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Abstract—This paper presents the development of a low-
complexity wheel slip-based vehicle model for an omnidirectional
vehicle equipped with Mecanum wheels that is suited for optimal
control. Augmenting a vehicle model with wheel slip properties
allows for better trajectory tracking, while the reduced model
complexity allows for manageable parameter estimation and
motion planning with lower computation times. The wheel slip
model and optimal motion planning are validated on an in-house
developed omnidirectional vehicle for three different surfaces.
The estimation procedure of the slip model parameters for
these surfaces is discussed and the effective application of these
models in optimal motion planning is demonstrated. The results
encourage to use simplified wheel slip models in motion planning
problems to keep the computation time low and to increase the
position accuracy, which reduces the need for positional feedback
and fast online motion replanning if slip would occur.

Index Terms—motion planning, friction, parameter estimation,
mobile robots

I. INTRODUCTION

Planning trajectories is an important task for an Automated
Guided Vehicle (AGV). Typically, a motion trajectory de-
scribes the desired pose of the vehicle (position and orien-
tation) as a function of time. Motion planning can generally
be formulated as an optimal control problem (OCP), which
solves for the optimal vehicle pose and motor inputs (e.g.
speed and steering angle) in order to minimize an objective
(e.g. travelling time) and to avoid obstacles, given the system
kinematics or dynamics and taking vehicle limitations (e.g.
maximum velocity or acceleration) into account. Neglecting
physical phenomena or vehicle properties in this model (e.g.
inertia effects, road slope, dynamic weight transfer or wheel
slip) can yield motion trajectories that can only be executed
by the vehicle with a limited accuracy. In the worst case, this
trajectory might even be impossible to execute. This can lead
to unexpected and unwanted behavior (e.g. collisions with
obstacles or drifting) and also complicates the predictability
of the vehicle’s movement by people in the neighborhood,
which might be a serious safety hazard. Currently, most
autonomous vehicles in industry plan their trajectories using
kinematic vehicle models and are restricted in velocity and
acceleration to avoid phenomena like wheel slip and to ensure
safe operation, which increases the economic cost as the AGV
needs more time to travel a certain distance.

This work has been carried out within the framework of Flanders Make’s
SBO project MultiSysLeCo (Multi-System Learning Control). Flanders Make
is the Flemish strategic research centre for the manufacturing industry.

This paper presents a method to handle wheel slip for omni-
directional vehicles during motion planning. In the remaining
part of this introduction we consecutively discuss the concept
of omnidirectional motion, which can be accomplished with
different wheels, the kinematic and dynamic vehicle models
that are available in literature, the concept of wheel slip and
how to properly model the forces between wheel and road. We
also shortly discuss different possibilities to compensate for
possible position errors if wheel slip occurs without modeling
it explicitly.

Omnidirectional movement can be accomplished in many
ways with different arrangements of either appropriately
steered conventional wheels (e.g. active castor wheels) or
special unsteered wheels (e.g. universal wheels and Mecanum
wheels). These three different wheels can be seen in Fig. 1.
This paper considers the motion planning for a vehicle
equipped with four separately driven Mecanum wheels, which
are, unfortunately, very susceptible to slippage. Vehicles with
this type of wheels have been investigated often for industrial
applications [1] and as educational platforms, due to their at-
tractive properties and high maneuverability. Mecanum wheels
also possess some drawbacks such as the complex wheel
design, which causes additional vibrations, and obliquely
oriented wheel/road contact forces. Bayar [2] discusses the
effects of these contact forces on the performance of Mecanum
wheeled vehicles and thoroughly investigates the influence of
the curvature of the rollers on the contact forces.

(a) Castor wheel (b) Universal wheel (c) Mecanum wheel

Fig. 1: Three different types of wheels that allow omnidirec-
tional movement. Pictures from [3]–[5].

Due to the wide range of possible wheel types (e.g. fixed,
orientable, castor or Mecanum) and wheel arrangements for
omnidirectional vehicles, a considerable number of both kine-
matic and dynamic vehicle models are available in literature
and some of them assume the no-slip condition. If slip is



taken into account, multiple techniques could be used to
estimate the model parameters. The following gives a very
concise overview of possible models and estimation tech-
niques, available in literature. The necessity of incorporating
wheel slip in vehicle models for vehicles with over-actuated
wheels, as is often the case for omnidirectional vehicles, is
described by Gracia et al. [6]. They present a kinematic and
dynamic modeling method for any kind of wheeled mobile
robot with slip based on physical principles and the Lagrange
formulation. De Villiers et al. [7] present a dynamic control
model for Mecanum wheels without concerning wheel slip.
Another dynamic model is presented by Williams et al. [8]
for a vehicle equipped with three universal omnidirectional
wheels, including surface slip and they also experimentally de-
termine the coefficients of friction for this model. Gustafsson
[9] estimates tire/road friction for normal tires using wheel slip
computed from standard sensor signals and proposes to use a
parametric model based on experimental results for different
surfaces, like gravel, asphalt and snow. He also points out
that wheel slip might be accurately estimated by comparing
the wheel speed of driven and undriven wheels, although this
does not apply for all-wheel driven vehicles. Han et al. [10]
state that wheel slip is the main source of position errors
of omnidirectional mobile robots with Mecanum wheels and
they introduce a parameter adjustment in the kinematic vehicle
model. Chen et al. [11], finally, estimate the amount of slip
by recursive least squares estimation for a Mecanum-wheeled
vehicle and account for it.

A wheel rolls on a planar surface without slipping, when the
point at the wheel in contact with the ground is instantaneously
stationary with respect to the ground. The wheel angular
velocity and vehicle speed are directly related in this case.
Slipping (in the case of acceleration) or skidding (in the
case of braking) occurs if this condition is not met and the
torque provided by the motor to the wheel will be transformed
only partially into vehicle movement in this case, i.e. the
friction between the floor surface and the rollers is too low
to transfer all forces properly and wheel slip occurs. A tire
model describes this interaction between a vehicle tire and
the floor surface or road profile. The tire forces are calculated
in the tire/ground plane and show highly nonlinear behavior
with respect to the amount of wheel slip. A tire model is
typically given as a mathematical equation characterized by
some dimensionless parameters, of which some even without
a physical interpretation. The tire/road friction coefficient is
the most commonly used model parameter as it describes the
maximum value that the traction force, normalized against the
vehicle weight, can achieve on a given surface for any wheel
slip value. Tire models, which show the relationship between
the normalized force and the amount of wheel slip, are derived
empirically and mostly describe steady-state properties (found
under constant but nonmatching rotational and translational
velocities) as they are found by curve-fitting from experimental
data [12]. These models appear in different forms of which
the following are most convenient and often semi-empirical;
the interpolation of look-up tables, the Dugoff brush tire

model [13], Pacejka’s Magic formula [14] and all simplified
models derived from these models. They differ in complexity
and accuracy and, depending on the purpose (e.g. suspension
behavior, wheel slip, vehicle handling), one might prefer
one model above another. Although the previous described
slip models only describe steady-state behavior, tire force
generation is not an instantaneous phenomenon. Consequently,
multiple transient tire models have been developed, which
become more important when a vehicle is driven at the limits
of its maneuvering capability. Transient tire force behavior is
often described with a (first order) transfer function or defined
by a dynamic tire friction model which attempts to capture
the transient behavior of the tire forces under time-varying
velocity conditions [15].

In general, there are two main techniques to handle wheel
slip, which can also be combined at the same time, namely
modeling wheel slip or correcting the errors that are caused by
wheel slip. The latter avoids procedures to model wheel slip by
error compensation techniques, e.g. by feedback control, and
is typically based on position measurements at an adequate
sampling rate. The amount of feedback needed to keep close
to the trajectory will be significant in the case of excessive
wheel slip and may even deteriorate the results as it could
introduce additional wheel slip. Feedback control is often used
as an error compensation strategy in literature, such as visual
dead-reckoning [16] (as classical odometry is not possible
due to the sensitivity to wheel slip) or position compensation
with additional sensors (e.g. ultrasonic sensors indoors [17]
or GPS outdoors [18]). Another compensating strategy could
be Model Predictive Control (MPC) for its implicit position
feedback. However, in this paper, we focus on improving the
tracking accuracy by including the wheel slip dynamics while
planning the vehicle motion, minimizing the necessity to adjust
for unwanted behavior and without using feedback control.

This paper is structured as follows. Section II presents the
vehicle under investigation and shows how this vehicle can
be modeled kinematically. It also brings wheel slip into the
equations by introducing a parametric slip model with low
complexity. Section III describes the measurement setup and
details how the parameters of the new traction model can be
estimated. In order to improve the motion planning capabilities
with this wheel slip model, Section IV discusses the motion
planning algorithm and compares the optimized solution with
the results found under the no-slip assumption. Additionally,
some experimental results are discussed in this section. In
Section V, conclusions are drawn and possible extensions
suggested.

II. MODELING OF OMNIDIRECTIONAL VEHICLES

The proposed method will be demonstrated on a Mecanum-
wheeled omnidirectional vehicle but can straightforwardly be
extended to all other kinds of vehicle or wheels by small
adaptions or simplifications of the method presented here.
This section describes our holonomic robotic platform and
the kinematic model that is typically used for this vehicle.



Afterwards, the wheel equations are defined and wheel slip is
introduced in order to define the dynamic equations.

A. Holonomic Robotic Platform

The implementation and demonstration of the presented
approach is done on two robotic platforms, in-house developed
by Van Parys et al. [19] and as presented in Fig. 2. Each
platform consists of four Mecanum wheels, each built with
nine small rollers around the rim, directly connected to an
independently driven, battery-powered DC motor. The rollers
are assumed to rotate freely around their axes as they contact
the ground. An Odroid XU4 is the onboard computer that per-
forms the motion planning and pose control. Communication
from a remote device is possible through a Wi-Fi dongle. A
micro-controller implements the low-level velocity control of
the four DC motors and interfaces the encoders and IMUs. As
there is no suspension system foreseen, wheel/road contact
cannot be guaranteed at all time instances. Small irregularities
or an unevenness of the ground surface might lead to additional
inaccuracies, which will not be considered.

Fig. 2: In-house developed holonomic robotic platform.

B. Vehicle Model - Kinematics

The pose of the vehicle can be expressed in a fixed reference
frame with three variables x, y and heading θ, which can be
combined as the robot’s pose p ∈ R3. The corresponding
first-order time derivative is given by ṗ = [vx, vy, ωz]

>

[20]. The kinematic vehicle model of a Mecanum-wheeled
omnidirectional vehicle, with rollers at an angle of ±45°
to the rotational plane, is typically given by the following
relationship between the independent angular wheel speeds ϕ̇i
and the vehicle speed ṗ with r the radius of the wheel (5 cm)
and l and w half of the length (40 cm) and width (30 cm) of
the wheelbase respectively [21]:

ϕ̇1

ϕ̇2

ϕ̇3

ϕ̇4

 =
1

r


1 1 −l − w
−1 1 l + w
−1 1 −l − w
1 1 l + w


vxvy
ωz

 . (1)

All these variables and parameters are indicated on Fig. 4.
Vehicles equipped with omnidirectional wheels allow for spe-
cial maneuverability since it allows both translational mobility
in all directions, as well as rotational mobility. Rotational
movement will not be considered further on, as we limit
ourselves to movements with a fixed heading, i.e. ωz = 0.

TABLE I: Variables used in the wheel equations.

Symbol Unit Description
vslip i m/s sliding velocity vector of wheel i
αi rad angular coordinate of wheel i in the vehicle frame
γi rad orientation of rollers of wheel i (±45°)
d m distance between wheel and vehicle center
r m wheel radius
rr m roller radius
ϕ̇i rad/s rotation velocity of wheel i
ϕ̇ri rad/s rotation velocity of the roller of wheel i
ṗ vehicle velocity in the world frame; [vx, vy , ωz ]>

m kg vehicle mass

C. Wheel Equations and Wheel Slip

Gracia [22] developed kinematic wheel equations, express-
ing the sliding velocity vector, for different types of wheels
using a vector approach of which the following equation
represents the one for a vehicle with Mecanum wheels, aligned
with the vehicle and expressed in a coordinate frame connected
to and directed along the roller, and where we have used the
variables of Table I:

vslip i =

[
R

ri sin(γi) 0
ri cos(γi) rri

]
×

 ṗ
ϕ̇i
ϕ̇ri

 , (2)

with

R =

[
cos(γi) sin(γi) di sin(γi − αi)
− sin(γi) cos(γi) di cos(γi − αi)

]
. (3)

As discussed by Muir [23], it is important to include the
concept of wheel slip at an early stage of modeling as it is
very difficult to fit wheel slip in existing models that start
from the no-slip assumption. By enforcing zero wheel slip, i.e.
vslip i = 0m/s, in this equation, it could be directly simplified
to one of the wheel equations of (1). Since the rotation velocity
of the free rollers ϕ̇ri is uncontrolled and unknown, only the
first row of (2) can be used in practice and the vector vslip i

becomes a scalar value vslip i. Additionally, we assume that
there will be no slip in the rolling direction since the roller can
rotate freely. Hence, all forces will be directed perpendicular
to the rolling direction of the free rollers.

The amount of wheel slip, vslip, also referred to as the
wheel relative velocity or sliding velocity, boils down to the
difference between the surface speed of the wheel, based on
the rotational wheel velocity ϕ̇, and the translational velocity
of the wheel center v. For a standard wheel with fixed
orientation in the longitudinal direction, this is written as:

vslip = rϕ̇− vy. (4)

Consequently, the longitudinal slip ratio, also known as the
slip coefficient τ , is mostly defined as:

τ =


vslip
rϕ̇

, if rϕ̇ ≥ vy (acceleration),

vslip
vy

, if rϕ̇ < vy (braking).
(5)

Tire friction models describe a normalized tire friction
coefficient µ, defined as the ratio of friction force to normal



force. Usually, this is done by a highly nonlinear relationship
as stated in Section I, e.g. the Magic Formula, as can be seen
in Fig. 3 for different road surface conditions [15]. Direct use
of these existing friction models entails multiple drawbacks
or difficulties. A main drawback of these models is the fact
that they only describe steady-state force as a function of slip
ratio. These conditions are never met during driving condi-
tions as both velocities, wheel and vehicle velocity, cannot
be controlled individually. A second drawback, specifically
for the Magic Formula, is the large number of parameters
involved, making it difficult to conveniently identify them, and
the nonlinearities with tedious trigonometric functions. This
makes these friction models impractical or even useless for
online optimal control, as discussed by Canudas-de-Wit et al.
[15].
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Fig. 3: Classical variation of tire/road friction profiles for
different road surface conditions.

Another difficulty with road/tire friction modeling based on
the slip ratio, is the varying definition of the longitudinal slip
ratio to distinguish the cases of acceleration and braking, as
can be seen in (5). A fourth issue entails an undefined slip ratio
if either the vehicle or a wheel is standing still. To cope with
these issues, we propose to use a formulation, which is suited
to be implemented in an optimal control problem (OCP) by
introducing a simplified continuously differentiable friction or
traction model such as a hyperbolic tangent function, as done
previously by Stepanyuk et al. [24]. This model is expressed
as a function of the wheel’s relative velocity vslip as defined
above. This directly solves all described difficulties and, by
proper model choice, uses only two model parameters w1 and
w2, related to the maximum friction coefficient and the slope
of the coefficient in the low slip velocity region:

µi = w1 tanh(w2vslip i) for i = (1...4). (6)

As such, we mainly focus on the dependency of two physi-
cal entities for the friction coefficient, the wheel slip on the one
hand and a quantity that incorporates the surface roughness
and wheel material on the other hand. This (artificial) model
should capture the most important friction characteristics and
approximates all combined friction effects, without being too
complex to be implemented in a motion planning algorithm.

D. Vehicle Model - Dynamics

Fig. 4 illustrates the traction forces that will enable accel-
eration of our vehicle for the chosen configuration of wheels.
The rotating wheel will exert a force Fi along the roller’s
axis, perpendicular to the rolling direction. The contact point
between the roller and the ground moves as the wheel rotates
from one side of the wheel to the other. This displacement
might introduce additional vibrations and unmodeled vehicle
movement, but is neglected for simplicity. The summation of
all these individual wheel forces, which depend on the wheel
relative velocity of each wheel, produces a total force which
can be in any direction. As such it allows the vehicle to move
in any desired direction.
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Fig. 4: Sketch of the vehicle with all contact forces between
vehicle and floor.

Combining all these equations and assumptions yields the
following procedure to calculate the expected vehicle velocity,
given the individual wheel speeds and current vehicle velocity.
Firstly, we calculate the amount of wheel slip, vslip i, for each
wheel independently based on (2). Secondly, we calculate the
transferable force Fi based on the traction coefficient for this
specific amount of wheel slip for every wheel by using our
friction model (6) and the normal force;

Fi =
mg

4
µi(vslip i) for i = (1...4). (7)

Then, all these forces are projected and summed to yield
the total amount of force in both directions;

Fx = cos
(π
4

)
(F1 − F2 − F3 + F4),

Fy = sin
(π
4

)
(F1 + F2 + F3 + F4).

(8)

As we do not allow any rotational movement of the vehicle
(θ̇ = 0), the resulting moment of these forces should be zero.
Finally, these forces can be integrated to compute the new
vehicle velocity and, if needed, coordinates of the vehicle,
based on the following relationship, after which this procedure
can be repeated:

v̇x =
Fx
m
,

v̇y =
Fy
m
.

(9)



While following this procedure, we assume that we control
the wheel velocities and not the wheel torques. Hence, the
wheel motor torques are not included in our model and we
can directly use the wheel velocities as input variables of our
model. However, as there might be a discrepancy between
the requested and actually realized wheel velocities (as can
be read from the wheel encoders), this should also be taken
into account for motion planning purposes later on. Some
small experiments indicated that the relationship between the
desired and realized wheel speeds is approximately a first order
system, which will be included while planning the trajectories.

III. ESTIMATION OF WHEEL SLIP PARAMETERS

The friction model requires knowledge or estimates of
the previously defined friction parameters w1 and w2. The
procedure to estimate these values boils down to estimating the
amount of traction force during a specific vehicle movement
based on accurate measurements from both the wheel encoders
and a global vehicle position and orientation measurement,
e.g. a camera system, to get the wheel velocities and vehicle
velocity respectively.

A. Measurement Setup

The trajectory of the vehicle is measured by tracking
markers using a Krypton K600 vision system from NIKON
Metrology, as illustrated in Fig. 5. The volumetric (static) ac-
curacy of this measurement system changes with the distance
to the camera and is given as 90 µm + 25 µm/m in the region
of interest (measured between a distance of 3.5 to 5 m from the
camera) [25]. Three noncollinear infrared light active markers,
represented by m1, m2 and m3, are attached to the AGV at
fixed locations. Any led in the field of view of the system is
identified by three calibrated linear CCD cameras, after which
the position of every LED in 3D space is determined through
triangulation at a rate of 100 Hz in the camera frame {k}.

The spatial position of the vehicle in 2D space, represented
by an orthogonal frame {v}, registering the frame’s orien-
tation and position and expressed with respect to the world
reference frame {w}, has to be determined from the position
measurements of the LED markers unambiguously. As stated
previously, these measurements are available in the camera
frame {k}. The data are expressed in the world frame by
rotating it towards the horizontal (world) plane. The angles
for this rotation are based on the (tilted) linear polynomial
surface that fits all data best. Next, all three transformed
marker positions are combined to find the pose of the vehicle’s
center. Additionally, the velocity of the vehicle is calculated
using finite differences on the position.

Three different types of surfaces are used to estimate the
different wheel slip parameters;
• The floor of the robotics lab, which is linoleum-based

and can be considered as slippery.
• A low pile carpet, which is less slippery.
• A piece of rubber sheet, which is used as rough, nonslip-

pery material.
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Fig. 5: The Krypton K600 system uses three cameras to
accurately measure the position of each of the three LED
markers (blue dots) on the vehicle.

B. Friction Coefficient Estimation

The slipping behavior on all three surfaces is investigated by
performing forward and sideward motions at different speeds.
All the measurements are repeated with another vehicle to
check for consistency. The two friction coefficients, w1 and
w2 as defined in our friction model (6), are estimated exper-
imentally for all three surfaces at three different speeds over
the entire speed range. We apply step inputs to move forward
and sideward in both directions, e.g. applying both negative
and positive wheel speeds and compare the vehicle velocity,
measured by the camera, with the actual wheel speeds, mea-
sured by the wheel encoders. Our model assumes a constant
traction coefficient (and thus constant force) at high amounts
of wheel slip, where |vslip| > 0.1 m/s, and this maximal
friction value w1 can be based directly on the acceleration
levels reached during extensive wheel slip. The value for w2

is chosen heuristically for a smooth transition between the
extreme values. We performed multiple experiments starting at
different velocities, which can be zero, low or high and positive
or negative. As the experiments showed, there is no clear
distinction with respect to the starting speed of the experiment,
i.e. the acceleration levels are considered to be independent
from the starting speed.

There were almost no slip effects seen at the lowest speed,
so we removed these ones from our measurements. At medium
and high speed, a lot of wheel slip was present and Fig. 6
shows the boxplots of these results for the three surfaces for
both vehicles. We performed 275 actions at high speed and 152
actions at medium speed. Although there is some spread in the
acceleration (and more outliers in the case of the very slippery
floor), one level of acceleration can be distinguished for every
surface, with no significant differences between the forward
and sideward movement, except for a slightly larger spread
in the case of sideward movement. The traction coefficient
as a function of the amount of wheel slip is visualized in
Fig. 7 for the three different surfaces and Table II summarizes
the constants found and used further on. The rubber surface



TABLE II: Summary of the constants used in the wheel slip
model for three different surfaces.

Surface w1 [-] w2 [-]
Floor 0.093 15
Carpet 0.119 30
Rubber 0.177 30

yields the highest friction coefficient, as was expected, and
only very small differences between encoder wheel speed and
vehicle speed were seen. Fig. 8 compares the measurements
of multiple forward and backward maneuvers on the three
different surfaces at maximum speed with the simulated results
based on the estimated friction coefficients for every surface
and model as above and shows the good correspondence of
the model with the measurements.
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Fig. 6: Acceleration levels for three different surfaces and two
maneuvers, labeled as F(orward) and S(ideward) for vehicle 1
and 2.
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Fig. 7: Traction coefficient vs. wheel relative velocity for three
different surfaces.

IV. MOTION PLANNING

The friction model will be validated experimentally by
implementing it in a motion planning problem, where we
want to track a square path as closely as possible. All wheel
speeds that need to be applied are calculated in advance and
are applied in open loop to the vehicle at a fixed frequency.
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Fig. 8: Validation of the model with estimated parameters for
three different surfaces.

The problem will be formulated as a constrained optimization
problem and solved with Rockit, a software framework to
quickly prototype optimal control problems, developed by the
KU Leuven MECO research team and presented in [26].

A. Optimal Control Problem

The optimal control problem, which solves the motion
planning problem, returns the four wheels speeds, u(t) =
[ϕ̇1(t), ϕ̇2(t), ϕ̇3(t), ϕ̇4(t)]

>, that are needed to follow the
square path as accurate as possible, taking into account
the vehicle model with wheel slip f(q(t),u(t)). The state
vector includes the robot’s pose with its derivative, q(t) =
[x, y, θ, vx, vy, ωz]. We solve this as a time optimal problem,
with T the total motion time, to ensure having the highest
speeds possible, while the vehicle is enforced to stay within
a small corridor around the square path, formally represented
with a distance function dist(). In addition, there are also some
boundary conditions on the states and controls, determining
the vehicle’s initial and final state and the orientation of the
vehicle is constant at 0°. The high level optimization problem
looks as follows:

min
q(·),u(·),T

T

subject to q̇(t) = f(q(t),u(t)),

q(0) = q0, q̇(0) = q̇0,

q(T ) = qT , q̇(T ) = q̇T ,

u(0) = u0, u(T ) = uT ,

umin ≤ u(t) ≤ umax,

qmin ≤ q(t) ≤ qmax,

dist(q(t),path) ≤ ε,
∀t ∈ [0, T ].

(10)

B. Experimental Results

The position of the vehicle while driving around the square
on the most slippery floor is visualized in Fig. 9 with both
the requested path and realized path. This is repeated multiple
times to show the consistency of the performance. We only
include the results on this very slippery surface because the
improvement on the nonslippery surfaces is less pronounced,



as can be expected. Fig. 9a shows the tendency of the vehicle
to drift away on the slippery surface if the wheel speeds are
calculated based on the classical kinematic vehicle model. Ad-
ditionally, the corners are smoothed due to unmodeled wheel
slip while changing driving direction. However, applying the
wheel speeds calculated with the slip model for the floor
surface, results in the behavior of Fig. 9b, where a large
improvement can be seen. As the actual position of the vehicle
is not used to close a feedback loop, this open-loop approach
cannot recover if there would be any error in the position. The
consistency is way better as there is no tendency anymore to
drift away and the square has been tracked more accurately,
especially in the corners.
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Fig. 9: Comparison of the resulting movement of the vehicle
between the classical use of the kinematic vehicle model and
the kinematic model, including the wheel slip model. All
four wheels are driven independently without using position
feedback to correct for deviations.

As stated in the introduction, one could improve these
results even further by combining these feedforward signals
with PI feedback control, where the commanded chassis
velocity is calculated as the sum of the desired velocity (taking
into account wheel slip) at the current time instant plus some
feedback terms proportional to the current position error and,
if appropriate, the time integral of this error. The amount
of feedback needed to keep close to the trajectory will be
significantly less if a proper wheel slip model is used.

V. CONCLUSION AND FUTURE WORK

This paper introduced a new strategy to easily model and es-
timate wheel slip for two-dimensional motion of a Mecanum-
wheeled vehicle. Only two parameters are required to define
the traction force which is assumed to be dependent on the
slip velocity. Through the use of this model in an optimal
control based motion planning, the vehicle can fully exploit
its omnidirectional motion capabilities, both at low speed and
at the limits of maneuverability.

Possible suggestions for future work include incorporating
vehicle rotation, i.e. adding the heading of the vehicle and
developing a dedicated slip estimation technique, that is less
depending on the quality of the (possibly expensive) camera
system. This should allow for easier deployment in industrial
applications with cheaper sensors.
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