generic line through 0 intersects ∆(X ) in a point different from 0. Therefore, a generic linear
map µ̂ : C3 → C2 satisfies ker(µ̂)∩∆(X ) ̸= 0. This determines a point (in fact at least two points) x ∈ X at
which µ is not identifiable. Hence, the bound s ≥ dim ∆(X ) + 1 = 3 of the answer to Question 9 is optimal.

There can be special projections with s < dim ∆(X ) + 1 taking X injectively to Cs, even if generic
projections are not injective. For instance, in the case of the twisted cubic, the projection (x1, x2, x3) 7→ x1
maps X injectively to C1. ♦

The precise meaning of generic is given in terms of open subsets in the Zariski topology, as explained
in Section 4. Over the complex numbers, these open sets are dense, with respect to the classic Euclidean
topology, in their Zariski closure. As a consequence, requiring a property to hold generically is usually a
strong condition. It is therefore natural to wonder whether one can relax the genericity condition, requiring
that a property holds on a set containing a Euclidean open subset. Over the real numbers, it is often possible
to determine Euclidean open subsets of linear projections µ̂ : Rn → Rs which are identifiable (over the reals)
even though the corresponding extension µ̂C : Cn → Cs is not. However, the existence of such open sets
of projections depends on the geometry of the model, and not only on its dimension, as pointed out in the
next question.

Question 10. Under what conditions does there exist a Euclidean open set of everywhere identifiable linear
maps µ : X → Rs? ?

Answer 10. There is an open set of everywhere identifiable linear maps if we have s ≥ 1 + dim ∆(X ). In
particular, this holds if s ≥ 2d+ 1. ✓

We provide an example of a model X for which there exists an open set of identifiable linear maps
µ : X → Rs for s < 1 + dim(∆(X )).
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Example 11 (The twisted cubic reconsidered). Let X be the twisted cubic from Example 10. Its set of
differences over the reals is

∆(X ) = {(t1 − t2, t
2
1 − t22, t

3
1 − t32) : t1, t2 ∈ R}.

In particular, if (x1, x2, x3) ∈ ∆(X ), then x1 and x3 have the same sign. As a consequence, any linear map
µ̂ : R3 → R2 whose kernel is the line ker µ̂ = ⟨(1, α, β)⟩ for some β < 0 satisfies ker(µ̂) ∩ ∆(X ) = 0, so that
µ is everywhere identifiable. This is a Euclidean open set of linear maps. ♦

Finally, we return to the case of coordinate projections from data completion applications. We stress
that it is not possible in general to guarantee identifiability results in this special setting. This is highlighted
in the following example.

Example 12. Let X be an algebraic variety defined implicitly as the vanishing locus of polynomials
f1, . . . , fk and assume X does not lie in a coordinate hyperplane. Suppose that each variable xi appears in
f1, . . . , fk only with even powers. In this case, if (ξ1, . . . , ξn) is a point of X , then any point of the form
(±ξ1, . . . ,±ξn) belongs to X as well. Consequently, if µ̂ : kn → ks is a coordinate projection different from
the identity, then µ = µ̂|X is not generically identifiable. For instance, if x = (ξ1, . . . , ξn) ∈ X is a generic
point, and µ̂ is the map that projects away the last coordinate, then µ−1(µ(x)) = {(ξ1, . . . , ξn−1,±ξn)}.
Note that ξn ̸= 0 because of the genericity condition and the fact X does not lie in a coordinate hyperplane.

A minimal example is the following:

X =
{

(x1, x2, x3) ∈ k3 : x21 + x22 + x23 − 1 = x21x
2
2 − x43 − 1 = 0

}
.

In this case, the variety X ⊆ k3 has dimension 1 and does not admit a generically identifiable coordinate
projection. On the other hand, a generic projection to k2 is generically identifiable. ♦

A consequence of Example 12 is that in general the only everywhere identifiable coordinate projection
is the identity map. This also follows from the analogous result on recoverability, as seen in Example 6.

Example 13 (The rational normal curve). The 1-dimensional rational normal curve is again an interesting
example: X = {(t, t2, t3, . . . , tn) : t ∈ k} ⊂ kn. The answer to Question 9 ensures there is an identifiable
projection to 1 + dim ∆(X ) = 3 coordinates. For example, projecting to the first three coordinates (t, t2, t3)
enables us to recover t (from the first element alone). In fact, this shows once more that the answer to
Question 9 is not optimal: a projection to the first coordinate of kn is already everywhere identifiable.

On the other hand, there are several generically nonidentifiable coordinate projections, even using much
more than 1 + dim ∆(X ) = 3 coordinates. Consider for example projecting to any subset of 3 ≤ s ≤ n

2
even coordinates. This leaves at least two possibilities for the reconstruction: If (t0, t

2
0, t

3
0, . . . , t

n
0 ) ∈ X is one

solution, then necessarily (−t0, t20,−t30, . . . , (−t0)n) is another solution. ♦

We conclude the discussion of identifiability emphasizing the intricacy of the questions in this section,
even in the mathematically friendlier setting of complex projective geometry. For example, it is an open
problem whether a d-dimensional complex projective variety may be algebraically injected to a projective
space of dimension 2d using arbitrary algebraic maps; see [84–86] and [87, Question 3]. A weaker negative
result is known: there are algebraic curves X in a complex 3-dimensional projective space that cannot be
injectively projected to the projective plane [88]. In our affine setting this corresponds to an algebraic surface
(d = 2), inside a 4-dimensional space (n = 4) so that for any projection to a plane (s = 2) there exist two
lines inside the surface that are mapped to the same line.

Finally, we point out that the structure described in Example 12 is very special and in most cases we
expect a generically identifiable coordinate projection kn → ks to exist for s = d + 1, as in the case of
generic projections. We sketch an argument we believe could be formalized to guarantee the existence of
such projection. Recall that from the answer to Question 4, there exists a generically recoverable coordinate
projection to d coordinates. Let µ : X → kd be such projection. A classic construction in algebraic geometry
is the second fiber power of X over µ, denoted X µ[2]. Informally, this is an algebraic variety containing pairs
of points having the same image under µ. The variety X µ[2] is reducible; its irreducible components of
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highest dimension have dimension d and there are at least two of them. One can prove that if the number
of d-dimensional components of X µ[2] is exactly two, then there is a coordinate projection µ′ : X → kd+1

which is generically identifiable; in fact, µ′ factors µ, in the sense that µ projects away all the coordinates
projected away by µ′ plus an additional one.

3.4. Continuity

The answers from the previous subsections give several conditions under which the measurement map is
locally or globally injective. In particular, under these conditions, the measurement map admits a (local)
inverse. The final requirement for an inverse problem to be well posed is that this (local) inverse map is at
least continuous. In fact, much stronger properties hold.

First, we recall terminology to succinctly ask the questions. We refer to [89, 90] for the theory and
definitions. A map between manifolds is called smooth if it can be differentiated arbitrarily many times;
that is, if it is C∞ on the local charts defining the manifolds. Smooth maps are continuous and locally
Lipschitz continuous.

Let M be a smooth k-manifold, and let µ : M → ks be a map. The map µ is a global diffeomorphism
onto its image if µ(M) is a smooth manifold, µ is smooth and injective, and µ−1 is smooth [90]. The map
µ is a local diffeomorphism onto its image at x ∈ M if there is a Euclidean open neighborhood Ux ⊆ M of
x such that the restriction µ|Ux

is a global diffeomorphism onto its image and µ(Ux) is open in µ(M) [90].
We investigate which measurement maps µ are local or global diffeomorphisms.

Question 11. Under what conditions does a generic linear map µ : X → ks have the property that there
exists a Zariski open manifold X ′ ⊆ X such that µ(X ′) is a smoothly embedded submanifold of ks and µ|X ′

is a local diffeomorphism onto its image at every point x ∈ X ′? ?

Answer 11. There exists such a manifold X ′ if s ≥ d. Moreover, the bound is sharp, independently of the
variety X . ✓

Question 12. Under what conditions does a generic linear map µ : X → ks have the property that there
exists a Zariski open manifold X ′ ⊂ X such that µ(X ′) is a smoothly embedded submanifold of ks and µ|X ′

is a global diffeomorphism onto its image? ?

Answer 12. There exists such a manifold X ′ if s ≥ d + 1. If X is not an affine space, and if k = C, the
bound is sharp independently of the variety X . ✓

The fact that in both these questions µ(X ′) is a smoothly embedded submanifold of ks is important
when solving inverse problems using methods from Riemannian optimization [91].

The proofs to the answers of Questions 11 and 12 reveal the structure of X ′. In the setting of Question 11,
the manifold X ′ has the property that X \ X ′ contains the singular locus of X , the locus of points x ∈ X
with (TxX ) ∩ ker(µ) ̸= 0, and the preimage of the singular locus of µ(X ). In the setting of Question 12,
X \ X ′ additionally contains the set of points x ∈ X on which µ is not injective.

Example 14 (Rank-1 matrix recovery, continued II). Let X be the variety of 2 × 3 matrices of rank one,
parameterized as in (1). In Example 8, we proved that the coordinate projection µ̃ defined by µ̃ ([ x1 x2 x3

x4 x5 x6
]) =

(x1, x2, x3, x4) is generically recoverable. Let X ′ = X ∩ {x1 ̸= 0}, which is Zariski open in X . Then, a point
y = (x1, . . . , x4) ∈ µ(X ) ⊆ k4 has a unique preimage

x = (µ|X ′)−1(x1, . . . , x4) =

[
x1 x2 x3
x4 x4x

−1
1 x2 x4x

−1
1 x3

]
.

This shows that µ|X ′ is smooth and injective. The argument of Example 8 shows that dxµ̃ : TxX → k4 is a
linear isomorphism for every x ∈ X ′. Consequently, the image µ̃(X ′) is an immersed submanifold of k4 by
[90, Proposition 5.18] and µ̃|X ′ is a global diffeomorphism between X ′ and µ̃(X ′).

Note that even though s = 4 = dimX , this example does not contradict the sharpness result in the
answer to Question 12 because the considered coordinate projection is not generic. ♦
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The inverse problem (IP) is well posed for generic x ∈ X and generic choice of linear projection µ : X → ks
with s ≥ d+1 because of the answer to Question 12. We argued in Section 2 that computing a global Lipschitz
constant for µ−1 is a difficult problem. Instead we proposed to compute the smallest local Lipschitz constant,
that is, the condition number of µ−1.

Question 13. How does one compute the condition number of the inverse problem (IP) at a smooth point
x ∈ X? ?

Answer 13. The condition number with respect to the Euclidean metrics on both domain and codomain
at a smooth point x ∈ X is κ(x) = 1

σd(dxµ)
, where σd(dxµ) is the dth largest singular value of the derivative

of µ : X → ks at x.
More concretely, let M ∈ ks×n be the matrix representing the linear map µ̂ : kn → ks in the ambient

space. Let Q ∈ kn×d be a matrix whose columns form an orthonormal basis of the tangent space TxX . Then
κ(x) = 1

σd(MQ) . ✓

Example 15 (Rank-1 matrix recovery, continued III). Let X be the variety 2×3 matrices of rank one. The
tangent space of X = im(ϕ) at a point X = ϕ(t) is spanned by the columns of the Jacobian matrix of ϕ,

J = dtϕ =

∂1 ∂2 ∂3 ∂4 ∂5


ϕ1,1 t3 0 t1 0 0
ϕ1,2 t4 0 0 t1 0
ϕ1,3 t5 0 0 0 t1
ϕ2,1 0 t3 t2 0 0
ϕ2,2 0 t4 0 t2 0
ϕ2,3 0 t5 0 0 t2

.

Using, for example, a rank-revealing QR-decomposition or the singular value decomposition of J , one de-
termines a matrix Q whose columns form an orthonormal basis of the column span of J . This is the matrix
Q required in Answer 13.

For instance, consider X = [ 1 1 1
2 2 2 ], and t = (1, 2, 1, 1, 1) ∈ ϕ−1(X). Then, the matrix Q can be computed

numerically via a (truncated) singular value decomposition of J :

Q ≈


−0.258199 −0.329793 −0.156748 0.516398
−0.258199 0.300644 −0.207235 0.516398
−0.258199 0.029148 0.363983 0.516398
−0.516398 −0.659586 −0.313497 −0.258199
−0.516398 0.601289 −0.414469 −0.258199
−0.516398 0.058297 0.727966 −0.258199

 .

Let M be the matrix representing the coordinate projection µ̃ of Example 7. Then, the condition number
of the inverse problem at the (locally unique) solution X is σ4(MQ)−1 ≈ 3.8730.

On the other hand, the coordinate projection µ̂ of Example 7 is not recoverable, or equivalently not
locally identifiable. The fibers of µ̂ have positive dimension, so that from (CN) the condition number is
infinite. This can be verified numerically. Composing Q with the matrix of representing µ̂, we obtain a
matrix whose singular values, rounded to two significant digits, are 1.0, 1.0, 0.82, and 6.2 · 10−17. The
numerically computed condition number is thus 1.6 · 1016. ♦

The last question assumed that we are given as input a data point y ∈ µ(X ). If the data point is y ̸∈ µ(X )
and if one seeks to solve the least squares minimization problem minx∈X

1
2∥µ(x) − y∥2, then the condition

number of this alternative problem is determined both by the condition number of µ−1 and the curvature of
µ(X ) at µ(x); see [92] for more precise statements. For the case where X is the variety of low-rank matrices,
the condition number of the associated least-squares problem was worked out in detail in [93].
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4. The main technical tools: Classic algebraic geometry

In this section, we provide the relevant definitions and preliminaries from classic algebraic geometry, in
the real and complex settings. We use them in Section 5 to prove the correctness of the answers given in
Section 3. We refer to [45, 46] for a general introduction and to [47, 94] for a more precise account.

Let k = R or k = C. An algebraic variety is a subset X ⊆ kn defined as the vanishing set of a set of
polynomials f1, . . . , fk in n variables x1, . . . , xn with coefficients in k. The ideal

Ik(X ) := {f ∈ k[x1, . . . , xn] : f(x) = 0 for all x ∈ X}

is the set of polynomials vanishing on X . Hilbert’s basis theorem states that Ik(X ) is finitely generated, say
Ik(X ) = ⟨g1, . . . , gr⟩. Depending on whether k = R or k = C, we say that X is a real or complex algebraic
variety, and that Ik(X ) is its real or complex ideal.

A variety X is irreducible if it cannot be expressed as the union of two proper subvarieties. Every variety
X is an irredundant finite union of irreducible subvarieties, called irreducible components of X . For an
arbitrary subset X ⊆ kn, we say that X is irreducible if its Zariski closure X ⊆ kn (see below) is irreducible.

A semi-algebraic set in Rn is a finite union of subsets of algebraic varieties satisfying a set of (strict)
polynomial inequalities. In particular, every algebraic variety is a semi-algebraic set whose set of defining
inequalities is empty.

4.1. Topology on algebraic varieties

The Euclidean topology of kn induces a topology on every subset S of kn. We refer to this subspace
topology on S as the Euclidean topology on S. The set of subvarieties of a variety X is closed under taking
arbitrary intersections and finite unions; hence, algebraic subvarieties of X define the closed subsets of a
topology on X . This is the Zariski topology on X .

The Zariski topology is coarser than the Euclidean topology: if X is irreducible and U is a Zariski open
subset of X , then U is open and dense in X with respect to the Euclidean topology. The subset X \ U is a
proper subvariety of X and it has measure zero with respect to the measure on X induced by the Lebesgue
measure on kn. Hence, a Zariski open subset U also has full measure on X .

Let X be a semi-algebraic set in Rn and let X be its closure in the Zariski topology of Rn. Let X ◦ be
the Euclidean interior of X in X . Then X ◦ is semi-algebraic as well and X ◦ = X [67, Proposition 2.2.2].

It is common in algebraic geometry, as we have done in the foregoing sections, to state results generically
or in terms of generic points.

Definition 4.1 (Genericity). Let X ⊆ kn be an irreducible algebraic variety. A property P holds generically
on X if it holds for all points in a Zariski open subset U ⊆ X . The points of U are called generic points
(with respect to the property P). The set ΣP = X \ U is a proper subvariety of X , called the discriminant
of the property P.

The discriminant ΣP of a property can be tedious to describe explicitly. Nevertheless, if a property P
holds generically, then the discriminant ΣP exists and it has Lebesgue measure zero.

The space of linear maps kn → ks is a vector space isomorphic to kns. Similarly, the space of polynomial
maps of a fixed degree pattern forms a vector space. Thus, one can state results in terms of generic linear
maps, or generic polynomial maps, meaning that the results hold for generic points in the corresponding
vector space.

4.2. Dimension and tangent space of an algebraic variety

Let X ⊆ kn be an irreducible variety with ideal Ik(X ) = ⟨g1, . . . , gr⟩. Then, there is a Zariski open
subset X ′ ⊆ X such that the rank of the Jacobian matrix of g = (g1, . . . , gr) is constant on X ′. This set X ′

is called the set of smooth (or non-singular) points of X . The dimension of X is defined as

dimX = n− rk (dxg) for any x ∈ X ′.
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If k = R (respectively, k = C), then X ′ is a smooth real (respectively, complex) embedded submanifold of
kn and its dimension as a real (respectively, complex) manifold is dimX .

For x ∈ X ′, the linear subspace
TxX = ker(dxg)

of kn is the tangent space to X at x. Note that dimTxX = dimX .

4.3. Degree of a variety

Let X ⊂ Cn be a d-dimensional algebraic variety. A generic affine subspace of dimension n−d intersects
X in finitely many points by Bertini’s Theorem (see, e.g., [46, Section 18] or [95, Theorem 0.5]). This
number of points does not depend on the chosen subspace and is called the degree of X .

The degree of a variety is a property of its embedding in Cn. An immediate consequence of Bezout’s
Theorem [96, Theorem 7.7] is the following, describing the degree of the image of a variety under the Veronese
embedding νr from (3).

Theorem 4.2. Let X ⊂ Cn be an algebraic variety of dimension d and degree δ. Then, νr(X ) is an algebraic
variety of dimension d and degree rd · δ.

The only irreducible varieties of degree one are affine subspaces.

4.4. Complexification of real algebraic varieties

Every real variety defines a complex variety via a process called complexification. Let X ⊂ Rn be a real
algebraic variety. The complexification XC of X is

XC := {x ∈ Cn : f(x) = 0 for all f ∈ IR(X )}.

There are classic results relating the algebraic and geometric properties of a real algebraic variety to the
ones of its complexification.

The following is a rephrasing of [97, Lemmata 6 and 8]:

Theorem 4.3. Let X ⊆ Rn be a real algebraic variety and let XC be its complexification. Regard Rn as a
(real) subspace of Cn. Then,

1. XC is the closure in the (complex) Zariski topology of X ;

2. the set of real polynomials in IC(XC) is IR(X );

3. the real dimension of X equals the complex dimension of XC.

Theorem 4.3 implies that a generic point in a real algebraic variety X is also a generic point of the
complexification XC. More precisely, let X be a real variety, and let U ⊆ XC be the Zariski open subset
on which a certain property P holds. Then U ∩ X is non-empty and Zariski open in X . In particular,
Theorem 4.3 guarantees that results in complex algebraic geometry that hold for generic elements of a
complex algebraic variety can be interpreted in the real setting.

4.5. Maps between varieties

For two varieties X ⊆ kℓ and Y ⊆ kn, let

ϕ : X → Y

be a map and write ϕ(t) = (ϕ1(t), . . . , ϕn(t)). We say that ϕ is a regular map or a morphism of varieties
if, for every j = 1, . . . , n, ϕj is (the restriction to X of) a polynomial in ℓ variables t1, . . . , tℓ, which can be
regarded as coordinates on kℓ.

The image of a morphism of varieties is not necessarily a variety. However, the following fundamental
results characterize images of algebraic varieties in the complex and in the real case respectively.
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Theorem 4.4 (Chevalley’s Theorem). Let X ⊆ Cℓ be a variety and let ϕ : X → Cn be a morphism of
varieties. Then Y = ϕ(X ) is locally closed in the Zariski topology. Hence, Y contains a Zariski open subset
of its Zariski closure. Moreover, the closures of Y in the Zariski and the Euclidean topologies coincide.

Proof. We refer to [98, Theorem 4.19].

In the real setting, the analog result is the Tarski–Seidenberg Theorem.

Theorem 4.5 (Tarski–Seidenberg Theorem). Let X ⊆ Rℓ be a semi-algebraic set and let ϕ : X → Rn be
a morphism of varieties, where X denotes the Zariski closure of X in Rℓ. Then ϕ(X ) is a semi-algebraic
subset of Rn.

Proof. We refer to [67, Section 2.2].

In the complex case, the dimension of the (Zariski closure of the) image of an algebraic variety is controlled
by the following result.

Theorem 4.6 (Dimension of the fibers). Let X ,Y be complex irreducible varieties and let ϕ : X → Y be a
morphism such that ϕ(X ) is (Zariski) dense in Y. Then for every y ∈ ϕ(X ),

dimϕ−1(y) ≥ dimX − dimY,

and there is a Zariski open subset of Y for which equality holds.

Proof. The proof relies on rank conditions of the differential of the map ϕ. We refer to [46, Theorem 11.22]
and [99, Theorem 1.25] for a complete proof.

Given a morphism of varieties ϕ : kℓ → kn, we say that ϕ is a parameterization of im(ϕ) ⊆ kn. This
is the setting (ES). In this case, for every t ∈ kℓ, one has a Jacobian map dtϕ : kℓ → kn defined by the
differential of ϕ at t, that is

dtϕ : kℓ → kn, v 7→
[
∂

∂tj
ϕi(t)

]
i=1,...,n
j=1,...,ℓ

· v,

where ∂
∂tj
ϕi(t) denotes the partial derivative of the polynomial ϕi with respect to the variable tj , evaluated

at t. For r ≥ 0, the set V ϕ
r = {t ∈ kℓ : rk (dtϕ) ≤ r} is Zariski closed, and its defining equations are given

by the (r+ 1)× (r+ 1) minors of the Jacobian matrix, regarded as polynomials in the coordinates t1, . . . , tℓ
of kℓ. Let r0 = min{r : V ϕ

r = kℓ}. Then r0 is called the generic rank of ϕ and it is attained on the Zariski

open subset V ϕ
r0 \ V

ϕ
r0−1.

In this setting, we provide the following theorem.

Theorem 4.7. Let ϕ : kℓ → kn be an algebraic parameterization having generic rank r0. Let X = ϕ(kℓ) be
the closure in the Zariski topology of the image of ϕ. Then X is an algebraic variety of dimension r0.

Moreover, if x = ϕ(t) is a smooth point of X with t ∈ V ϕ
r0 , then TxX = im(dtϕ).

Proof. Restricting to smooth points of the image, for k = R, the last statement follows from the Global Rank
Theorem [90, Theorem 4.14 a]. As complex manifolds are in particular real manifolds the last statement
also holds for k = C.

The statement about the dimension of X holds for a smooth point x = ϕ(t) of X with t ∈ V ϕ
r0 because

dimX = dimTxX = dim im(dtϕ) = r0.
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Note that one can always choose generic points in the image of a parameterization like (ES). More
precisely, if ϕ : kℓ → kn is a polynomial parametrization of a subset of a variety X = im(ϕ), and P is a
property that holds generically on X , then the property P also holds almost everywhere on the model im(ϕ).
This allows us to study the generic properties of the model im(ϕ) through the closed algebraic variety X .

A special role is played by the Veronese embedding νr : kn → kN(n,r) where N(n, r) =
(
n+r
r

)
, which is

νr : kn → kN(n,r),

x 7→ (xα : α ∈ Nn, |α| ≤ r);
(3)

that is, the parameterization defined by all the monomials of degree at most r in the coordinates x =
(x1, . . . , xn) of kn. The properties of the Veronese embedding are summarized in the next immediate result.

Lemma 4.8. The map νr : kn → kN(n,r) is an embedding. That is, νr is injective and its differential is
injective at every point x ∈ kn. Moreover, if f : kn → k is a polynomial of degree r, then there exists a
linear map Lf : kN(n,r) → k such that we have f = Lf ◦ νr.

Since polynomial maps are differentiable, a geometric version of the implicit function theorem holds.

Theorem 4.9. Let X ,Y be irreducible varieties, with dimX = d and dimY = m. Let ϕ : X → Y be a
morphism of varieties with Y = ϕ(X ). Then, there exist Zariski open subsets UX ⊆ X and UY ⊆ Y such
that UX and UY are smooth manifolds, ϕ|UX : UX → UY is a smooth map and for every y ∈ UY , the fiber
ϕ−1(y) is a smooth manifold of dimension d−m.

Proof. Let U ′
X ⊂ X be the subset of smooth points on which ϕ is regular; that is,

U ′
X = {x ∈ X : x is smooth in X and rk (dxϕ) = m}.

By Sard’s Theorem [90, Theorem 6.8], U ′
X is non-empty and it is Zariski open because it is the intersection

of two Zariski open subsets. Let UY be the subset of ϕ(U ′
X ) consisting of smooth points of Y. Then UY is

Zariski open in Y. Let UX = ϕ−1(UY). Since ϕ is a regular map, UX is Zariski open in X .
The restriction ϕ|UX : UX → UY is a smooth map of manifolds, and for every x ∈ UX , rk (dxϕ) = m. By

[90, Theorem 5.22], we conclude that the fibers of ϕ|UX are smooth manifolds of dimension d−m.

A consequence of Theorem 4.9 is that the rank of the differential at a point controls the local injectivity
of the map. We have the following result.

Corollary 4.10. Let X ⊆ kn be an irreducible variety. Let µ̂ : kn → ks be a morphism of varieties and
let x ∈ X . If ker(dxµ̂) ∩ TxX = 0, then there exists a Euclidean open neighborhood Ux ⊆ X of x such that
µ̂|Ux

: Ux → ks is a diffeomorphism onto its image.

Proof. Let ψ : X → ks be the restriction of µ̂ to X . Then the kernel of its derivative is ker(dxψ) =
ker(dxµ̂) ∩ TxX = 0, so that rk (dxψ) = dimX . This implies x is a smooth point of X . Hence, an open
neighborhood of x is a k-manifold. Since rk (dxψ) = dimX , the assumptions of the inverse function theorem
for manifolds are satisfied. For k = R, the claim follows from [90, Theorem 4.5].

For k = C, the proof of [90, Theorem 4.5] applies by replacing “smooth manifold” with “complex
manifold” [100, Chapter IV], “smooth map” with “holomorphic function” [100, Chapter I], “diffeomorphism”
with “biholomorphism” [100, Chapter I], and using the inverse function theorem for holomorphic functions
[100, Chapter I, Theorem 7.5] instead of the one for reals.

Finally, we need the theorem of birationality to a hypersurface. It is a strong result on generic identifia-
bility that does not depend on the geometry of the variety.

Theorem 4.11 (Birationality to a hypersurface). Let X ⊆ Cn be a d-dimensional variety. Let µ̂ : Cn →
Cd+1 be a generic projection. Then µ = µ̂|X is generically one-to-one, i.e., a generic point of the image of
µ has a unique preimage in X .

Proof. We refer to [99, Theorem 1.8 and Remark 1.2].
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4.6. The Noether Normalization Lemma

The main results about the required number of measurements s for recoverability are consequences of
the following fundamental theorem in commutative algebra.

Theorem 4.12 (Noether’s Normalization Lemma). Let k be an infinite field and X ⊂ kn be a variety of
dimension d and degree δ. Let µ̂ : kn → kd be a generic affine linear projection and let µ = µ̂|X be its
restriction to X . Then µ : X → kd is a finite map. In particular, every fiber of µ is finite.

Proof. The proof of this theorem is classic. We provide a sketch of the proof following [101, Chapter 10].
The usual algebraic formulation of Noether’s normalization lemma is as follows. Let R be a finitely

generated algebra over k with generators x1, . . . , xn. Then, there exists an integer d and algebraically
independent elements r1, . . . , rd ∈ R such that R is a finite module over k[r1, . . . , rd]. Moreover, r1, . . . , rd
can be chosen to be linear combinations of the generators x1, . . . , xn. This statement is proved in [101,
Proposition 10.5].

The geometric statement is obtained by taking the affine coordinate ring of X , i.e., R = k[X ] =
k[kn]/I(X ), which is finitely generated with generators x1, . . . , xn, the (equivalence classes modulo I(X )
of the) coordinates of kn. The algebraic statement guarantees that there exist linear combinations r1, . . . , rd
of the xj ’s such that k[X ] is a finitely generated module over k[r1, . . . , rd]. In fact, the proof [101, Proposition
10.5] and [101, Lemma 10.3] show that a generic choice of linear combinations satisfies the statement. The
inclusion map k[r1, . . . , rd] → R defines an algebraic map µ : X → kd as k[r1, . . . , rd] can be regarded as the
coordinate ring of the affine space kd. The fact that the rj ’s are linear combinations of the xi’s guarantees
that µ is the restriction of a linear map µ̂ : kn → kd.

Noether’s Normalization Lemma is sharp in the following sense:

1. For any affine linear projection µ̂ : kn → kd−1, the fiber of µ = µ̂|X over y ∈ kd−1 may be infinite.
Further, if k is algebraically closed, then the generic fiber of µ is infinite.

2. It is possible that special projections µ̂ : kn → kd map X to a proper subvariety of kd. In this case,
the fiber of µ = µ̂|X at a generic point of kd is empty and any fiber over the image of µ is infinite.

An example when case (2) holds is a projection of any product of (positive dimensional) varieties X1 ×
X2 ⊂ kn1 × kn2 = kn1+n2 to kn1 .

Remark 4.13. The finiteness condition of the map µ : X → kd in the statement of the Noether normaliza-
tion lemma has stronger implications than the fact that the fibers are finite. In fact, Theorem 4.12 implies
that for every coordinate xj of kn, there exists a fixed univariate polynomial Pj ∈ k[y1, . . . , yd][xj ], (i.e., the
coefficients of Pj are polynomials on kd depending on X and on µ) with the property that for every y ∈ kd,
the jth coordinates of the points of µ−1(y) are the roots of Pj(y,−) ∈ k[xj ]. Once we find the polynomials
Pj , the jth coordinates of the points in the fiber of µ thus vary like the roots of Pj as y ∈ kd varies. This
provides an additional viewpoint on the continuity of the solutions of the inverse problem (IP), which we
investigated in Section 3.4.

5. Proofs for the Q&A section

In this section, we give complete proofs of the correctness of the answers provided in Section 3. The
proofs in this section exploit the fact that a generic point in X is a generic point in the complexification
XC of X , and that d = dimX equals the complex dimension of XC (this is true irrespective of X being real
or complex). For models given in implicit form (IS) this is implied by Theorem 4.3. For models in explicit
form (ES) we can use Theorem 4.7.
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5.1. The answer to Question 1

The restatement in terms of a system of polynomial equations is straightforward. The fact that any
system of polynomial equations over C has a solution if and only if the ideal generated by the polynomials
does not contain 1 is one of the forms of Hilbert’s Nullstellensatz [47, Corollary 1.6]. Similarly, the statement
over the reals can be found in [67, Corollary 4.1.8]. The fact that checking if an ideal contains 1 may be
done using Gröbner bases follows from the definition of Gröbner basis.

5.2. The answer to Question 2

If s ≥ d, Theorem 4.12 guarantees that a generic projection has finite fibers. The inequality is sharp,
both in the real and in the complex case. Indeed, suppose s ≤ d− 1 and distinguish two cases.

First, if k = C, by Theorem 4.7, there exists a Zariski open subset U ⊂ µ(X ) such that for any y ∈ U we
have dimµ−1(µ(y))+dimµ(X ) = dimX . In particular, since dimµ(X ) ≤ s < d, we have dimµ−1(µ(x)) > 0.
This implies that the generic fibers are infinite.

Second, if k = R, the map µ : X → Rs is a morphism of varieties. Therefore, by Theorem 4.9, its generic
fibers contain manifolds of dimension equal to dimX − dim(im(µ)) ≥ dimX − s. In particular, if s < d,
generic fibers are infinite.

5.3. The answer to Question 3

By Lemma 4.8 and Theorem 4.2, this reduces to Question 2.

5.4. The answer to Question 4

The condition s ≥ d is necessary as in the answer to Question 2. We prove that a coordinate projection
exists for s ≥ d.

Assume that s = d. Let x ∈ X be a smooth point. Let v1, . . . , vd be a spanning set for TxX , the tangent
space to X at x. Let M be the matrix whose rows are the vectors vi. Hence, M is a d × n matrix with
rk (M) = d. In particular, M contains a d× d submatrix N with rk (N) = d. This submatrix is obtained by
selecting d columns of M , or, equivalently, d coordinates in kn. We claim that the projection µ̂ to these d
coordinates is generically recoverable when restricted to X .

Since µ̂ is linear, the differential dxµ̂ coincides with µ̂ itself. Now, its image im(dxµ̂ : kn → kd) restricted
to TxX is the column span of the matrix N , which coincides with the whole kd. Thus, dxµ̂ is of full rank
and TxX ∩ ker(dxµ̂) = 0. By Corollary 4.10, there is a Euclidean open neighborhood Ũ of x ∈ X such that
µ = µ̂|X is a diffeomorphism of Ũ onto its image.

We distinguish two subvarieties S1,S2 of X . Let S1 be the variety of singular points of X , which is a
proper subvariety of X . Let S2 be the set consisting of the points x ∈ X such that TxX ∩ker(dxµ̂) ̸= 0. This
is a closed condition. Since Ũ ⊆ X \S2, we deduce that S2 is a proper subvariety of X . Let U = X \(S1∪S2),
which is Zariski open in X .

We can conclude that the fiber over every point y ∈ kd with y ∈ µ(U) is finite. Indeed, suppose that it has
positive dimension. Then there exists an x ∈ µ−1(y) that is smooth, TxX∩ker(dxµ̂) = 0, and every Euclidean
neighborhood of x contains infinitely many points of µ−1(y). But this contradicts Corollary 4.10.

Remark 5.1. We note that a central point of the previous proof is a simple fact from linear algebra, that if
we have a full rank r rectangular matrix, then we can choose a square submatrix of rank r. For a matroidal
perspective on this proof we refer to [22, 102].

5.5. The answer to Question 5

In the implicit setting (IS) our model is given by X = {x ∈ kn : f1(x) = · · · = fk(x) = 0}. Let x ∈ X be
a point satisfying the condition described in the answer. We note that this is an open condition, i.e., if it
holds for some x, then there is a Zariski open set U ⊂ X such that the condition holds for all x ∈ U .

Let us consider the Zariski open set X sm ⊂ X of smooth points of X. Taking x ∈ U ∩ X sm we see that
ker(dxµ)∩ker(dxf) = 0 implies that the restriction of dxµ to TxX is injective. By Corollary 4.10, we deduce
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that µ is injective in a Euclidean neighborhood of x. The same argument as in the answer to Question 4
shows that µ is generically recoverable.

In the explicit setting (ES), let X = im(ϕ) where ϕ : kℓ → kn is a polynomial parameterization. The map
µ ◦ϕ parameterizes the image µ(X ). If t∗ ∈ kℓ is a point with rk (dt∗(µ ◦ϕ)) = d, then rk

(
dt(µ ◦ϕ)

)
≥ d for

generic t ∈ kℓ by semicontinuity. By Theorem 4.7, we obtain dimµ(X ) ≥ d. Since dimX = d, µ : X → ks
maps X onto a (possibly semi-algebraic) set of the same dimension. By Theorem 4.9, the generic fiber of µ
is 0-dimensional, so that µ is generically recoverable.

5.6. The answer to Question 6

The answer to Question 5 entails that the coordinate projection should satisfy the condition that the

differential of µ ◦ ϕ has rank d at some point t ∈ kℓ. The matrix
[

∂ϕip
∂tj

]
p=1,...,s
j=1,...,ℓ

is precisely the matrix

representation of this differential.

5.7. The answer to Question 7

For any field, if X is an affine space then a generic projection to kd is identifiable everywhere.
Consider the case k = C. For s ≥ d + 1 the answer follows from Theorem 4.11. Assume now that a

generic projection µ̂ from Cn to Cd is generically identifiable. Let µ = µ̂|X . If dimµ(X ) < d then, as in the
proof for Question 2, the generic fibers would be of positive dimension. Hence, we may assume that µ(X ) is
dense in Cd by Theorem 4.4. The kernel of µ̂ is a generic linear subspace in Cn ⊃ X . Hence, the fiber of µ̂
over a generic point of µ(X ) is a generic affine subspace of Cn of codimension d. Thus, it must intersect X
in δ distinct points, where δ is the degree of X . Since µ is generically identifiable, this means that X must
have degree one, i.e., it is an affine subspace (see the discussion at the end of Section 4.3).

For k = R and s ≥ d + 1 we may take the complexification of the variety X and see that a generic
complex, hence, a fortiori real, fiber is unique. To see that s = d measurements do not suffice, we may take
X to be a sphere. Generic points in the image µ(X ) of a generic projection of the sphere have 2 elements in
the preimage.

If s < d, as in the proof for Question 2, generic fibers have positive dimension.

5.8. The answer to Question 8

As in the proof for the answer to Question 3 we conclude by applying Lemma 4.8.
We note that for d > 0 and p > 1 the Veronese map strictly increases the degree, thus we may exclude

the case of the affine subspace in Question 7.

5.9. The answer to Question 9

Let µ̂ : kn → ks be the linear map that restricts to µ on X . For distinct x1, x2 ∈ X we have that
µ̂(x1) = µ̂(x2) is equivalent to

µ̂(x1 − x2) = 0 ⇔ ∃p ∈ ∆(X ) \ {0} : µ̂(p) = 0 ⇔ ker(µ̂) ∩ ∆(X ) ̸= 0.

Thus, the identifiability property depends only on the kernel of µ̂. The kernel of a generic µ̂ is a generic
linear subspace of codimension s. A generic linear subspace of codimension s intersects ∆(X ) only in zero
if s > dim ∆(X ) (cf. Section 4.3), which proves the first equality in the answer. As ∆(X ) may be realized
as the image of X × X we must necessarily have the inequality dim ∆(X ) ≤ 2d.

5.10. The answer to Question 10

Since Zariski open subsets are also Euclidean open, the answer to Question 9 concludes the proof.
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5.11. The answer to Question 11
If s < d, then the answer to Question 2 shows that µ cannot be a local diffeomorphism, because it is not

recoverable generically.
Let s ≥ d. We denote the set of singular points in µ(X ) by S, so that µ(X ) \ S is a smooth embedded

submanifold of ks of dimension equal to the dimension of µ(X ).
The preimage µ−1(S) ∩X is a proper subvariety of X . As in the answer to Question 4, we consider two

additional subvarieties of X . The first S1 is the set of singular points, which is a proper subvariety. The
second one S2 is the set of points x ∈ X such that (TxX )∩ ker(dxµ̂) ̸= 0. Since dim ker(µ̂) = n− s ≤ n− d,
the variety S2 is a proper subvariety. Then, we define X ′ := X \ (µ−1(S) ∪ S1 ∪ S2). This is a Zariski open
subset of X contained in the smooth locus of X . Hence, X ′ is a smooth embedded submanifold of ks. By
construction, µ(S1) ∪ µ(S2) is of lower dimension in µ(X ). Therefore, it is also of lower dimension in the
manifold µ(X ) \ S. This implies that µ(X ′) is an open subset of a smooth embedded submanifold of ks,
hence it is itself a smooth embedded submanifold of ks.

The derivative dx(µ|X ′) is an isomorphism of the tangent spaces TxX ′ and Tµ(x)µ(X ′). By the inverse
function theorem for manifolds, µ|X ′ is a local diffeomorphism onto its image.

Remark 5.2. Note, however, in general, for s = d there will be no Zariski open neighbourhoods that would
give isomorphic algebraic varieties. This means that the inverse map will be analytic but not algebraic.

5.12. The answer to Question 12
For s ≥ d + 1, the answer to Question 7 implies that µ is identifiable for generic x ∈ X . Let S,S1,S2

be as in the answer to Question 11 and let S3 ⊂ X be subvariety of points where µ is not identifiable. Let
X ′ := X \ (µ−1(S) ∪ S1 ∪ S2 ∪ S3). As in the answer to Question 11 we have that X ′ and µ(X ′) are smooth
embedded submanifolds of ks and that µ|X ′ is a local diffeomorphism. Since µ|X ′ is also injective, it is a
global diffeomorphism.

It remains to prove that if k = C, s = d and X is not an affine space then we do not have a global
diffeomorphism. This follows from the answer to Question 7.

5.13. The answer to Question 13
Recall the definitions of the singular locus S1 ⊂ X and the set of points S2 ⊂ X for which (TxX ) ∩

ker(dxµ̂) ̸= 0 from the answer to Question 11. The smooth locus is X sm := X\S1. We also set X ′ := X sm\S2.
As in the answer to Question 11, both X sm and X ′ are Zariski open submanifolds of X . We show the asserted
characterization of the condition number for smooth points x ∈ X sm. We distinguish two cases.

The first case is when x ∈ X ′. In this case we have (TxX ) ∩ ker(dxµ̂) = 0, which implies that the
derivative dxµ is of full rank. This means that µ|X ′ : X ′ → ks is an immersion. By [90, Theorem 4.25] (for
k = C the same argument works), there exists an open neighbourhood Vx ⊂ X ′ of x such that µ(Vx) is an
embedded submanifold of ks [90, Section 5]. Hence, there exists a local inverse map µ−1

x : µ(Vx) → Vx. Let
y = µ(x). The condition number at x is given by (CN):

κ(x) = lim
ϵ→0

sup
y′∈µ(Vx),∥y−y′∥≤ϵ

∥µ−1
x (y) − µ−1

x (y′)∥
∥y − y′∥

,

where ∥ · ∥ is the Euclidean norm on both kn and ks. Since µ−1
x is smooth (holomorphic for k = C) and

µ(Vx) is an embedded manifold, we can use [57, Theorems 3 and 4] to obtain

κ(x) = max
u∈Tyµ(Vx),∥u∥=1

∥(dyµ
−1
x )u∥ = σ1(dyµ

−1
x ),

where σ1 denotes the largest singular value. Because of the inverse function theorem [90, Theorem 4.5] (or
its complex analogue), dyµ

−1
x = (dxµ)−1. Hence, we have κ(x) = 1

σd(dxµ)
because dimVx = dimµ(Vx) = d

by the answer to Question 11. The reformulation in terms of matrices is immediate.
The second case is when x ∈ X sm \ X ′ so that (TxX ) ∩ ker(dxµ) ̸= 0. Then, dxµ has a nontrivial

kernel, which implies that there is a smooth (holomorphic for k = C) curve γ(t) ⊂ X sm with γ(0) = x and
d
dtµ(γ(t))|t=0 = 0. We can bound the condition number as κ(x) ≥ limt→0

∥x−γ(t)∥
∥y−µ(γ(t))∥ = ∞. On the other

hand, (TxX ) ∩ ker dxµ ̸= 0 implies σd(dxµ) = 0. Therefore, κ(x) = 1
σd(dxµ)

also in this case.
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6. A numerical experiment

We confirm Theorem 1.1 experimentally in a few examples.5 We showcase numerical homotopy contin-
uation methods from HomotopyContinuation.jl [73] to accurately solve small algebraic compressed sensing
problem instances. Recall that homotopy methods are numerical techniques for computing all isolated solu-
tions of a system of polynomial equations. Additional experiments confirming Theorem 1.1 with alternative
techniques were independently conducted by Krämer [104].

The structure we consider is that of tensors with a low-rank tensor rank decomposition [25]. Specifically,
let T2 be the set of tensors in R4⊗R3⊗R2 ≃ R4×3×2 of rank bounded by 2. This set T2 can be parameterized
explicitly as in (ES) with

ϕ′(a′1, a
′
2, b

′
1, b

′
2, c

′
1, c

′
2) = a′1 ⊗ b′1 ⊗ c′1 + a′2 ⊗ b′2 ⊗ c′2

= [(a′1)i(b
′
1)j(c

′
1)k]4,3,2i,j,k=1 + [(a′2)i(b

′
2)j(c

′
2)k]4,3,2i,j,k=1,

where a′1, a
′
2 ∈ R4, b′1, b

′
2 ∈ R3, and c′1, c

′
2 ∈ R2.

We want to compute isolated solutions of the polynomial system in Theorem 1.1 with numerical homotopy
continuation methods to find alternative decompositions into rank-1 terms, depending on the measurement
map µ. This requires a parameterization ϕ from a Euclidean space of dimension d = dim T2 into T2. However,
it is known that this is not always possible. In general T2 needs to be covered with multiple charts Rd → T2.

The dimension of T2 is known to be d = 2(4 + 3 + 2 − 2) = 14 [105] but the domain of ϕ′ has dimension
2(4 + 3 + 2) = 18, so clearly ϕ′ overparameterizes T2. We restrict ourselves to parameterizing the Zariski
open subset X of T2 given by the image of

ϕ(a1, a2, b1, b2, c1, c2) =

[
a1
1

]
⊗

[
b1
1

]
⊗ c1 +

[
a2
1

]
⊗

[
b2
1

]
⊗ c2,

where now a1, a2 ∈ R3, b1, b2 ∈ R2, and c1, c2 ∈ R2. This X is the Zariski open subset of tensors of rank
bounded by 2 that have at least one decomposition where all vectors in the first and second factors R4 and
R3 are nonzero in the last element.

Given a measurement map µ̂ : R4×3×2 → Rs and a measurement y = µ(T ) of a rank-2 tensor T ∈ X , we
can construct the polynomial system from Theorem 1.1,

y − µ(ϕ(a1, a2, b1, b2, c1, c2)) = 0, (PS)

and solve for the variables a1, a2, b1, b2, c1, c2.
We investigate the interesting case of random coordinate projections, as the behavior for generic linear

projections is completely described in the Q&A section. The minimum number of measurements for generic
recoverability is s = d by Theorem 1.1. So let us start with this many measurements. We consider the
following incomplete 4 × 3 × 2 tensor of rank 2 (the fact that it has rank at most 2 will be implied by
Theorem 1.1 after we have solved the system (PS) and found a solution):

y =


−32 ? −24 ? 10 ?
72 ? ? −57 27 ?

−104 40 ? −11 1 ?
? 16 0 −1 ? −7

 ,
where the left submatrix is the first 4 × 3 slice of y ∈ R4×3×2 and the right submatrix is the second slice.
Solving the system (PS), we find 4 isolated, nonsingular, real solutions ai1, a

i
2, b

i
1, b

i
2, c

i
1, c

i
2, i = 1, . . . , 4. One

can show that the parameterization ϕ is generically 2-to-1: swapping the variables a1 ↔ a2, b1 ↔ b2, and

5The Julia code we used is attached as an ancillary file and available at [103]. The experiments were performed in Julia
v1.6.2 on a computer running Ubuntu 20.04.2 LTS consisting of an Intel Core i7-4770K CPU (4 cores, 3.5GHz clockspeed) with
32GB of main memory.
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c1 ↔ c2 corresponds to summing the rank-1 terms in a different order, which produces the same result.
Consequently, only 2 of these 4 solutions represent distinct points of X ⊂ T2. These distinct completed
tensors, with imputed entries highlighted and rounded to 3 decimals, are

T1 =


−32 8 −24 −26 10 −2
72 −40 −5 −57 27 21

−104 40 −8 −11 1 −17
−40 16 0 −1 −1 −7

 , and

T2 =


−32 411.518 −24 −26 10 −182.054
72 1112.908 1075.769 −57 27 −396.574

−104 40 −728.216 −11 1 −78.642
−1.114 16 0 −1 0.389 −7

 ,
and their (unique) decompositions into rank-1 terms, rounded to 3 decimals, are

T1 =


−1
−6
2
1

⊗

−2
1
1

⊗
[

8
−4

]
+


2
1
3
1

⊗

 3
−1
1

⊗
[
−8
−3

]
, and

T2 =


25.925
60.344
8.736

1

⊗

 0.139
−0.001

1

⊗
[
−116.229
−9.791

]
+


25.719
69.6
2.471

1

⊗

0.129
0.137

1

⊗
[
116.229
2.791

]
.

We verified that the differential of µ ◦ ϕ at all 4 solutions for the variables a1, a2, b1, b2, c1, c2 was of
(numerical) rank equal to d = 14 = dim T2. Hence, these solutions are locally continuous by the inverse
function theorem. We computed the (absolute) condition number of the inverse problem (IP) at the solution
T1, respectively T2, and found approximately 11.642, respectively 1907.954.

It is interesting to observe that both T1 and T2 coincide, up to 14 significant digits, in the unobserved
coordinate (1, 1, 2) with value −26. This implies that augmenting µ with a projection to this coordinate
(so it projects to s = d + 1 coordinates) will not eliminate either completed tensor, even though this
number of measurements generically suffices for generic identifiability by Theorem 1.1! On the other hand,
additionally projecting to one of the other coordinates eliminates either T1 or T2, so a unique solution
remains with s = d+ 1 even for such a coordinate projection (which are not generic linear maps in the sense
of Theorem 1.1).

7. Conclusions

We investigated the class of algebraic compressed sensing problems where linear or polynomial measure-
ments µ : X → ks are made of a model X , defined implicitly or explicitly by polynomials. Our focus was
on theoretical questions of existence, recoverability, identifiability, and continuity. We showed how standard
results from classic algebraic geometry and differential geometry can be applied to give almost complete
answers to these questions in the case of generic algebraic compressed sensing problem instances. The nu-
merical experiments illustrated that all reconstructions in small-scale problem instances without noise can
be found using numerical homotopy continuation methods.

We hope that the present work can be a starting point for further study of algebraic compressed sensing
problems. There are several exciting challenges and directions one may follow. Indeed, we already mentioned
(i) proving that a map µ : X → ks given by s polynomials f1, . . . , fs, where each fi is generic of degree ai,
is everywhere recoverable if and only if s ≥ d; (ii) deciding if every smooth, complex projective curve may
be injected by a morphism of algebraic varieties to a projective plane; and (iii) providing conditions when
there exists a generically identifiable coordinate projection into a (d+ 1)-dimensional space.
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An interesting observation is that one can regard the set of coordinate projections as a 0-dimensional
reducible variety in the space of linear forms. This naturally leads to the following question: what are
the algebraic varieties Y in the space of linear forms with the property that for every X , dimX + 1 many
(generic) measurements from Y are sufficient to obtain identifiability? We saw that the entire space of linear
forms satisfies this condition and that the set of coordinate projections does not. We conjecture that a
sufficient condition is that Y is irreducible, not linearly degenerate, and of positive dimension.

Alternative characterizations or sufficient conditions that certify existence, recoverability, and identifia-
bility of specific algebraic compressed sensing problems is another area that merits further study. This likely
requires a toolset that extends beyond the one we used here. The case of coordinate projections of low-rank
matrices, for example, has been investigated using rigidity theory [18, 106], algebraic combinatorics [19],
and matroid theory [21, 22].

Lastly, we focused on theoretical questions of algebraic compressed sensing problems, showing that many
generic problem instances are well posed even with very few measurements. We did not investigate how
these problems should be solved algorithmically in practice, where one must take into account measurement
errors and the propagation of numerical roundoff errors. It would be interesting to investigate whether
numerical homotopy continuation, or other numerical methods for solving systems of polynomial equations,
can stably solve algebraic compressed sensing problems, not just for generic instances, but for all instances.
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doi:10.1007/978-0-8176-4948-7.
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