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Abstract

Introduction: Past research on Alzheimer’s disease (AD) has focused on biomarkers,

cognition, and neuroimaging as primary predictors of its progression, albeit addi-

tional ones have recently gained attention. When turning to the prediction of the

progression from one stage to another, one could benefit from the joint assessment

of imaging-based biomarkers and risk/protective factors.

Methods:We included 86 studies that fulfilled our inclusion criteria.

Results: Our review summarizes and discusses the results of 30 years of longitudinal

research on brain changes assessed with neuroimaging and the risk/protective fac-

tors and their effect on AD progression. We group results into four sections: genetic,

demographic, cognitive and cardiovascular, and lifestyle factors.

Discussion:Given the complex nature of AD, including risk factors could prove invalu-

able for a better understanding of AD progression. Some of these risk factors are

modifiable and could be targeted by potential future treatments.
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1 INTRODUCTION

Alzheimer’s disease (AD) research has shown that it starts years before

its clinical manifestation as a preclinical stage comprising individuals

with subjective cognitive decline (SCD)1 and cognitively healthy sub-

jects (CH) with positive AD pathologic markers (cerebrospinal fluid

[CSF] or positron emission tomography [PET] Aβ and tau biomarkers).2

When the disease progresses further, individuals eventually start to

exhibit clinical symptoms. Two clinical stages are commonly identified:

mild cognitive impairment (MCI) or ADdementia (AD-d).3 Even though

the cause of AD is still debated, many risk factors have been recog-

nized including age, genetics and cardiovascular factors.4 Recently the

Lancet commission published an updated list of modifiable risk fac-
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tors depicted in Figure 1.5 Various other factors, perhaps questionable,

are assumed to play a protective role against AD development; among

these are exercise andMediterranean diet.6

Several excellent cross-sectional reviews6–10 examined the effects

of genetics, cardiovascular diseases, lifestyle, and neuropsychological

factors on cognition and neuroimaging parameters. Some of these

exhibit a complex interaction between the risk of cognitive decline

and AD progression. Because of this, it is imperative to conduct

longitudinal research as evidenced by the intensive use of publicly

available databases with longitudinal neuroimaging, biological, and

behavioral data. Notably, as far as we know, only few review articles

focused on longitudinal changes in imaging biomarkers in AD,11,12

however, they did not address the effect of risk factors on longitudinal

changes in brain structure and/or function when it comes to AD

progression.

Alzheimer’s Dement. 2023;1–11. wileyonlinelibrary.com/journal/alz 1
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2 HRAST ET AL.

F IGURE 1 List of modifiable risk factors for dementia adapted
from 2020 report of the Lancet Commission5

In the current review,weaddress this gap and summarize the results

of studies that investigated the effects of different risk/protective

factors on longitudinal changes in brain structure or function. In addi-

tion to the widely known risk/protective factors, we also included less

researched risk factors to widen the pool of factors that could provide

valuable insights into the progression of the disease.

2 METHODS

We conducted a systematic literature search in PubMed, Google

Scholar, PsychINFO, and MEDLINE of articles published in English

between January 1990 and June 2022. These databases were selected

because of their broad coverage of the biomedical science literature

and their suitability for conducting systematic literature searches. In

addition, Google Scholar was added because it accesses gray literature

and can thus be considered a suitable additional source of evidence.

Search terms used included combinations of terms described in the

SupplementaryMethods.WeusedMESHtermsandBooleanoperators

and excluded review papers and meta-analyses. Articles that consid-

ered longitudinal/serial neuroimaging recordings and protective/risk

factors as independent variables were considered and included. For

transparency’s sake, we adhered to the list of modifiable risk fac-

tors published by the Lancet commission (depicted in Figure 1).5 In

addition, we also performed hand searches based on reported cita-

tions identified to be of interest. The selection process is illustrated in

Figure 2.

All included studies relied on longitudinal neuroimaging, with the

majority using magnetic resonance imaging (MRI). For this study, no

consent from human subjects was necessary. Demographic and design

characteristics of included studies are summarized in Table S1. In

addition to neuroimaging biomarkers, other variables were used to

explain differences in neuroimaging. Most studies used data from

publicly available longitudinal databases. Table S2 lists the longitu-

dinal databases used in these studies, the most popular one being

RESEARCH INCONTEXT

1. Systematic Review: The authors conducted a system-

atic search using traditional and gray literature sources.

While longitudinal studies using neuroimaging are on

the rise, less is known about Alzheimer’s disease (AD)

risk/protective factors and their impact on AD progres-

sion.

2. Interpretation: Our review looks at well-researched risk

factors such as age and sex, cognition, genetics, and cere-

brovascular factors and how they impact neuroimaging.

However, less researched factors such as neuropsychi-

atric ones and protective factors such as lifestyle could

also be relevant for predicting AD progression. Addition-

ally, the review provides an overview of publicly available

longitudinally-collected neuroimaging data.

3. Future Directions: The review hopes to encourage

researchers to use publicly available neuroimaging

databases and to consider the effect of risk/protective

factors in their study designs. Creating effective inter-

ventions based on lifestyle factors could not only bemore

attainable but also avoid many other aversive health

conditions and improve the overall quality of life.

ADNI (Alzheimer’s Disease Neuroimaging Initiative) (http://adni.loni.

usc.edu/) with various AD biomarkers.

2.1 Reported risk/protective factors

2.1.1 Genetic factors

Late-onset (or sporadic) Alzheimer’s disease (LOAD1) exhibits complex

and heterogeneous genetics. More than 10 genes are currently known

to increase the risk of LOAD, with the apolipoprotein E (APOE) being

the main gene involved in packaging cholesterol and other lipids and

transporting them through the bloodstream.13

APOE: There is an ongoing debate whether or not APOE-ɛ2 plays

a protective role against LOAD,14–16 while it has already been proven

that APOE-ɛ4 increases the risk of AD development. Every additional

allele of APOE-ɛ4 increases the risk of AD development by a factor of

3.16 However, the mechanism behind its effect on AD development is

not entirely clear. In addition, the APOE genotype has been shown to

modulate the clinical phenotype of AD. The majority of studies, how-

ever, stipulate thatAPOE-ɛ4positivity increases atrophy rate in tempo-

ral (specifically affecting hippocampus), frontal, parietal, and occipital

cortices,14,17–19 reduces natural hippocampal asymmetry,14 increases

white matter (WM) impairment over time (increase in WM hyperin-

tensities, WMH),16 especially in amyloid-positive individuals,20,21 and

1 From here onwards LOAD, sporadic AD, and ADwill be used interchangeably.
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HRAST ET AL. 3

F IGURE 2 Flowchart of selection process. Flowchart showing the
article selection process from the identification, the eligibility criteria
to the articles included in the review. The used keywords and search
terms are listed in the SupplementaryMethods – Search Strategy

decreasesmetabolism in frontal, temporal, and parietal cortices.22 Fur-

thermore, the effect intensifies with the number of APOE-ɛ4 alleles

present: homozygote APOE-ɛ4 carriers would have a steeper decline

compared to heterozygotes carriers and the latter a steeper decline

compared to non-carriers.19 Soldan et al.23 also showed that more sig-

nificant left amygdala volumeatrophywasassociatedwith a faster time

to onset of clinical symptoms in APOE-ɛ4 carriers. Amyloid-positive

APOE-ɛ4 carriers also display accelerated medial temporal lobe (MTL)

atrophy which is indicative of a faster disease progression. Specifically,

MCI patients that progressed toAD-d have significant cortical thinning

in regions implicated in AD.24 Despite acting throughout the entire

clinical spectrum (MCI, andAD-d stages), theeffect ofAPOE-ɛ4onneu-
roimaging changes interacts with the clinical manifestation of AD. It

has been repeatedly suggested25–27 that the role of APOE- ɛ4 positiv-

ity in both neuroimaging and clinical changes of AD decreases with the

increased severity of the disease. Namely, in the AD-d stage, the differ-

encebetweenneuroimaging changes, specifically hippocampal atrophy

inpatientswith andwithoutAPOE- ɛ4alleles, is not aspronouncedas in
CHorMCI patients. That being said, it is important to stress that APOE

affects both clinical progression and brain changes in a complex way

during all stages of AD, even though for earlier stages more than for

later ones.

In addition to APOE, several other genes (described in Supplemen-

tary Note 1) influence AD progression.

2.1.2 Demographic factors

Cross-sectional studies repeatedly showed the effect of demo-

graphic variables on both brain structure/function and cognition of

individuals.28 However, their effect on thediseaseprogression rate and

the possible conversion from one disease stage to another (e.g., MCI to

AD-d) is less investigated, and the results are not always in line.

Age: It has been repeatedly shown that, with age, the brain under-

goes atrophy, specifically in medial temporal, prefrontal, and supra-

marginal cortices and the operculum.29,30 However, the association

between age and atrophy rate is complicated and shown to interact

with the individual’s sex 15,31 and clinical status.30,32–35

Reviewed studies point towards a different relationship between

baseline age and structural changes in the brain forMCI and earlyAD-d

patients, compared to CH. A negative correlation between cortical

atrophy rate and patient age was observed inMCI and AD-d, the latter

to a lesser degree,30,32–34 while a positive correlationwas observed for

CH.32,34 This pattern concerned widespread cortical areas in addition

to the hippocampus and amygdala for some studies30,32,33 while for

other studies it was more concentrated in posterior regions.34 Fiford

et al.34 found that atrophy rate and atrophy pattern differed with age

between CH, MCI, and AD-d patients. In particular, greater atrophy

rates of the whole brain and the hippocampus were observed in young

AD-d patients and greater volume loss in posterior and posteromedial

regions compared to older AD-d patients. Older MCI converters

displayed 2%-3% faster atrophy rates than non-converters in the

temporal lobes.33 The trend was the opposite for CH, with younger

ones exhibiting less hippocampal atrophy than older ones. Similarly,

Chang et al.30 observed a greater atrophy rate in young AD-d patients

in the temporal, parietal, and cingulate brain regions than in olderAD-d

patients. The trendwas the opposite for CH, with older ones exhibiting

a larger annual atrophy rate than younger ones. Younger age of AD

onset is therefore predictive of faster progression of AD.

Sex: The fact that women more frequently suffer from AD com-

pared to men36 would be suggestive of a higher atrophy rate for

women. Even though some extra factors can confound the relationship

between sex and AD risk (e.g., women live longer than men), several

studies support the claim. For instance, when investigating data from

a group combining CH, MCI-, and AD patients, a steeper rate of atro-

phy in medial temporal lobes was observed across time for women

compared to men.33 Furthermore, for MCI and AD-d patients, the cor-

tical atrophy rate for women was higher than for men except for the

hippocampus.32,37 Interestingly, Spampinato et al.38 suggested that

baseline hippocampal volume and APOE status could predict the con-

version of MCI to AD-d with an accuracy of around 72% for women

during 3 years of follow-up. During the same follow-up period, but now

formen, entorhinal cortex andAPOE-status yieldeda similar predictive

value for AD-d conversion.38 Furthermore, women with MCI who did

not convert to AD-d had the lowest degree of hippocampal loss com-

pared to all other investigated groups (men who did not convert and

both men and women who converted into AD-d). These findings pro-

vide additional support to previous claims32,37 on accelerated atrophy

of the hippocampus across time forMCI converting women suggesting

that it indicates disease progression rather than aging. Furthermore,

MCI men with a larger baseline intracranial volume (ICV) showed a

more significant atrophy rate of MTL and increased chance of conver-

sion to AD-d than those with smaller ICV. For women, this pattern was

reversed, though not in a statistically significant manner.37
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4 HRAST ET AL.

There are limiteddata on racial and ethnic disparities inADdevelop-

ment and the effect of menopause on AD progression. The few reports

are discussed in Supplementary Note 2.

2.1.3 Cognitive factors

Given the complex nature of AD, it has proven quite difficult to predict

pathological cognitive decline and to distinguish it from age-related

cognitive decline. Therefore, the characteristics of AD-d patients, that

is, for whompathological decline is observed, could be considered suit-

able predictors of future cognitive decline and progression to AD-d in

CH thatwould differ fromage-related cognitive decline.Multiple longi-

tudinal studies on CH have tried to see if those factors can predict the

pathological decline in cognition and eventually progression towards

AD-d. These studies are an important step in AD research, as individ-

uals at risk can be identified at an early stage and start interventions

such as cognitive training which have shown some potential to delay

the onset of pathological decline.39,40

Brain atrophy, especially MTL atrophy, has been observed with

increasing age, but also in MCI and AD-d patients, and implicated in

the prediction of cognitive decline.41 Multiple studies42–44 have con-

sistently shown that anteromedial temporal lobe brain atrophy volume

at baseline and higher annual rates of atrophy in left MTL are valid

predictors of future episodic memory decline and progression to MCI

and AD-d in 5 years. Additionally, the shift of atrophy rate from the

anterior part of the left MTL to the left temporoparietal association

cortices indicates later clinical diagnosis.43 Martinez-Torteya et al.44

looked at the associations between cognitive measures (global cogni-

tion, episodic memory, verbal memory, executive function) and cortical

atrophy and found that declines in cognitive abilities are concurrent

with a decline in the cortical thicknesses of several brain structures

but mainly hippocampus and amygdala. When it comes to progres-

sion to AD-d, pathological brain changes become apparent along with

cognitive symptoms. Studies have shown that hippocampal volume at

baseline and tests of episodic memory and processing speed are con-

sistently robust predictors of progression.45–47 Measures of executive

function were associated with the speed of conversion to AD-d44 and,

therefore, could be used as predictors. However, those factors are

rarely evaluated jointly for their predictive value. The strongest pre-

dictors of MCI to AD-d conversion in a 2-year follow-up were verbal

episodicmemorymeasures and leftMTL cortical thickness. The decline

in Functional Activities Questionnaire (FAQ) and Trail making Test Part

B explained approximately 50% of the variance in conversion from

MCI to AD-d.48 With this, the authors argue that AD stage diagno-

sis might be mainly influenced by functional decline, not necessarily

complemented by neurobiological decline.

Structural brain changes involve gray matter (GM) and WM.

WMHs in the elderly have been connected with poorer cognitive

performance.49 Pettigrew et al.50 showed that better reading and

vocabulary skills and higher education were associated with lower

WMH volumes in CH that eventually progressed to MCI/AD-d, sug-

gesting the effect of cognitive reserve. Changes in myelinization have

been shown in the fibers connecting regions structurally affected by

AD pathology. Hippocampus-fornix circuitry is essential to episodic

memory consolidation and has been implicated in cognitive decline in

dementia.51 Although the integrity of the fornix decreases with age in

healthy individuals, it can be used as a predictor of the conversion from

MCI to AD-d and even HC to MCI.52 Older age, lesser fornix integrity,

and volume were independently associated with a greater risk of con-

version indicated by a decline in cognitive measures.53 Fornix integrity

was also connected to cognitive measures, where low fornix integrity

and hippocampal/ICV ratio were predictive of decline in general cog-

nition, verbal episodic, and working memory tests over 2.5 years of

follow-up.54 Additionally, fornix integrity was found to be a better pre-

dictor for progression toAD-d thanhippocampal volume.54 Altogether,

these findings hint toward possible early-stage degeneration of the

broader hippocampus-fornix circuit leading to impairments in memory

consolidation.

Functional brain changes inMCI and AD-d have also been observed

to reflect neurodegeneration. Changes in the default mode network

(DMN) connectivity and connectivity of other regions have been

reported in patients with MCI and AD-d.55 Therefore, combined

changes in regional GM volumes and functional brain connectivity

indices are a promising approach for assessing AD progression. Serra

and colleagues56 investigated the patterns of structural and func-

tional brain modifications in MCI converters and non-converters over

a 2-year interval and showed that both groups have widespread GM

atrophy, mainly in the medial temporal lobes and the prefrontal cor-

tex. However, converters had more severe atrophy in prefrontal and

temporal areas and in the anterior cingulate cortex, which is consistent

with the observed worse executive and visuo-spatial skills.56 Reduc-

tions in functional connectivity in frontal DMN areas were found in

all MCI patients but in converters additional reductions in functional

connectivity in the posterior cingulate cortex (PCC) were found. There

were also some increases in functional connectivity, mainly between

the precuneus and other regions of DMN, and angular gyrus and

other regions of DMN, hinting at a compensatory mechanism. Over-

all, combining signs of atrophy in themedial temporal and orbitofrontal

structures with functional connectivity changes in the precuneus MCI

patients that converted to AD-d in 2 years could be identified. Stud-

ieswith FDG-PET have indicated that hypometabolism in the posterior

associative and/or PCCof patientswithMCI is predictive of conversion

to AD-d within 1-3 years.57,58 Hypometabolism in temporal and pari-

etal lobes and verbal episodic memory were identified as predictors

that could distinguish between converters and non-converters over 2

years.59 In contrast, increases in glucose metabolism in parietal and

temporal regions were associated with delayed cognitive decline in

MCI converters with reduced hippocampal volume and could have a

protective effect in at-risk persons (Aβ positive).60

By observing how certain biomarkers change in combination with

manifested clinical symptoms, we can infer information about the dis-

ease trajectory. A study by Han and colleagues61 using the cascade

model of Jack Jr et al.62 as a basis applied linear mixed models to

investigate the temporal relationship between CSFmarkers, structural

MRI, and cognitive measures. They concluded that, in the AD cascade,
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HRAST ET AL. 5

cognitive symptoms are preceded by elevated Aβ and tau levels as

well as changes in brain function and structure; however, the change

in cognition was not related to CSF markers independent of changes

in brain function and structure. Therefore, it is clear that elevated

levels of Aβ do not provide sufficient evidence of clinical AD since

many non-demented, cognitively-intact older adults show CSF, neu-

roimaging, and autopsy evidence of elevated levels of Aβ.63 Another

study64 corroborated previous findings showing that, at different dis-

ease stages, different biomarkers could be related to cognitive decline,

for example, at the MCI stage, Aβ level in CSF, FDG uptake, and hip-

pocampal volume were related to cognitive decline and in AD patients

only FDG and hippocampal atrophy were related. Another study65

came to similar results by showing that longitudinal temporal atrophy

was correlated with cognitive impairment in MCI, and a lower base-

line score on the delayed logical memory test was correlated with a

greater ongoing rateof temporal lobeatrophy,whereas inAD, a greater

baseline cognitive impairment correlated with less ongoing atrophy.

These findings indicated, on the one hand, that Aβ level in CSF declines
prior to the onset of cognitive impairment, while other markers cap-

ture the neuronal dysfunction and injury and changewith disease stage

and severity and, on the other hand, that in AD temporal lobe atrophy

already reached a plateau. Because cognition is considered a mod-

ifiable factor, some researchers tried to postpone cognitive decline

and AD pathology using cognitive training.66 However, most studies

looking at cognitive training consider the outcomes in a shorter time

frame than the cognitive factors discussed in this review. The former,

therefore, are reported in Supplementary Note 3.

2.1.4 Neuropsychiatric factors

Usually, AD is considered to be primarily characterized by cognitive

impairment, yet neuropsychiatric symptoms (NPS) frequently emerge

as well.67 However, in cohort studies on the AD spectrum, psychiatric

patients or patients with NPS are usually excluded.

Depression andapathy: Several longitudinal studies have suggested

that depressive symptoms and apathy in CH and patients with MCI

are linked to an increased risk of developing dementia.68 A signifi-

cant proportion of late-life depression (LLD) patients progresses to

dementia, suggesting that a lower hippocampal volume in LLD patients

might indicate preclinical AD.69 In MCI, a greater ongoing rate of

temporal lobe atrophy was found to be correlated with a higher base-

line depression score.65 Additionally, more significant hippocampal

atrophy and smaller baseline hippocampal volume have been observed

in depressed patients,70–72 which might represent a converging point

betweendepression andAD.DepressedMCI patients also showedear-

lier onset of progression to dementia compared to non-depressedMCI

patients.73 Comparing both groups of MCI patients, a greater volume

loss in the left hippocampus over 2 years was found in depressed MCI

patients.73 These findings imply that depressionand smaller hippocam-

pal volumemight have a synergetic effect that accelerates progression

toward dementia. Additionally, increased frontal lobe and anterior

cingulate cortex atrophy rates have been observed in MCI individuals

with chronic depressive symptoms compared to non-depressed MCI

individuals.74 They also more frequently progressed to AD-d and had

a shorter time to conversion, which was correlated with frontal lobe

atrophy. It is speculated that there is a common neurodegenerative

pathway (dysfunctional fronto-subcortical circuit) for AD pathology

and depression.74 Depressed MCI patients, positive brain Aβ status

and concurrent subsyndromal depression have been shown to have a

higher frontotemporal amyloid load and a faster conversion to AD-d

than non-depressed MCI individuals, suggesting that the former have

a higher risk of developing AD-d.75 Association between changes in

glucose metabolism in medial and lateral parietal regions and apathy

across the AD spectrumhave also been found.76 Associations between

posterior brain regions and apathy might be more important in earlier

stages of AD as opposed to frontal-subcortical structures that appear

to be associated with apathy in later stages of AD.77,78 However, the

possibility that depression inADmight not be a risk factor but rather an

atypical pattern of neurodegeneration cannot be entirely excluded.74

Another neuropsychiatric syndrome commonly present in AD is

psychosis.79 Those findings are described in Supplementary Note 4.

2.1.5 Cardiovascular and lifestyle factors

It has been repeatedly suggested that cardiovascular pathologies,

particularly cerebral small vessel impairment, play a significant role

in AD development.80 However, whether small vessel disease and

WMH, often associated with the former,81 result from AD-pathology,

a causing factor, or an accompanying condition is not yet clear. Never-

theless, its role is gaining increased interest in the pathophysiology of

AD-development.50,82,83

Individualswith cardiovascular risk factors (CVRF) are at higher risk

of cerebral small vessel disease,81 affectingmainly subcortical GM and

WM.84 Research is currently directed towards the longitudinal effects

of CVRF on brain structure andmetabolism.82,83 It has been suggested

that an increasing number of CVRFs is associated with increased brain

damage and progression of the disease. For instance, a widespread

reduction in cerebral blood flow (CBF) for AD-d patients85 and a

decreased cortical thickness in the temporal cortex forMCI patients86

were observed in individuals with multiple CVRFs compared to those

with no CVRFs. At the same time, Lin et al.82 observed a positive asso-

ciation between a combination of several CVRFs that reinforce each

other, namely, high body mass index (BMI), triglycerides, high glucose

level, and hypertension andWM loss in the left hemisphere of CH and

MCI patients, but no association between themetabolic syndrome and

the hippocampal atrophy rate for either group. Similar results were

reported in Lo et al.87 where no associationwas observed between the

level of vascular burden and longitudinal change in glucosemetabolism

in AD-specific brain regions, CSF biomarkers, or hippocampal atrophy

across the clinical spectrum of AD. Both studies support the two-hit

vascular hypothesis of AD,88 implying that vascular burden increases

the vulnerability to AD pathological changes, leading to cognitive

impairment and subsequent AD progression. Specific CVRFs are

further discussed in Supplementary Data 5.
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6 HRAST ET AL.

Perhaps the most modifiable risk factors for AD are the ones that

portray the way we live our lives. When taken into account, they can

improve general health and possibly lower the risk for cardiovascular

diseases, cognitive decline, and dementia.89 Two factors addressed by

a couple of studies are discussed below, other less studied ones are

described in Supplementary Note 5.

Sleep disturbances: Insufficient sleep has been linked to multi-

ple adverse health outcomes, such as cardiovascular morbidity, worse

cognitive functions, increased risk for accidents, and worse mental

health.90 Recent laboratory studies point to a connection between

impaired glymphatic clearance during sleep and the risk of AD

development.91,92 A population-based study investigatingCHwith and

without obstructive sleep apnea (OSA)93 supports these results by

showing an increased amyloid accumulation inOSA subjects compared

to those without OSA.94 Patients with OSA also had an increased risk

and shorter time to progression to MCI and AD-d, especially if they

also had Aβ and tau accumulation.95 The mechanism behind this rela-

tionship is unclear, but research suggests sleep fragmentation93,94 and

transient hypoxia94 during OSA could lead to faster amyloid accumu-

lation in the brain. Sleep disturbances have also been associated with

the risk and progression of AD.96 Nocturnal awakenings have been

shown to be connected to lower locus coeruleus structural integrity.97

This association was especially evident in individuals with elevated

tau in plasma, indicating the possible role of the brainstem nucleus in

preclinical AD sleep disturbances.97

Diet: Diet has been proposed as a risk factor for quite some

time, although not many studies address this factor in combination

with neuroimaging. Walters et al.83 investigated adherence to the

Mediterranean diet in CH and found that higher adherence corre-

lates with slower rates of decline in glucose metabolism in PCC. This

diet, therefore, might have neuroprotective effects in preserving brain

metabolic activity.83 Neth et al.98 compared the effects of a modified

Mediterranean-ketogenic diet (MMKD) and a low-fat American Heart

Association Diet in patients with SCD andMCI. After a 6-week dietary

intervention,MMKD led to a positive change inCSFADbiomarker pro-

file (increase in Aβ and decrease in tau) and increased CBF mainly in

the temporal lobe of both groups, although the effect was greater for

theMCI group. Taylor et al.99 found that a high glycemic diet has some

influence on the cortical amyloid burden. Specifically, when assessing

preclinical subjects with elevated amyloid, a high glycemic diet was

associated with increased amyloid burden in the precuneus, posterior

cingulate, and lateral temporal lobe over 1 year. Studies indicate that

changes in the diet (reduction of carbohydrates, sugar, and glycemic

load) can alter AD biomarkers and therefore influence the progression

of the disease. However, future studies need to determine the relation-

ship betweendiet andADprogression to assess thediets’ effectiveness

as modifying therapy for AD.

3 DISCUSSION

This review looked at AD progression, risk factors, and their asso-

ciation with longitudinal neuroimaging indices. Even though publicly

available AD databases have contributed significantly to the growing

number of neuroimaging studies, longitudinal neuroimaging evidence

in conjunction with AD risk factors is still scarce. Most of the studies

we reviewed were on cognition, genetics, age, and sex, while research

in other areaswas sparse. Given the limited number of studies on some

risk factors, it is imperative to be cautious with their interpretations.

It iswidely accepted that age is a risk factor forADand the reviewed

studies point towards adifference in theeffect of age inhealthy individ-

uals and individuals on the AD spectrum. Young age in MCI and AD-d

patients is associated with an earlier onset and a faster atrophy rate

in predominantly MTL regions. On the other hand, in healthy individu-

als, the relationship is reversed.30,34 Global and regional (hippocampal)

GM atrophy was found in both healthy elderly and individuals on

the AD spectrum.100,101 Because of this overlap between healthy and

pathological aging, it is hard to disentangle one process from the other.

However, assessing risk factors that show different effects on healthy

and pathologic aging could aid in establishing the distinction. Neu-

roimaging evidence supports the observation of higher incidence of

AD in women,36 showing that they have higher MTL atrophy rate than

men.32,33,37 Moreover, hippocampal atrophy has been further inves-

tigated, suggesting that greater hippocampal atrophy in MCI women

is linked to progression to AD-d.38 These findings highlight the need

for inclusion of female-specific risk factors, such as menopause, in the

studies more often, as they affect AD progression.102

Declining cognition, one of the AD symptoms, has been researched

extensively. Episodic memory deficits are prevalent in MCI patients,

but other cognitive functions are also impaired with disease

progression.44,45 Specifically, the executive function has shown to be

a good predictor of the speed of AD conversion.44,56 Not surprisingly,

cognitive decline and progression to MCI and AD-d are tightly linked

to temporal lobe atrophy and also to frontal lobe atrophy.29,41,43,44,103

The most well-established predictor of progression is hippocampus

atrophy, although other effective predictors have been proposed, for

example, fornix integrity.53,54 Finding additional relevant predictors

could provide insight intoADprogression andoffer the possibility of an

early detection of pathological changes. When considering cognition

as a modifiable risk factor, knowledge of the long-term effects of

cognitive interventions is lacking. Studies on cognitive training show

promising results in slowing down AD progression, especially earlier

in the disease39,40,104 ;however, to chart these benefits, long-term

effects need to be studied further, possibly by involving neuroimaging

biomarkers.

The vascular hypothesis of AD has played an important role in AD

research, and a substantial amount of research has investigated the

effects of CVRF on AD risk and progression. Currently, increasing

attention is dedicated to specific metabolic markers, not just syn-

dromes (e.g., hypertension). We hope that the detailed mechanisms

with which CVRF influences the progression of AD will be uncovered

and effective interventions developed. AddressingCVRF could demote

other adverse health effects, improving overall health and possible

postponing AD progression.

Researchers have by now almost systematically included APOE

gene testing in their research on AD, as it has been consistently shown
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that APOE-ɛ4 carriers are at higher risk for AD development and

progression than non-carriers. Furthermore, the genetic status has

been observed to influence the effect of other AD risk factors (i.e.,

CVRF), enhancing their effect onAD risk and progression.105,106 These

data led some authors to argue that reporting genetic test outcomes

to study participants could empower them to reduce their risk for

AD by improving modifiable risk factors such as CVRF.106 However,

relying only on one gene to explain the large variability in AD rate

of progression and prognosis is ill-considered, and a few promising

SNPs have already been identified as helpful in predicting AD risk and

progression. From the reviewed findings, we can conclude that genetic

status affects the clinical manifestation of AD and brain changes in

complex ways that are still under investigation. An individual’s genetic

status might play a role in detecting AD progression. However, this

role is limited and mainly pronounced in the transitional stages of AD

development, such as MCI. Once the process transits to AD-d, genetic

status, including APOE-ɛ4 status, is only of limited value.

From the limited number of longitudinal studies done on NPS and

neuroimaging in the AD spectrum, it is clear that not enough atten-

tion has been devoted to the research of NPSs as risk factors for AD.

The reviewed studies imply that depression and hippocampal atrophy

have a synergetic effect onADprogression.65,71,73 Treating depression

also appears to have a beneficial effect on hippocampal atrophy and,

therefore, a possible postponement of the onset of AD and progres-

sion to AD-d.107 However, when it comes to psychosis, studies indicate

it to be less modifiable than depression when it comes to pharmaco-

logical treatment.108 The lack of studies including NPS is surprising

as these symptoms are perceived as a greater burden to patients and

caregivers albeit that, in most cases, they can be treated relatively

successfully with a beneficial effect on AD progression. All mentioned

studies agree that serial neuropsychiatric testing needs to be imple-

mented, especially in MCI individuals at-risk, to monitor and assess

disease progression.

By far, the scarcest number of studies are those that address

lifestyle factors, such as exercise, diet, sleep, smoking, and substance

use. However, in recent decades the interest in these factors has been

increasing. Interestingly, our search returned no longitudinal studies

on alcohol consumption and AD progression. Alcohol consumption

is associated with cognitive impairments, and some longitudinal

studies have suggested that heavy alcohol consumption is associated

with faster progression of AD.109 The importance of sleep has been

gaining attention recently, and it is not surprising that researchers

have looked into the connection between sleep and health outcomes.

Findings suggest disturbances directly affect the disease’s pathological

mechanisms.94,95 Exercise, physical fitness, and a healthy diet are

some of the protective factors linked to better health outcomes.

Not surprisingly, when researched in the context of AD, connections

between physical fitness and structural brain changes are found.110

Interventions concerning fitness and diet seem attainable; however,

more clinical trials and intervention studies need to be conducted to

assess their effectiveness. Creating effective interventions to modify

AD risk based on lifestyle factors could also avoid many other aversive

health conditions and improve overall quality of life.

3.1 Future directions

From a methodological viewpoint, there are new developments that

might ramify in several areas of AD research. One such development is

the use of machine learning/deep learning to unveil potential biomark-

ers and risk factors aswell as patterns or relationships in neuroimaging

data. There exist several longitudinal studies that rely on such meth-

ods in predating/modeling AD, which are well-presented in a recent

review paper.111 It is expected that such methods can generate com-

plementary or even new evidence to the body of knowledge acquired

with traditional statistical methods.

There are two areas of research that seem important in light of

the discussed risk factors: temporal dynamics of risk factors and

the role of risk factors in disease modifying therapies. The tempo-

ral dynamics of biomarkers has been addressed in several studies,

and covered in our review, however, the dynamics of how risk fac-

tors affect AD progression has been far less researched. We suspect

this will become increasingly researched in the near future. Disease

modifying therapies for AD is a topic relevant not only for patients

but also for researchers. However, because of its recency, not many

studies have looked into the involvement of risk factors as research is

focusing on the effectiveness of therapies in a clinical setting and on

AD biomarkers as they are essential for the early application of such

therapies.112 Given the recent attention on risk factors, we speculate

that more insight will be gained in their effect on disease modifying

treatments.

4 CONCLUSIONS

In combination with clinical findings, neuroimaging and risk/protective

factors are essential to further our understanding of AD and its pro-

gression. Given the complex nature of AD, longitudinal research is best

suited to disentangle the relationship between those factors. Addi-

tionally, the large cohort databases serve a twofold purpose: they give

researchers to access to bigger sample size and improve their findings’

reproducibility.
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