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Abstract Introduction: Immunotherapy-induced pneumonitis (IIP) is a serious side-effect

which requires accurate diagnosis and management with high-dose corticosteroids. The differ-

ential diagnosis between IIP and other types of pneumonitis (OTP) remains challenging due to

similar radiological patterns. This study was aimed to develop a prediction model to
of Radiation Oncology (Maastro Clinic), School for Oncology and Reproduction (GROW), Maastricht

n 12, 6229 ET, Maastricht, the Netherlands.

aastro.nl (D. De Ruysscher).

7

shed by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/

mailto:dirk.deruysscher@maastro.nl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejca.2023.01.027&domain=pdf
https://doi.org/10.1016/j.ejca.2023.01.027
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.sciencedirect.com/science/journal/09598049
www.ejcancer.com
https://doi.org/10.1016/j.ejca.2023.01.027
https://doi.org/10.1016/j.ejca.2023.01.027


F. Tohidinezhad et al. / European Journal of Cancer 183 (2023) 142e151 143
Radiomics;

Prediction model
differentiate IIP from OTP in patients with stage IV non-small cell lung cancer (NSCLC) who

developed pneumonitis during immunotherapy.

Methods: Consecutive patients with metastatic NSCLC treated with immunotherapy in six

centres in the Netherlands and Belgium from 2017 to 2020 were reviewed and cause-specific

pneumonitis events were identified. Seven regions of interest (segmented lungs and sphe-

roidal/cubical regions surrounding the inflammation) were examined to extract the most pre-

dictive radiomic features from the chest computed tomography images obtained at

pneumonitis manifestation. Models were internally tested regarding discrimination, calibra-

tion and decisional benefit. To evaluate the clinical application of the models, predicted labels

were compared with the separate clinical and radiological judgements.

Results: A total of 556 patients were reviewed; 31 patients (5.6%) developed IIP and 41 pa-

tients developed OTP (7.4%). The line of immunotherapy was the only predictive factor in

the clinical model (2nd versus 1st odds ratio Z 0.08, 95% confidence interval:0.01e0.77).

The best radiomic model was achieved using a 75-mm spheroidal region of interest which

showed an optimism-corrected area under the receiver operating characteristic curve of 0.83

(95% confidence interval:0.77e0.95) with negative and positive predictive values of 80% and

79%, respectively. Good calibration and net benefits were achieved for the radiomic model

across the entire range of probabilities. A correct diagnosis was provided by the radiomic

model in 10 out of 12 cases with non-conclusive radiological judgements.

Conclusion: Radiomic biomarkers applied to computed tomography imaging may support cli-

nicians making the differential diagnosis of pneumonitis in patients with NSCLC receiving

immunotherapy, especially when the radiologic assessment is non-conclusive.

ª 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Immunotherapy has changed the treatment paradigm
for patients with non-small cell lung cancer (NSCLC) by

evoking the immune system’s response against tumours

[1]. Immune checkpoint inhibitors (ICIs) are the most

used class of immunotherapy agents, which provoke an

immune reaction against cancer by blockade of inhibi-

tory receptors, including programmed death-1 (PD-1),

its ligand (PD-[L]1), or cytotoxic T-lymphocyte-associ-

ated protein-4 [2]. Currently, there are five PD-[L]1
blocking agents (nivolumab, pembrolizumab, durvalu-

mab, atezolizumab and cemiplimab) and one cytotoxic

T-lymphocyte-associated protein-4 antibody (ipilimu-

mab), which have been approved to be used as mono-

therapy or combination therapy with or without

chemotherapy as the first-, second-, or consolidation-

line of treatment in patients with unresectable NSCLC

[3]. However, an artificially reinvigorated immune sys-
tem may result in autoimmune reactions that can

potentially harm healthy tissues, resulting in poor

prognosis and decreased quality of life in patients

treated with ICIs.

Immunotherapy-induced pneumonitis (IIP) is a

potentially fatal side-effect with an incidence rate of

4e10% in patients with NSCLC treated with ICIs [4].

Many cases of IIP are reversible, but an early diagnosis is
crucial for immediate administration of corticosteroids

and immunotherapy cessation. However, patients who
receive ICIs can also develop other types of pneumonitis

(OTP), such as bacterial, viral and fungal infections,

sarcoid-like pulmonary reactions and radiation-induced

pneumonitis (if they were previously treated with radio-

therapy [RT]). These patients will require different treat-
ment approaches, usually without any indication for

immunotherapy discontinuation or high-dose cortico-

steroids administration with its associated side-effects.

Therefore, overlapping clinical manifestations of IIP and

OTP are a diagnostic challenge.

Making a differential diagnosis based on the

computed tomography (CT) images is error-prone due

to similar radiological patterns [5]. The most commonly
reported radiographic findings for IIP are ground glass

opacities, consolidations, bronchiectasis, inter-lobular

septal thickening and pleural effusions, which can also

be seen in patients with OTP. As of today, according to

the latest published guidelines, there is no ‘gold stan-

dard’ for the differential diagnosis of pneumonitis in

patients receiving ICIs [6,7]. The analysis of the cellular

composition and culture of bronchoalveolar lavage fluid
is only advised to assess the possibility of infection.

However, its large-scale use is hampered because it is

burdensome for patients, not always possible due to

respiratory insufficiency of the patient, expensive, time-

consuming and not well standardised. Therefore, an

objective, non-invasive and scalable approach for

discriminating the patients with IIP would have a direct

and significant impact on clinical practice.

http://creativecommons.org/licenses/by/4.0/
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Radiomics is a field of translational research aiming

to extract minable quantitative measures from medical

images using mathematical algorithms. Typical radio-

mic features include shape, intensity properties and

texture quantifiers (i.e. spatial arrangement between

neighbouring pixels or voxels) [8]. Radiomics can be

coupled with machine learning because of its capability

to handle massive datasets to establish a diagnosis,
response assessment and prognostication. Together,

they will be more likely to achieve the primary goal of

providing practical, individually tailored information

via point-of-care decision support systems. However,

less focus has been devoted to using radiomics for pre-

dicting treatment-related side-effects [9]. Published pa-

pers on the risk factors of IIP are limited to case reports

and narrative reviews [4,10].
In this study, we developed a prediction model for

estimating the differential diagnosis of pneumonitis (IIP

versus OTP) and tested it in patients with stage IV

NSCLC treated with anti-PD-[L]1 agents in a multi-

centre clinical cohort. To optimise this goal, we: (1) used

seven Regions of Interest (ROIs) in the lungs that were

either automatically segmented using deep learning or

guided by the physician’s indication to identify the most
predictive radiomic features; (2) developed clinical,

radiomic and combined models using presumptive clin-

ical parameters and the most prognostic radiomic fea-

tures; (3) performed internal validation with

bootstrapping to assess the models’ discrimination

power, calibration and clinical decisional benefit; (4)

compared the predicted labels with separate judgements

made by the respiratory oncologists and radiologists.
2. Materials and methods

2.1. Study design and setting

A prospectively collected cohort (NCT03305380)

included all the patients with stage IV NSCLC who

developed pneumonitis (IIP or OTP) while receiving

anti-PD-[L]1 antibodies as the first- or second-line

treatment from six centres in the Netherlands and

Belgium (Maastricht University Medical Centre,

Netherlands Cancer Institute, University Hospital
Leuven, Amsterdam University Medical Centres, Eras-

mus Medical Centre Rotterdam and Zuyderland Hos-

pital Sittard) between November 2017 and October

2020. No explicit exclusion criteria were applied for the

initial patient selection. Ethical approval for the study

was obtained from the medical ethical review board of

Zuyderland Hospital (17-N-87). The requirement for

informed consent was waived due to the observational
nature of the study and anonymised data collection.

Fig. 1 shows an overview of the study workflow from

data collection to deployment of the prediction model.

Below is a detailed description of each step.
2.2. Radiomic features

Converted minable format of the CT images (.nrrd) were
resampled to the same number of slices and isotropic

voxel size, as recommended by the Image Biomarker

Standardisation Initiative. The followingROIs were used

to extract the radiomic features: (A) the segmented lungs

using a previously published deep learning-based auto-

matedmethod (https://github.com/JoHof/lungmask) and

revised by a medical physicist, (B) isotropic cubes of N

mms, with N Z {50, 100, 150}mm and (C) isotropic
spheroids of N mms, with N Z {25, 50, 75}mm. The

cubical and spheroidal ROIs were centred around the

seed point of the inflammation, which was determined

by a pulmonologist (LH) with more than 10 years of

experience, as the suspected region of the highest

inflammation. For the marginal inflammations, the

cubes/spheroids were cropped to be in the lung masks.

For each ROI, a total of 18 first order features were
extracted to represent the distribution of pixel

intensities. Following texture features were also

calculated: n Z 22 Gray Level Co-occurrence Matrix

(GLCM), n Z 16 Gray Level Run Length Matrix

(GLRLM), n Z 16 Gray Level Size Zone Matrix

(GLSZM) and n Z 14 Gray Level Dependence Matrix

(GLDM) features. In addition, eight wavelet-

decomposition images were generated: HHH, HHL,
HLH, LHH, LLH, LHL, HLL, LLL, where ‘H’ means

‘high-pass filter’ and ‘L’ means ‘low-pass filter’. Z-nor-

malisation was performed on all radiomic features to

reduce the variability of data. Radiomic features were

extracted using the open-source software PyRadiomics

(v.3.0.1).

2.3. Clinical parameters

The following potential clinical predictors associated

with immunotherapy exposure and IIP were collected:

demography (age, gender and body mass index), clinical

history (chronic obstructive pulmonary disease, diabetes
mellitus, cardiovascular diseases, smoking status and

performance status), tumour pathology (squamous or

non-squamous), treatment history (RT and chemo-

therapy) and immunotherapy regimen (type of anti-PD-

[L]1 medication, line of treatment, dose and schedule).

2.4. Outcome assessment

CT scans were routinely obtained at baseline, 6 weeks,

12 weeks and afterwards every 12 weeks to measure the

treatment response. In case of suspicious pneumonitis

(IIP/OTP), additional CT scans were taken. If a pneu-

monitis was seen on CT, further blood tests, physical
examinations, sputum cultures or bronchoalveolar

lavage were also performed according to the physician’s

discretion. The initial judgement of the respiratory

oncologist (IIP or OTP based on first presentation) and

https://github.com/JoHof/lungmask


Fig. 1. Overview of the study workflow to develop and evaluate prediction models for immunotherapy-induced pneumonitis versus other

types of pneumonitis (IIP versus OTP) in patients with stage IV non-small cell lung cancer treated with immune checkpoint inhibitors. IIP,

immunotherapy-induced pneumonitis; OTP, other types of pneumonitis.
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the assessment of the radiologist based on the CT im-
ages were also recorded to be compared with the pre-

diction models. The final diagnosis (‘gold standard’) was

determined by the treating respiratory oncologist based

on the course of disease and outcome of the adminis-

tered treatments.
2.5. Model development

The radiomic feature selection process was adapted

from previous studies published by our research group

[11,12]. In summary, the following four steps were fol-

lowed to select the most predictive radiomic features.
First, 1000 bootstrap samples with replacement were

drawn from the original cohort. In each bootstrap

sample, the pairwise mean absolute correlations were

calculated to minimise the number of highly correlated

features (r > 0.9 or r < �0.9) in an unsupervised

manner. Second, the least absolute shrinkage and se-

lection operator (LASSO) embedded with logistic

regression using 5-fold cross-validation was applied on
the 1000 samples to sort the features according to how

frequently they were retained by the LASSO. Next, the

top six features were arbitrarily selected with respect to

the decrease in frequency of the selected features. It

should be noted that among the same features with

different wavelet decompositions, the one with the

highest frequency was selected. Moreover, the selected

top radiomic features were compared for different
number of bootstrap samples. The six selected features

were used to perform stepwise backward logistic

regression on the same 1000 bootstrap samples. Finally,

the top most frequent signature (more than one
radiomic feature) was arbitrarily selected to build the
final model. The original cohort was used to fit the co-

efficients of the final model.

The clinical model was trained using the regular

stepwise backward logistic regression on the 15 candi-

date predictors. Significant predictors in the clinical and

radiomic models with the highest effect estimates based

on odds ratio (OR) were selected to build the combined

model. To avoid overfitting, maximum number of three
predictors were considered to be included in a single

model (event per variable>10) [13].
2.6. Model evaluation

Discrimination power of the prediction models was

estimated using the area under the receiver operating

characteristic curve (AUC). The sensitivity, specificity,

positive predictive value, negative predictive value and

accuracy were also calculated based on the threshold

determined by the Youden index method. Calibration,

which gauges the agreement between the predicted
probabilities and actual outcomes, was evaluated using

the graphical assessment of the calibration power

(scatter plot where x Z y line denotes perfect calibra-

tion) [14]. Internal validation with 1000 bootstrap

samples was performed to estimate the statistical opti-

mism of the AUCs and calibration slopes using the

method recommended in the Transport Reporting of a

Multivariable Prediction Model for Individual Prog-
nosis of Diagnosis guidelines [15,16]. The estimated

optimisms were subtracted from the original AUCs and

calibrations to obtain the optimism-corrected perfor-

mance measures.



Table 1
Descriptive statistics of the demographic and treatment variables.

Characteristic Total

(n Z 72)a
IIP

(n Z 31)a
OTP

(n Z 41)a
P-valueb

Age 0.092

�60 24 (33%) 7 (23%) 17 (41%)

>60 48 (67%) 24 (77%) 24 (59%)

Male gender 43 (60%) 18 (58%) 25 (61%) 0.8

WHO performance

status

0.6

0 28 (39%) 11 (35%) 17 (41%)

1 36 (50%) 15 (48%) 21 (51%)

2 8 (11%) 5 (16%) 3 (7.3%)

Body mass index

(kg/m2)

0.2
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The decision curve analysis was used to visualise the

decisional benefit of models considering ‘Treat All’ and

‘Treat None’ as the benchmarking strategies. This

method calculates the net benefit as a function of rela-

tive harms related to the false predictions across a range

of threshold probabilities. The model with the highest

net benefit at a particular threshold is optimal, regard-

less of the size of the difference [17].
To enhance the use of the prediction model in future

diagnostic research, a nomogramwas developed to predict

the probability of having IIP based on significant clinical

and radiomic features. All analyses were performed in R

v.4.2.2 (R Foundation for Statistical Computing).

<25 45 (62%) 17 (55%) 28 (68%)

�25 27 (38%) 14 (45%) 13 (32%)

Tumour pathology 0.7

Squamous 20 (28%) 8 (26%) 12 (29%)

Non-squamous 52 (72%) 23 (74%) 29 (71%)

Smoking >0.9

Current 12 (17%) 5 (16%) 7 (17%)

Former 52 (72%) 23 (74%) 29 (71%)

Never 8 (11%) 3 (9.7%) 5 (12%)

COPD 18 (25%) 9 (29%) 9 (22%) 0.5

Diabetes mellitus 7 (9.7%) 2 (6.5%) 5 (12%) 0.7

Cardiovascular

diseases

23 (32%) 10 (32%) 13 (32%) >0.9

Radiotherapy 0.11

None 43 (60%) 20 (65%) 23 (56%)

Low-dose

(<60 Gy)

9 (12%) 6 (19%) 3 (7.3%)

High-dose

(�60 Gy)

20 (28%) 5 (16%) 15 (37%)

Chemotherapy 22 (31%) 7 (23%) 15 (37%) 0.2

Line of

immunotherapy

0.038

First-line 7 (9.7%) 6 (19%) 1 (2.4%)

Second-line 65 (90%) 25 (81%) 40 (98%)

Anti-PD-[L]1

medication

0.2

Nivolumab 59 (82%) 23 (74%) 36 (88%)

Pembrolizumab 10 (14%) 7 (23%) 3 (7.3%)

Other 3 (4.2%) 1 (3.2%) 2 (4.9%)
3. Results

3.1. Clinical characteristics

Seventy-two out of 556 patients, with a mean age of
62.4 � 9.9 years (range: 25e81) and 60% (n Z 43) male

gender developed pneumonitis during immunotherapy

treatment. A total of 31 (5.6%) patients with IIP and 41

patients with OTP (7.4%) were identified. The major

pathological types in this group were adenocarcinoma

(n Z 48, 67%) and squamous cell carcinoma (n Z 20,

28%). The most frequent comorbidities were cardio-

vascular diseases (n Z 23, 32%), chronic obstructive
pulmonary disease (n Z 18, 25%) and diabetes mellitus

(n Z 7, 10%). More than half of the patients were ex-

smokers (n Z 52, 72%) and most patients (n Z 64,

89%) had a good performance status of 0 or 1 at the time

of immunotherapy initiation. Nivolumab (n Z 59, 82%)

and pembrolizumab (n Z 10, 14%) were the most

frequently used anti-PD-[L]1 agents. Patients received

the immunotherapy regimen on a 2-week (n Z 60, 83%)
or a 3-week (n Z 12, 17%) basis. Summary statistics per

diagnosis (IIP and OTP) are shown in Table 1.

Anti-PD-[L]1 dose

(mg)

0.7

<225 35 (49%) 16 (52%) 19 (46%)

�225 37 (51%) 15 (48%) 22 (54%)

Anti-PD-[L]1

schedule

0.2

Once every 2

weeks

60 (83%) 24 (77%) 36 (88%)

Once every 3

weeks

12 (17%) 7 (23%) 5 (12%)

a n (%), Median (IQR).
b Pearson’s Chi-squared test, Fisher’s exact test or Wilcoxon rank

sum test. Abbreviations: COPD, chronic obstructive pulmonary dis-

ease; IIP, immunotherapy-induced pneumonitis; OTP, other types of

pneumonitis; PD-[L], programmed death (ligand); WHO, world health

organization.
3.2. Prediction models

Among the candidate clinical predictors, age (>60

versus� 60ORZ 3.02, 95% confidence interval (CI): 0.96

to 9.5, PZ 0.059) and line of immunotherapy (2nd versus

1st OR Z 0.08, 95% CI: 0.01 to 0.77, P Z 0.028) were
found to be the most predictive variables. Using different

cubical/spheroidal ROIs as well as the segmented lungs,

the best radiomic signature was produced using the 75-

mm spheroidal ROI (Supplementary Material S1).

Comparing the seven ROIs, the radiomic signature based

on the 75-mm spheroidalROI showed the best calibration

which was conformed to the ideal line across the entire

range of probabilities. Moreover, despite the 75-mm
spheroidal ROI, the radiomic signatures based on the

segmented lungs, cubical or small spheroidal ROIs (25-

mm and 50-mm) showed multiple lower net benefits

than their associated combined models.
Using the 75-mm spheroidal ROI, the frequency of

the top features selected by the LASSO as well as the

minimum, maximum and mean ORs on 1000 bootstrap

samples are shown in Supplementary Material S2-Table

S1. As shown in Supplementary Material S2-Figure S2,



Table 2
Clinical, radiomic and combined models for predicting

immunotherapy-induced pneumonitis (versus other types of pneumo-

nitis) in patients with stage IV non-small cell lung cancer treated with

immune checkpoint inhibitors.

OR 95% Confidence

interval

p-value

Clinical model

(Intercept) 3.55 0.39 to 32.06 0.258

Age (>60 versus � 60) 3.02 0.96 to 9.50 0.059

Line of immunotherapy

(2nd versus 1st)

0.08 0.01 to 0.77 0.028

Radiomic model

(Intercept) 0.57 0.30 to 1.10 0.096

HLH first order mean 0.46 0.22 to 0.95 0.035

log.sigma.1.0.mm.3D

GLSZM zone entropy

5.66 2.10 to 15.22 0.001

HHH GLDM small

dependence

low grey level emphasis

3.82 1.47 to 9.91 0.006

Combined model

(Intercept) 1.45 0.14 to 14.52 0.752

Line of immunotherapy

(2nd vs 1st)

0.40 0.04 to 4.14 0.442

log.sigma.1.0.mm.3D

GLSZM zone entropy

4.47 1.77 to 11.30 0.002

HHH GLDM small

dependence low grey

level emphasis

2.92 1.23 to 6.96 0.016

Abbreviations GLDM, grey level dependencematrix; GLSZM, grey level

size zone matrix; HHH, high-pass filter on three axes; OR, odds ratio.
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the top six selected radiomic features did not change for

the bootstrap samples of more than or equal to 500,

indicating that b Z 1000 is a sufficient number of

bootstrap samples for feature selection. The final
radiomic signature was built using the following fea-

tures: HLH first order mean (OR Z 0.46, 95% CI: 0.22

to 0.95, P Z 0.035), log.sigma.1.0.mm.3D glszm zone

entropy (OR Z 5.66, 95% CI: 2.10 to 15.22, P Z 0.001)

and HHH gldm small dependence low grey level

emphasis (OR Z 3.82, 95% CI: 1.47 to 9.91, PZ 0.006).

Details of the selected radiomic features with CT scans

representing the lowest and highest values are shown in
Supplementary Material S2-Table S3.

The line of immunotherapy from the clinical model

and the two radiomic features with the highest OR in the

radiomic model were used to build the combined model:

line of immunotherapy (2nd versus 1st OR Z 0.40, 95%

CI: 0.04 to 4.14, P Z 0.442), log.sigma.1.0.mm.3D

glszm zone entropy (OR Z 4.47, 95% CI: 1.77 to 11.30,

P Z 0.002) and HHH gldm small dependence low grey
level emphasis (OR Z 2.92, 95% CI: 1.23 to 6.96,

P Z 0.016). The details of the clinical, radiomic and

combined models are shown in Table 2.
3.3. Model evaluation

As shown in Fig. 2A, the radiomic model with an

optimism-corrected AUC of 0.83 (95% CI: 0.77e0.95)

outperformed the clinical model (AUC Z 0.66, 95% CI:
0.56e0.78). Pairwise comparison of AUCs using boot-

strap samples showed a significant difference between

the clinical and radiomic models (0.66 versus 0.83, 95%

CI: 0.04 to 0.31, P Z 0.003). The negative predictive

value and positive predictive value of the radiomic

model was 80% and 79%, respectively. The calibration

power of the three models is shown in Fig. 2B. While the

clinical model did not cover the low-risk and high-risk
patients, the radiomic model showed good calibration

for the entire range of predicted probabilities. In addi-

tion, the decision curve analysis (Fig. 2C) revealed the

higher net benefit of the radiomic model across the

entire range of threshold probabilities in comparison

with the clinical and combined models.
3.4. Comparison of the predicted labels with clinical and

radiological judgements

While the radiologists judged 35 (49%) and 25 (35%)

cases as IIP and OTP, they found 12 (17%) patients as

non-conclusive cases, where the definitive diagnosis

could not be made based on the CT findings. The res-

piratory oncologists also considered 34 (47%), 21 (29%)

and 17 (24%) cases as IIP, OTP and non-conclusive,

respectively. The radiomic model provided correct di-
agnoses in 10 (83%) patients with non-conclusive

radiological judgements. Moreover, the radiomic

model correctly classified 14 (82%) patients whom were

initially considered as non-conclusive cases by the res-

piratory oncologists (Fig. 3).

The nomogram of the combined model, presenting

the probability estimation for a sample patient is shown

in Fig. 4. To enhance the reporting quality of the paper,
all data have been reported in line with the Transport

Reporting of a Multivariable Prediction Model for In-

dividual Prognosis of Diagnosis statement

(Supplementary Material S2-Table S4) [18].
4. Discussion

4.1. Interpretation of the findings

To our knowledge, this study represents the first patient-

specific risk prediction algorithm to estimate the prob-
ability for IIP diagnosis versus OTP in patients with

stage IV NSCLC who have developed pneumonitis

while receiving anti-PD-[L]1 agents.

The clinical model revealed a significant predictive

value of the line of immunotherapy indicating that the

patients who received immunotherapy as the first-line

treatment were significantly at higher risk to develop an

IIP. Previous studies have confirmed that patients
receiving ICI as the first-line treatment are at higher risk

of developing immune-related adverse events [19,20].

However, no explicit evidence was found to assess the

predictive value of line of immunotherapy for IIP



Fig. 2. The receiver operating characteristic (ROC) curves, calibration plots, decision curve analysis of the clinical, radiomic and combined

models for predicting immunotherapy-induced pneumonitis (versus other types of pneumonitis) in patients with stage IV non-small cell

lung cancer treated with immune checkpoint inhibitors.
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against OTP. Moreover, contradictory findings have
been reported regarding the predictive value of the age

on immune-related pneumonitis [21e24], which may

explain its marginal significance value in the current

study.

Seven experiments on different ROIs were performed

to test whether the ROI definition approach will affect

the predictive value of the radiomic features [25].

Although the discrimination and calibration results were
comparable for different ROIs, we found that the entire

field of lungs may result in negative net benefits for high-

risk patients in clinical decision making. In other words,

inclusion of non-inflammatory regions can mislead the

diagnosis by radiomic features. Among different ROIs,

the 75-mm geometric spheroid resulted in the best

radiomic signature in terms of calibration and decisional

benefit, which implies its favourable predictive value at
the patient level. Moreover, since manual ROI delinea-

tion is cumbersome and usually prone to inter-reader

disagreement, a semi-automated approach (taking the

manual-based centre of the inflammatory region and

automatically extending it to a specific-sized region) is

an optimal solution for practical use.

The texture features that were found to be associated

with higher risk of IIP included heterogeneity and ir-
regularity (higher zone entropy and higher small

dependence low grey level emphasis), which is concor-

dant with the association between heterogeneous tex-

tures and IIP in previous case reports [26]. The

predictive value of the radiomic feature on the local

intensity variation (first order mean) is in line with the

previously published studies showing the predictive

value of density features for the discrimination of
parenchymal lesions of coronavirus lung infection and

radiation pneumonitis [27e29]. Interestingly, we found

that GLSZM zone entropy was the most predictive

feature in six experimented ROIs, which implies the

robustness of its predictive value.
Despite several papers that have found the high
advantage of clinical features in the combined models

in different clinical settings [30e32], in this study, we

found that radiomic features took over the main pre-

dictive role, diminishing the small association provided

by the only significant clinical factor. This finding may

suggest using the qualitative radiologic features (e.g.

number of involved lobes, focality of radiological

changes, ground-glass opacity, consolidation, etc.) as a
complementary set of candidate predictors to improve

the clinical judgement.

4.2. Comparison to similar studies

According to a recent review [33], this is the first study

evaluating the impact of radiomics for diagnosing IIP

on prospectively collected patients in a multicentre

clinical series. At the time of writing, two retrospective
studies used radiomics to discern the aetiology of

pneumonitis.

Chen et al. performed a study to test the utility of

radiomics in identifying the aetiology of pneumonitis

(n Z 23 after ICI, n Z 29 after RT and n Z 30 after

ICI þ RT). They extracted 93 radiomic features (first

order, GLCM, GLDM, GLRLM, GLSZM and

NGTDM) from the bilateral whole lungs on diagnostic
CTs both before ICI initiation and at the time of

pneumonitis diagnosis. Random forest was used to build

the prediction model on features selected by the LASSO.

An AUC of 0.76 was achieved after testing the model on

30% of the dataset [34].

Like the above study, Cheng et al. developed a CT-

based radiomic approach to identify the pneumonitis

after different treatments (nZ 28 after ICI, nZ 31 after
RT and n Z 14 after ICI þ RT). However, they used an

inflammatory lesion as the ROI, which was manually

annotated by experienced radiation oncologists. The

intensity, GLCM and Bag of Word radiomic features



Fig. 3. Comparison of the predictions provided by the clinical, radiomic and combined models with the judgements made by the respi-

ratory oncologists and radiologists. Ultimate diagnoses were determined based on the course of the disease.

Fig. 4. The radiomic-clinical nomogram incorporated three factors of line of immunotherapy, log.sigma.1.0.mm.3D GLSZM zone entropy

and HHH GLDM small dependence low grey level emphasis. GLDM, grey level dependence matrix; GLSZM, grey level size zone matrix.
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were fed into logistic regression, random forest and

support vector machine as the machine learning algo-

rithms. The best AUC of 0.9 was achieved by applying

logistic regression on Bag of Word features using 10-

fold cross-validation approach [35].

We, therefore, believe that our study has added
value compared with the two previously published

ones: first, inclusion of pneumonitis in the ICI-only

and RT-only treated patients does not solve this

diagnostic challenge [36]. Second, given the event per

candidate predictor ratio of less than 10, the previously

developed prediction models are at high-risk of being

overfitted on the development sample. Third, per-

forming split or cross validation on the data from a
single institution usually produces overoptimistic

AUC, which might be difficult to achieve on datasets

from different centres. Fourth, AUC is essential but

not enough to show the predictive value of a prediction

model. Previous studies have proved that while AUC

hardly changes, calibration drifts easily across different

samples [37]. Thus, it is necessary to evaluate the

models at patient-level. Fifth, fully manual ROI
delineation will impede the reusability of prediction

models in clinical practice. Sixth, the predictive value

of clinical variables in this study can help future in-

vestigators to carefully choose the set of candidate

predictors.
4.3. Limitations

The following limitations should be noted when inter-

preting the results from this report. First, the lack of

gold-standard confirmation for IIP and OTP might have

hampered the diagnostic accuracy. However, the ulti-

mate diagnosis was made based on the course of disease

by the respiratory oncologists. Second, the potential

predictive value of other biomarkers (e.g. lab tests) was
not captured. However, as also stated in a recent Eu-

ropean Society for Medical Oncology Clinical Practice

Guideline on immunotherapy toxicity, there are no

gold-standard biomarkers [6,7]. Third, due to few

number of events per centre, external validation was not

possible. However, bootstrapping-adjusted performance

measures were used to correct the optimistic results of

internal validation. Fourth, the small cohort size re-
mains as an important caveat of this study. However,

the sample size is on par with previous papers in this

subject [34,35] and still seems to be reasonable given the

low incidence rate of IIP and OTP in patients with stage

IV NSCLC.

4.4. Implications for practice and research

The major practical contribution of this study is that it

presents an empirical semi-automated data-driven
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prediction model, which has provided acceptable

patient-level predictions for identifying the IIP events.

Highlighting the results found by comparing the pre-

diction models with the clinical and radiological judge-

ments, we believe that our model can provide useful

predictions when the radiological and clinical judge-

ments are non-conclusive. The current research is

timely, given the increasing use of ICIs among patients
with (lung) cancer. Moreover, due to the multicentre

design of the trial, the results are likely to be pertinent to

many similar institutions. However, further prospective

clinical trials are needed to investigate the efficacy of the

proposed prediction model on discriminative diagnosis

of the pneumonitis.

5. Conclusions

The findings of our study suggest that the radiomic

signature provided more predictive value than the clin-

ical variables on the differential diagnosis of pneumo-
nitis in patients with NSCLC receiving immunotherapy.

Implementation of the proposed model could comple-

ment clinicians’ intuition and improve the targeting of

treatment interventions in an individualised patient-

specific fashion.
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