

Announcing

Gold Open Access

Preprints welcome

flagship journal

Publishing charges waived

Edited by active scientists

our new

WILEY VCH

Excellence in Chemistry Research

Meet the Editors of ChemistryEurope

Luisa De Cola Università degli Studi di Milano Statale, Italy

Ive Hermans University of Wisconsin-Madison, USA

Ken Tanaka Tokyo Institute of Technology, Japan

Phase Transformation of VO₂/rGO Composites as High-Voltage Cathodes in Zinc-Ion Batteries

Yuying Li,^[a, c] Jingyi Wang,^[C] Zhihong Tian,^{*[a]} Feili Lai,^[d] Tianxi Liu,^[e] and Guanjie He^{*[b]}

Aqueous zinc-ion batteries (ZIBs) are becoming widely concerned candidates as stationary and safe energy storage technology. Vanadium oxides display promising role as cathodes for ZIBs owing to their inherent merits in structures and multiple valence states. However, their unsatisfactory electrical conductivity and narrow voltage window hinder the practical application. Moreover, the charge storage mechanism at the high voltage is unclear. Herein, we synthesized VO₂/rGO composites with high electrical conductivity and demonstrated an electrochemically induced phase transition from tunneled

Introduction

Developing safe, green, easy manufacturing, and cost-effective energy storage systems is essential for both large-scale stationary and next to the skin devices.^[1,2] Recently, the advantages of safe and low toxic characters and natural abundance, make secondary aqueous zinc ion batteries (ZIBs) enticing to researcher.^[3-6] Currently, the research interest in cathodes materials, Zn anode and electrolyte for ZIBs are increasing dramatically.^[7-9] However, one of the biggest impediments on the road to industrialization of ZIBs is the deficiency of highperformance cathodes.^[10,11] Developing suitable cathode materials with high-performance including wide voltage window, superior ion diffusion kinetics and long-life is an urgent task.^[12,13]

[b] Prof. G. He

Department of Chemical Engineering, University College London, London WC1E 7JE, U.K.

E-mail: g.he@ucl.ac.uk [c] Y. Li, J. Wang

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China

[d] Prof. F. Lai

Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium [e] Prof. T. Liu

Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, International Joint Research Laboratory for Nano Energy Composites, Jiangnan University, Wuxi 214122, P. R. China

- Supporting information for this article is available on the WWW under https://doi.org/10.1002/batt.202200509
- © 2022 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

VO₂/rGO to Zn₃(OH)₂V₂O₇·2H₂O/rGO with a laminated structure and an enhanced interlayer spacing during the first charge to 1.6 V, which shows preferable Zn²⁺ storage capacity. Concretely, the electrochemical window of as-assembled ZIB expands to 1.6 V with a specific capacity of 329.9 mAh g⁻¹ at 0.1 A g⁻¹, exhibiting wider window compared with the ZIBs based vanadium oxide reported previously. Simultaneously, a long stable lifetime of 84% capacity retention over 1,000 cycles can be recorded. Our work opens a new idea of design strategy to develop high-voltage ZIBs.

So far, multiple cathode materials have been synthesized in the laboratory scale after tireless efforts from many academics, such as manganese oxides, vanadium oxides and Prussian blue analogues, exhibiting acceptable reversible Zn²⁺ insertion/ extraction behaviors.^[14–17] Among them, vanadium oxides are one of the most competitive materials in various battery systems on account of multiple oxidation states (from V²⁺ to V⁵⁺) and varied crystalline structures, which allows for more electrons transfer, such as V₂O₅·*n*H₂O,^[18] VO₂,^[19] V₃O₇·*n*H₂O,^[20] H₂V₃O₈ nanowires^[21] and NaV₃O₈·1.5H₂O.^[22] Moreover, previous studies have proven that some vanadium compounds undergo irreversible phase transitions during charge/discharge process.^[23,24] Luo et al. investigated the structural evolution of V₂O₃ and the results show a transformation from phase V₂O₃ to phase V₂O_{5-x}·*n*H₂O.

The VO₂ with a tunnel structure (0.82 nm², 0.34 nm² and 0.5 nm² along the *b*-, *a*- and *c*-axis, respectively) is another promising cathode material because it offers an attractive theoretical capacity, which has been calculated as 646 mAh g⁻¹.^[25,26] Notwithstanding, the current problems suffered by VO₂ cathodes are their limited electrical conductivity, reduced Zn²⁺ diffusion dynamics, as well as the unclear phase transformation during charge/discharge processes especially with a large voltage window. Carbon-based materials possess high electrical conductivity and stable physicochemical properties.^[27,28] To solve the limitation including poor structural stability and conductivity, it has been demonstrated that integrating the cathodes with the carbon-based materials, which possess the high electrical conductivity, such as CNTs and graphene, is an efficient strategy.^[29-32]

Herein, we used a convenient and effective strategy for the synthesis of vanadium-based oxides on the surface of graphene oxide with superior conductivity (VO₂/rGO). As demonstrated by the ex-situ experimental analysis, the irreversible phase change occurred in VO₂/rGO composite structures after the first charging process at 1.6 V (Scheme 1), and the in-situ formed

[[]a] Y. Li, Prof. Z. Tian

Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004, P. R. China E-mail: zhihong.tian@henu.edu.cn

Batteries & Supercaps 2023, 6, e202200509 (1 of 6)

Scheme 1. Fabrication and phase transition process of VO₂/rGO composite.

phase $(T-VO_2/rGO)$ offers better capacity of Zn ion storage and diffusion, making it a competitive cathode candidate for next-generation large-scale ZIBs.

Results and Discussion

The VO₂/rGO composite was produced through two processes. Firstly, the precursor was prepared by a hydrothermal process with graphene oxide (GO) and NH_4VO_3 ; Next, target products were obtained by an annealing process. In addition, two control materials, i.e., the ones without GO or NH_4VO_3 , were prepared.

The phases and structures of as-prepared products were detected by XRD. The peaks of samples without GO can be indexed to the standard V_2O_5 phase (JCPDS-41-1426), as shown in Figure 1(a), and rGO exhibits two characteristic signatures at around 25° and 43°, which are recognized as the (002) and

(100) planes of graphitic carbon, respectively.^[33] Interestingly, XRD results of the composite nicely match with the monoclinic VO₂ (JCPDS-31-1438), which could be caused by the reduction from the rGO.^[26] The morphology of VO₂/rGO composites was observed using SEM and TEM. As illustrated in Figure 1(b and c), VO₂/rGO composite possesses a porous network, and spiny VO₂ structures are on the surface of rGO. As a comparison, SEM images of the V_2O_5 and rGO were also recorded, as shown in Figure S1. TEM and HR-TEM images in Figure 1(d and e) further certify the successful combination of VO₂ and rGO. Furthermore, Figure 1(f) shows the TEM-EDS elemental mappings, indicating that the VO₂/rGO composite contains only C, O and V elements. Based on the Branauer-Emmett-Teller (BET) method, BET surface areas of VO₂/rGO composite is 72.4 m^2g^{-1} and the pore diameter is concentrated at 5 nm, which could provide large electrochemically active surface areas for charge storage (Figure S2).

Figure 1. a) XRD patterns. b, c) SEM, d) TEM, e) HRTEM images and f) TEM-EDS elemental mappings of VO₂/rGO.

© 2022 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH

XPS was then used to examine chemical compositions and valence states of VO₂/rGO. Figure 2(a) shows the survey spectra of all samples. Here, sharp peaks in the 284.8, 399.8 and 517.8 eV are associated with C1s, V2p and O1s orbitals, respectively. XPS peaks were fitted to provide more information on their structures.^[34] Figures 2(b) and (c) show the V 2p and O 1s spectra of the V_2O_5 sample respectively. The V element exists the +4 and +5 oxidation states according to the XPSpeak-differentiating analysis. The peaks at 530.7 and 533.3 eV are from O in metal oxide (V–O) and O–H. $^{\scriptscriptstyle [35]}$ The C 1s XPS spectrum in Figure 2d shows characteristic peaks of C--C, C--O, V-C and C=O located at 284.8, 285.8, 286.3 and 289.0 eV respectively.^[21,35] XPS spectra for V₂O₅ and rGO samples were also provided in Figure S3. The FTIR spectrum of VO2/rGO composite is shown in Figure 2e to investigate functional groups. It reveals the peak at 505.7 cm⁻¹ is result of the symmetric stretching of V-O-V bridges. The peak at 1014.2 cm⁻¹ is owing to the stretching vibrations of V=0.^[25,34] Besides, the existence of rGO can be proved by peaks observed at 1225.6, 1567.0 and 1734.1 cm⁻¹. Based on the TGA curve in Figure 2(f), the mass proportion of VO_2 in the composite is calculated to be 53.8%.^[24] These results further suggest the successful formation of VO₂/rGO composites.

To evaluate the capacity of Zn ion storage and diffusion, asprepared materials serve as the cathode in CR2032 type coin cells (detail in Electrochemical measurements). The first three CV profiles of VO₂/rGO composite were recorded in Figure 3(a). Remarkably, a strong particular peak located at 1.60 V in the first cycle, while no such phenomenon occurred in the subsequent cycles. Besides, the reduction peaks at approximately 0.48, 0.91 V and the oxidation peaks at about 0.58, 0.96 and 1.18 V can be observed. Meanwhile, GCD curves of VO₂/ rGO composites within 0.2–1.6 V are shown in Figure 3(b), and an unexpected beginning charge capacity of 2124.2 mAh g⁻¹

can be reached, suggesting that the phase variation process of the VO₂/rGO composite cathode can be achieved within the first charge cycle at ~1.35-1.60 V. After this process, VO₂/rGO composite turns into a new phase (named as T-VO₂/rGO). Figure 3(c and d) shows the CV and GCD curves. Apparently, the current density for T-VO₂/rGO with is larger than VO₂/rGO materials, and T-VO₂/rGO also exhibits a higher discharge capacity of 329.9 mAh g^{-1} at 0.1 A g^{-1} . Additionally, the voltage window of T-VO₂/rGO can reach 1.6 V, which is wider than that of VO₂/rGO (1.35 V). CV curves at different scan rates and GCD curves at different current densities are displayed in Figure S4. The cycling performance of T-VO₂/rGO and VO₂/rGO is evaluated at 5 Ag^{-1} for 1,000 continuous cycles in Figure 3(f). It is easily observable that the specific capacity of T-VO_2/rGO is higher than VO₂/rGO for all different cycles, which indicates the structural stability after phase transformation process.

Both electrochemical properties of V_2O_5 and rGO were compared with T-VO₂/rGO. Figure 4a displays rate capabilities for all electrodes. Under various current densities, T-VO₂/rGO composites can achieve average specific capacities of 329.9, 301.4, 278.5, 258.6, 237.4, 211.2, and 163.9 mAh g⁻¹ at from 0.1 to 10 Ag⁻¹, respectively, which exhibits better Zn ion storage capacity as compared to V₂O₅ and rGO. These results indicate that T-VO₂/rGO composite demonstrates an enhanced rate performance of 54% retention from 0.1 to 10 Ag⁻¹. Comparatively, V₂O₅ was only able to demonstrate a 25% retention. The corresponding GCD curves are shown in Figure S5. Figure 4(b) presents the Nyquist plots of T-VO₂/rGO composites and V₂O₅, and T-VO₂/rGO shows a much lower charge-transfer resistance $(R_{\rm ct})$ of 123 Ω compared with V₂O₅ (279 Ω).^[36] The outstanding rate performance and lower charge-transfer resistance for T-VO₂/rGO composite indicates enhanced ion diffusion kinetics.

To further probe satisfactory performances as discussed above, the reaction kinetics of the $T-VO_2/rGO$ composite

Figure 2. a) XPS survey spectra. b) V 1p, c) O 1s and d) C 1s XPS spectra of VO₂/rGO. e) FT-IR spectrum and f) TGA curve of VO₂/rGO.

 $\ensuremath{\textcircled{}^{\circ}}$ 2022 The Authors. Batteries & Supercaps published by Wiley-VCH GmbH

Research Article doi.org/10.1002/batt.202200509

Figure 3. a) CV curves at 0.1 mVs⁻¹, b) GCD curves at 0.1 Ag⁻¹ of VO₂/rGO of the first three cycles. c) CV curves at 0.1 mVs⁻¹, b) GCD curves at 0.1 Ag⁻¹, e) long cycling performance at 5 Ag⁻¹ of VO₂/rGO with different working windows.

Figure 4. a) Rate performances. b) Nyquist plots. c) CV curves at different scan rates of VO_2/rGO . d) Log(i) vs. log(v) plots of redox peaks. e) Normalized ratios of the capacitive contribution at different scan rates. f) Diffusion and capacitance contribution at 0.3 mV s⁻¹. g) Cycling performances at 5 A g⁻¹ of VO_2/rGO and V_2O_5 . h) Ragone plots of VO_2/rGO and other reported ZIBs cathode materials.

Chemistry Europe

European Chemical Societies Publishing

Batteries & Supercaps 2023, 6, e202200509 (4 of 6)

cathode was evaluated by the kinetic behavior analysis. The CV curves of T-VO₂/rGO, V₂O₅ and rGO cathodes at different scan rates are shown in Figures 4(c) and S6. The CV curves of T-VO₂/ rGO suggest a multi-step Zn²⁺ intercalation/deintercalation with two pairs of redox peaks. According to Equations (S1) and (S2), *b* values calculated for the Peak 1, 2, 3 and 4 are found to be 0.51, 0.89, 0.72 and 0.55, respectively, and the range of 0.5–1.0 indicates the electrode simultaneously possesses both capacitive and diffusion processes.^[37,38] Figure 4(e) summarizes the capacitive ratios of T-VO₂/rGO cathodes at 0.1–0.5 mV s⁻¹ according to Equation (S3), which gradually increases from 40.1% to 68.6%, suggesting an increased dominance of the capacitance-controlled process as the scan rate increases. The shaded region in Figure 4(f) represents the capacitive contribution at 0.3 mV s⁻¹.

The markedly improved structure stability of T-VO₂/rGO can also be verified by long cycling tests at 5 A g⁻¹, and the capacity of T-VO₂/rGO material retains 84% after 1,000 ·ycles. Meanwhile, the Coulombic efficiency is maintained at nearly 100%. Whilst the V₂O₅ cathode shows the capacity retention of 51% after cycling, which indicates rGO plays a key role in stabilizing structure. The T-VO₂/rGO shows a maximum energy/power density of 323.3 Wh kg⁻¹/9,796.3 W kg⁻¹. The superior electrochemical performances of the T-VO₂/rGO electrode are quite competitive, as shown in Figure 4g and Table S1, which is better than those of other reported V-based materials for ZIBs.^[32,39-51]

The ex-situ XRD was applied to study different phase compositions of VO₂/rGO electrode under various charge storage states. As discussed above in Figure 5, the characteristic peaks at 14.4° and 15.4° for VO₂·nH₂O (JCPDS-18-1445) almost disappear completely after the initial charging process to 1.6 V and be never seen again subsequently, which implies the complete variation of phase compositions of VO₂·nH₂O. At full charging state up to 1.6 V, three new weak peaks located at 12.3°, 34.2° and 36.5° appear are assigned to the Zn₃(OH)₂V₂O₇·2H₂O (JCPDS-50-0570), indicating the VO₂ of VO₂/ rGO electrode transformed into Zn₃(OH)₂V₂O₇·2H₂O after the first charging, which may ascribe insertion/extraction of

Figure 5. XRD patterns of the cathode at different states.

hydrated Zn ion.^[24,52] Different from the tunnel-type structure of VO₂, Zn₃(OH)₂V₂O₇·2H₂O possesses layered structure and a sufficient interlayer spacing (0.72 nm) to provide enlarged spaces for Zn²⁺ storage and diffusion (Scheme 1).^[53] When discharged to 0.2 V, the Zn₃(OH)₂V₂O₇·2H₂O signal decreases significantly because of the intercalation of Zn²⁺. As recharging in the second cycle, the Zn₃(OH)₂V₂O₇·2H₂O peaks emerged again, which further proves the irreversible reaction from VO₂/ rGO to the product of Zn₃(OH)₂V₂O₇·2H₂O/rGO (T-VO₂/rGO) with a wide voltage window and specific capacity.

Conclusion

In summary, the VO₂/rGO composite cathode by a hydrothermal process followed with high temperature treatment for aqueous ZIBs. This compound structure with rGO promotes the high conductivity and stability simultaneously. Moreover, we verify that the irreversible phase variation from VO₂/rGO composite to Zn₃(OH)₂V₂O₇·2H₂O/rGO (T-VO₂/rGO) with layered structure and a large interlayer spacing at the first charging process. Benefitting from the converted structure, the Zn₃(OH)₂V₂O₇·2H₂O/rGO electrode enables a wide potential window (0.2–1.6 V), a superior specific capacity of 329.9 mAh g⁻¹, an excellent cycling stability (capacity retention of 84% after 1,000 cycles), a high specific energy/power density of 323.3 Wh kg⁻¹/9,796.3 W kg⁻¹, showing promising application as high-voltage vanadium-based cathodes for ZIBs.

Experimental Section

Experimental Section was provided in the Supporting Information.

Acknowledgements

The authors sincerely acknowledge financial support from the National Natural Science Foundation of China (No. 52003251), Henan Center for Outstanding Overseas Scientists (GZS2022014) and Engineering and Physical Sciences Research Council (EPSRC) (EP/V027433/1).

Conflict of Interest

The authors declare no conflict of interest.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords: high-voltage \cdot phase transition \cdot vanadium oxides \cdot VO₂/rGO composite \cdot zinc-ion batteries

^{© 2022} The Authors. Batteries & Supercaps published by Wiley-VCH GmbH

- [2] X. Tang, D. Zhou, B. Zhang, S. Wang, P. Li, H. Liu, X. Guo, P. Jaumaux, X. Gao, Y. Fu, C. Wang, C. Wang, G. Wang, *Nat. Commun.* 2021, *12*, 1–11.
- [3] H. Pan, Y. Shao, P. Yan, Y. Cheng, K. S. Han, Z. Nie, C. Wang, J. Yang, X. Li, P. Bhattacharya, K. T. Mueller, J. Liu, *Nat. Energy* **2016**, *1*, 1–7.
- [4] W. Li, K. Wang, S. Cheng, K. Jiang, Adv. Energy Mater. 2019, 1900993, 1– 10.
- [5] H. Dong, J. Li, J. Guo, F. Lai, F. Zhao, Y. Jiao, D. J. L. Brett, T. Liu, G. He, I. P. Parkin, Adv. Mater. 2021, 33, 202007548.
- [6] T. Zhang, Y. Tang, S. Guo, X. Cao, A. Pan, G. Fang, J. Zhou, S. Liang, Energy Environ. Sci. 2020, 13, 4625–4665.
- [7] T. Wei, Y. Ren, Z. Li, X. Zhang, D. Ji, L. Hu, Chem. Eng. J. 2022, 434, 134646.
- [8] T. Wei, Y. Peng, L. Mo, S. Chen, R. Ghadari, Z. Li, L. Hu, Sci. China Mater. 2022, 65, 1156–1164.
- [9] D. Xu, H. Wang, F. Li, Z. Guan, R. Wang, B. He, Y. Gong, X. Hu, Adv. Mater. Interfaces 2019, 6, 1–8.
- [10] D. Selvakumaran, A. Pan, S. Liang, G. Cao, J. Mater. Chem. A 2019, 7, 18209–18236.
- [11] P. He, Q. Chen, M. Yan, X. Xu, L. Zhou, L. Mai, C. W. Nan, *EnergyChem* 2019, 1, 100022.
- [12] J. Yan, E. H. Ang, Y. Yang, Y. Zhang, M. Ye, W. Du, C. C. Li, Adv. Funct. Mater. 2021, 31, 1–30.
- [13] E. J. Hansen, J. Liu, Front. Energy Res. 2021, 8, 1-8.
- [14] Y. Lu, T. Zhu, W. Bergh, M. Stefik, K. Huang, Angew. Chem. 2020, 132, 17152–17159; Angew. Chem. Int. Ed. 2020, 59, 17004–17011.
- [15] D. Chao, W. Zhou, C. Ye, Q. Zhang, Y. Chen, L. Gu, K. Davey, S. Z. Qiao, Angew. Chem. Int. Ed. 2019, 58, 7823–7828; Angew. Chem. 2019, 131, 7905–7910.
- [16] Q. Zhao, A. Song, S. Ding, R. Qin, Y. Cui, S. Li, F. Pan, Adv. Mater. 2020, 2002450, 1–25.
- [17] Z. Li, T. Liu, R. Meng, L. Gao, Y. Zou, P. Peng, Y. Shao, X. Liang, *Energy Environ. Mater.* 2021, 4, 111–116.
- [18] M. Yan, P. He, Y. Chen, S. Wang, Q. Wei, K. Zhao, X. Xu, Q. An, Y. Shuang, Y. Shao, K. T. Mueller, L. Mai, J. Liu, J. Yang, *Adv. Mater.* 2018, 30, 1–6.
- [19] J. Ding, Z. Du, L. Gu, B. Li, L. Wang, S. Wang, Y. Gong, S. Yang, Adv. Mater. 2018, 30, 2–7.
- [20] D. Kundu, S. Hosseini Vajargah, L. Wan, B. Adams, D. Prendergast, L. F. Nazar, *Energy Environ. Sci.* 2018, 11, 881–892.
- [21] Q. Pang, C. Sun, Y. Yu, K. Zhao, Z. Zhang, P. M. Voyles, G. Chen, Y. Wei, X. Wang, Adv. Energy Mater. 2018, 8, 1–9.
- [22] F. Wan, L. Zhang, X. Dai, X. Wang, Z. Niu, J. Chen, Nat. Commun. 2018, 9, 1–11.
- [23] T. Wei, Q. Li, G. Yang, C. Wang, J. Mater. Chem. A 2018, 6, 8006-8012.
- [24] H. Luo, B. Wang, F. Wang, J. Yang, F. Wu, Y. Ning, Y. Zhou, D. Wang, H. Liu, S. Dou, ACS Nano 2020, 14, 7328–7337.
- [25] X. Liu, G. Xu, Q. Zhang, S. Huang, L. Li, X. Wei, J. Cao, L. Yang, P. K. Chu, J. Power Sources 2020, 463, 228223.
- [26] F. Cui, J. Zhao, D. Zhang, Y. Fang, F. Hu, K. Zhu, Chem. Eng. J. 2020, 390, 124118.
- [27] T. Zhang, Z. Mao, X. Shi, J. Jin, B. He, R. Wang, Y. Gong, H. Wang, *Energy Environ. Sci.* 2022, 15, 158–168.
- [28] R. Fei, H. Wang, Q. Wang, R. Qiu, S. Tang, R. Wang, B. He, Y. Gong, H. J. Fan, Adv. Energy Mater. 2020, 10, 1–11.
- [29] Z. Wang, Y. Wang, G. Wang, W. Wu, J. Zhu, J. Energy Chem. 2021, 62, 552–562.
- [30] J. Zhang, Y. Huang, Z. Li, C. Gao, S. Jin, S. Zhang, X. Wang, H. Zhou, Nanotechnology 2020, 31, 375401.

- [31] G. Divyapriya, K. K. Vijayakumar, I. Nambi, *Desalination* 2019, 451, 102– 110.
- [32] C. Shen, X. Li, N. Li, K. Xie, J. G. Wang, X. Liu, B. Wei, ACS Appl. Mater. Interfaces 2018, 10, 25446–25453.
- [33] S. S. Karade, S. Lalwani, J. H. Eum, H. Kim, J. Electroanal. Chem. 2020, 864, 114080.
- [34] Y. Lin, F. Zhou, M. Chen, S. Zhang, C. Deng, Chem. Eng. J. 2020, 396, 125259.
- [35] M. Narayanasamy, B. Kirubasankar, M. Shi, S. Velayutham, B. Wang, S. Angaiah, C. Yan, *Chem. Commun.* 2020, *56*, 6412–6415.
- [36] C. Yang, F. Lv, K. Dong, F. Lai, K. Zhao, F. Sun, S. Dou, Q. Wang, J. Xu, P. Zhang, T. Arlt, X. Chen, Y. Chen, I. Manke, S. Guo, *Energy Storage Mater.* 2021, *35*, 1–11.
- [37] Y. Jiao, L. Kang, J. Berry-Gair, K. McColl, J. Li, H. Dong, H. Jiang, R. Wang, F. Corà, D. J. L. Brett, G. He, I. P. Parkin, *J. Mater. Chem. A* 2020, *8*, 22075–22082.
- [38] M. S. Javed, H. Lei, Z. Wang, B. Liu, X. Cai, W. Mai, Nano Energy 2020, 70, 104573.
- [39] C. Xia, J. Guo, Y. Lei, H. Liang, C. Zhao, H. N. Alshareef, Adv. Mater. 2018, 30, 1–7.
- [40] D. Kundu, B. D. Adams, V. Duffort, S. H. Vajargah, L. F. Nazar, *Nat. Energy* 2016, 1, 1–8.
- [41] C. Xia, J. Guo, P. Li, X. Zhang, H. N. Alshareef, Angew. Chem. Int. Ed. 2018, 57, 3943–3948; Angew. Chem. 2018, 130, 4007–4012.
- [42] M. H. Alfaruqi, V. Mathew, J. Song, S. Kim, S. Islam, D. T. Pham, J. Jo, S. Kim, J. P. Baboo, Z. Xiu, K. S. Lee, Y. K. Sun, J. Kim, *Chem. Mater.* 2017, 29, 1684–1694.
- [43] P. He, G. Zhang, X. Liao, M. Yan, X. Xu, Q. An, J. Liu, L. Mai, Adv. Energy Mater. 2018, 8, 1–6.
- [44] W. Li, K. Wang, S. Cheng, K. Jiang, Energy Storage Mater. 2018, 15, 14– 21.
- [45] K. Zhu, T. Wu, K. Huang, Adv. Energy Mater. 2019, 9, 1–12.
- [46] J. Li, N. Luo, F. Wan, S. Zhao, Z. Li, W. Li, J. Guo, P. R. Shearing, D. J. L. Brett, C. J. Carmalt, G. Chai, G. He, I. P. Parkin, *Nanoscale* 2020, *12*, 20638–20648.
- [47] P. He, M. Yan, G. Zhang, R. Sun, L. Chen, Q. An, L. Mai, Adv. Energy Mater. 2017, 7, 1–5.
- [48] Y. Cai, F. Liu, Z. Luo, G. Fang, J. Zhou, A. Pan, S. Liang, *Energy Storage Mater.* 2018, 13, 168–174.
- [49] L. Chen, Y. Ruan, G. Zhang, Q. Wei, Y. Jiang, T. Xiong, P. He, W. Yang, M. Yan, Q. An, L. Mai, *Chem. Mater.* 2019, *31*, 699–706.
- [50] W. Tang, B. Lan, C. Tang, Q. An, L. Chen, W. Zhang, C. Zuo, S. Dong, P. Luo, ACS Sustainable Chem. Eng. 2020, 8, 3681–3688.
- [51] X. Dai, F. Wan, L. Zhang, H. Cao, Z. Niu, Energy Storage Mater. 2019, 17, 143–150.
- [52] Z. Pan, J. Yang, J. Yang, Q. Zhang, H. Zhang, X. Li, Z. Kou, Y. Zhang, H. Chen, C. Yan, J. Wang, ACS Nano 2020, 14, 842–853.
- [53] H. Cao, C. Peng, Z. Zheng, Z. Lan, Q. Pan, U. G. Nielsen, P. Norby, X. Xiao, S. Mossin, *Electrochim. Acta* 2021, 388, 138646.

Manuscript received: November 25, 2022 Revised manuscript received: December 25, 2022 Accepted manuscript online: December 26, 2022 Version of record online: January 13, 2023 European Chemical Societies Publishing