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X-ray computed tomography (XCT) is increasingly being used for evaluating quality and conformance of complex products, including assemblies and 
additively manufactured parts. The metrological performance and traceability of XCT nevertheless remains an important research area that is reviewed in 
this paper. The error sources influencing XCT measurement results are discussed, along with related qualification, calibration and optimization procedures. 
Moreover, progress on performance verification testing and on the determination of task-specific measurement uncertainty is covered. Results of 
interlaboratory comparisons are summarized and performance in various dimensional measurement fields is illustrated. Conclusions and an outlook for 
future research activities are also provided. 
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1. Introduction 

Companies in various sectors (automotive, aerospace, energy, 
medical,...) are increasingly relying on X-ray computed 
tomography to evaluate quality and conformance of complex parts. 
This introduction briefly describes the principle of X-ray computed 
tomography, as a basis for a more elaborate discussion on 
metrological traceability and performance in subsequent sections. 

 
1.1. X-ray computed tomography 

X-ray computed tomography (X-ray CT or XCT) is defined as an 
imaging method using X-ray attenuation through material of an 
object and computer algorithms to reconstruct two-dimensional 
(2D) images of an object, representing cross-sectional slices 
through the object, or three-dimensional (3D) representations of 
the object’s structure, including inner geometries [69]. After 
successful applications in the medical field since the 1970s, and for 
material analysis and non-destructive testing since the 1980s, XCT 
has exhibited substantial growth in more quantitative industrial 
applications such as dimensional quality control since 2005 
([63],[95],[166]).  

 

 
Fig. 1. Main components of an industrial XCT device [94]. 

 
The use of XCT for industrial quality control is typically based on 

so called cabinet XCT systems, which employ X-ray tube sources 
and rely on the principle of X-ray attenuation contrast. Details on 
other X-ray sources (including synchrotron sources and linear 
accelerators) and different  imaging modalities (including phase 
contrast XCT) are given elsewhere [293]. The most common 
architecture of an industrial XCT device is depicted in Fig. 1. X-rays 
are generated inside an X-ray source that relies on the principle of 
a hot cathode tube (Fig. 2). A cathode – usually a tungsten filament 
– generates free electrons due to the thermionic effect caused by 
the flow of electric current. Under influence of an applied potential 
difference, these electrons are accelerated towards a target on the 
tube anode. A set of electronic lenses focuses the beam of 
accelerated electrons onto a focal spot on the anode target. Upon 
incidence on the target, approximately 1% of the electron energy 
is converted into X-ray photons, while the remaining energy is 
converted into heat. Hence, active cooling of the source anode is 
critical to ensure dissipation of this heat.  

 

  
Fig. 2. Schematic representation of a typical hot cathode X-ray tube with a 
reflection target (based on [94]). 
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The emitted X-rays penetrate the workpiece that is mounted on 

a rotation stage, at which point they are attenuated due to a 
combination of material- and energy-dependent interactions, 
including the photoelectric absorption, Compton scattering, 
Rayleigh/Thomson scattering and (at voltages > 1MeV) pair 
production. The attenuation of X-rays follows the Beer-Lambert 
law: 

𝐼(𝐿) = ∫ 𝐼0(𝐸)𝑒
−∫ 𝜇(𝐸,𝑥)𝑑𝑥

𝐿

0
𝐸𝑚𝑎𝑥

0
𝑑𝐸   (1) 

 
where I(L) represents the attenuated X-ray intensity after 
penetrating a path length L, E is the photon energy, and 𝜇(E,x) is 
the energy-specific attenuation coefficient at position x along the 
path of the X-rays. The intensity of the attenuated X-rays is 
quantified with a suitable detector, yielding a projection; also 
referred to as radiograph in the medical field. The rotation stage 
allows projections to be obtained from different angular 
perspectives of the workpiece, which can subsequently be used to 
reconstruct a 3D volumetric attenuation model (for flat panel 
detectors) or 2D cross-section (for linear detectors) using a 
mathematical reconstruction algorithm derived from the inverse 
Radon transform. Each voxel of this 3D model, or pixel of the 2D 
cross-section, is assigned a grey value that is representative of the 
X-ray attenuation incurred within the volumetric extent of the 
voxel [95]. More elaborate descriptions on the X-ray physics and 
reconstruction algorithms can be found elsewhere 
([54],[63],[68],[154],[190],[238]). After subsequent surface 
determination (segmentation), dimensional measurements can be 
performed. The full workflow is illustrated in Fig. 3. 

 

 
Fig. 3. XCT Workflow (based on [276]). 

 

A key advantage of XCT for dimensional measurements over 
tactile or optical systems is its ability to measure the complete 
inner and outer geometry of a workpiece in one single acquisition, 
while enabling simultaneous material defect detection with data 
acquisition times that are relatively independent of part geometric 
complexity (Fig. 4). Limitations of XCT include its dependence on 
numerous influence quantities (Fig. 5), which can result in 
significant issues with measurement traceability and size 
limitations in terms of maximum material penetration (Tab. 1). 

 
 

 

 
Fig. 4. Scanning time as a function of part complexity [73]. 

 
 

 
Fig. 5. Ishikawa diagram for XCT influence factors. 
 
 

 
Table 1 
Examples of material penetration limitations [67]. 
 

X-ray voltage 130 kV 150 kV 190 kV 225 kV 450 kV 

Steel/ceramic 5 mm <8 mm <25 mm <40 mm <70 mm 

Aluminium <30 mm <50 mm <90 mm <150 mm <250 mm 

Plastic <90 mm <130 mm <200 mm <250 mm <450 mm 

 
 

 
1.2. Outline and scope 

Extensive reviews of the potential of XCT for dimensional 
measurements [166] and of its industrial applications [73] are 
provided elsewhere. This keynote will focus on recent advances in 
the metrological performance and traceability of XCT. Sections 2 to 
4 will provide an overview of the error sources influencing XCT 
measurement results. A distinction is made between influence 
factors related to the XCT device and environment (Section 2); 
operator decisions (Section 3); and the data processing pipeline 
(Section 4). Influence factors as well as qualification, calibration 
and optimization procedures are discussed. Subsequently, Section 
5 provides an overview of performance verification tests. Different 
methods for determining task-specific measurement uncertainty 



form the subject of Section 6, which precedes an overview of 
interlaboratory comparisons in Section 7. The latter section 
provides an overview of performance in various dimensional 
measurement applications, including geometry measurements, 
surface measurements, porosity measurements, and composite 
materials measurements. Conclusions and an outlook for future 
research activities are provided in Section 8. 

2. XCT device and environment related influence factors 

This section covers XCT device and environmental error sources. 
While the evaluation of task-specific measurement uncertainty is 
discussed in Section 6, this section focuses on the characterization 
of error sources independently of the final measurement task. Such 
characterizations are requirements for system calibration. In 
addition, to optimize the performance of the XCT system and its 
components and to achieve the specifications of the manufacturer, 
the experiments conducted for testing specific error conditions 
can be followed by the determination of parameters used for 
adjustments of the system. These experiments and adjustments 
are known as XCT system qualification [29]. Elements to be 
characterized and qualified concern the kinematic system (namely 
the relative positions and orientations of source, detector, linear 
axes and rotary axis) and the X-ray source focal spot 
characteristics (position, size, shape and spectral information), as 
well as the distortion and intensity response of the detector. 
 
2.1 Kinematic system 

In an ideal kinematic system, the main axes are determined 
based on the rotation axis of the sample stage and the 
magnification axis, which is defined by the line from the X-ray focal 
spot that intersects the rotation axis orthogonally (Fig. 6). The 
detector is ideally centred and aligned orthogonally to the 
magnification axis and parallel to the rotation axis[90]. The 
reconstruction algorithms assume that the kinematic system 
geometry is ideal or that all positions and orientations of the 
system’s components are accurately known. Discrepancies 
between the assumed and the actual geometry will lead to 
deviations in the reconstructed model. 

 

 
 
Fig. 6. Schematic representation of the kinematic system of a cone-beam 

XCT system (adapted from [229]). 

 
The influence of positional and angular deviations within the 

kinematic system has been widely investigated and is summarized 
in Table 2. Most studies rely on multi-sphere artefacts [64] that 
enable separation of local form deviations, associated with blurred 
edges and image artifacts, and deviations of long, unidirectional 
distances ([5],[91],[167],[194]) (Fig. 7). Position errors along the 
Z-axis (magnification axis) yield uniform voxel size errors, 
implying an unknown scaling of the workpiece model without 
inducing form errors. In contrast, position errors along the X- and 
Y-axes may yield local form deviations in the reconstruction, but 
without significantly influencing unidirectional dimensions 
throughout the volume. Angular misalignments of the detector 

relative to the source-rotation stage assembly concern tilt, slant 
and skew (θ, φ and η respectively in Fig. 6). In the presence of a 
detector tilt, the magnification factor varies along the vertical 
direction of the reconstructed model, yielding dimensional errors. 
Nevertheless, perceptual image quality is little affected, since 
within each reconstructed slice magnification factor variations are 
negligible. The presence of detector slant or skew, however, 
induces important blurring of the edges due to inconsistent 
projection data. Image quality has been shown to be especially 
sensitive to uncorrected detector skew, yielding pronounced form 
deviations in reconstructed spheres. 

The length scale of XCT reconstructed volumes is provided by the 
voxel size, whose determination is, therefore, fundamental for 
establishing the metrological traceability of XCT dimensional 
measurements. In general, the voxel size is given by the detector 
pixel size divided by the magnification factor, which is the ratio of 
the source-to-detector distance (SDD) and the source-to-rotation 
axis distance (SRD) (See Fig. 6). For aligned XCT systems, the voxel 
size can then be calibrated by determining the SDD and the SRD 
prior to reconstruction or by applying different methods [95]. E.g., 
Illemann et al. [132] use a printed circuit board (PCB) with a 
calibrated grid of circular holes to determine the actual 
magnification factor from the ratio of the projected and the 
calibrated hole positions. The same PCB was used to establish the 
alignment of the rotation axis with respect to the detector, from 
the analysis of the trapezoidal distortions of the projected hole 
grid. Two X-ray projections of the PCB, acquired at 180° angular 
displacements of the rotary stage, allow separation of the tilts and 
offsets of the rotation axis from those of the PCB. In a later paper 
Illemann et. al. used a thin foil made of invar containing an etched 
hole grid instead of the PCB [134]. 

When the detector is aligned orthogonally to the magnification 
axis and the magnification axis intersects the detector in its 
geometrical centre, the SDD and the SRD can be individually 
determined (in addition to their ratio) from the X-ray projections 
of a calibrated artefact acquired at multiple positions of either 
stage or detector ([95],[134]). Illemann et al. [134] allowed 
accurate determination of the focal spot and detector positions; 
showing their dependency on the X-ray spectrum and hence on the 
specific scanning parameters (see Section 3.1), and demonstrating 
the importance of accurate alignment of the critical tube 
components to reduce the variations of the focal spot position at 
different tube voltages. In the case of high-resolution XCT systems 
with a small field of view, Zemek et al. [312] proposed the use of a 
small artefact, with calibrated centre-to-centre sphere distance 
below 1 mm, for determining the SDD and SRD from the 
projections of the artefact acquired at multiple SDDs. 

 

 
 



 
Fig. 7. Influence of detector misalignments on volumetric unidirectional 
distances and on form [91]. 
Table 2 
Influence of positional and angular deviations on unidirectional distances 
and on form deviations. Based on ([5],[91],[96],[167],[194],[229]).  

Error type 
Influence on long 
(unidirectional) 

distances 

Influence on image 
quality and local 
form deviations 

Position error along X Limited Yes 

Position error along Y Limited Yes 

Position error along Z 
Significant with constant 

scale factor in all three 
dimensions 

No 

Angular error along X 
Primarily within 

horizontal planes far 
from the central slice 

Limited 

Angular error along Y 

Primarily within 
horizontal planes; 

limited influence on 
vertical distances 

Yes 

Angular error along Z Limited Significant 

Source drift Limited Limited 

Rotation stage error motion Limited Yes 

 
The length scale can be calibrated also post-reconstruction, from 

XCT measurements of calibrated lengths in the scanned volume, 
followed by voxel rescaling. E.g., Stolfi and De Chiffre [254] 
propose a tubular calibrated artefact to be scanned together with 
the workpiece, hence compressing the time required into a single 
scan process. Other authors, such as Katić et al. [156], proposed 
alternative solutions, where the calibrated lengths are embedded 
directly in the workpiece itself. These approaches using post-
reconstruction corrections of the voxel size are subject to potential 
errors due to a rescaling process that is based on data 
reconstructed from an uncorrected back-projection geometry 
[76]. 

 
Fig. 8. Classification of methods used for determining the geometry of XCT 
systems [90]. 
 

When the detector is not aligned with respect to the rotation 
stage, a pre-reconstruction procedure is essential to evaluate the 
full system geometry needed for accurate scale calibration (Fig. 8). 
To determine the geometrical errors, reference instruments 
including interferometers and electronic levels can be used. The 
Swiss Federal Institute of Metrology (METAS) developed an XCT 
system comprising eight fibre interferometers and five 
straightness sensors for XCT traceability research [38]. 
Alternatively, the geometrical parameters of the XCT system can 
be calibrated by minimization of reprojection errors performed 

from a set of X-ray projections of a calibrated artefact [92]. Then 
the determined misalignments can be corrected either through 
physical adjustment of the system geometry [93] or through 
reconstruction algorithms that consider the misaligned geometry 
in the back-projection [8]. Multiple calibrated artefacts of different 
sizes may be required to achieve high sensitivity to motion errors 
of the sample stage at all magnification positions [96]. A 
parametrisation using seven degrees of freedom (DoF) is sufficient 
when assuming a static XCT system geometry [9]; however, when 
considering a dynamic system geometry, e.g. due to thermal effects 
and drift, a larger number of DoF is required [39]. 

 
2.2 X-ray source and focal spot  

The X-ray source has a major impact on the quality of the 
projections, and hence on that of the XCT reconstruction and on 
dimensional measurements. In Section 3.1, the influences of 
settings directly controlled by the user are discussed, including 
target material, acceleration voltage, current, and hardware filter; 
all affecting the X-ray spectrum produced. The discussion in this 
section will, therefore, be delineated by aspects only indirectly 
influenced by the user, i.e. the electron beam alignment, focal spot 
size, shape and position. 

In the last decades, X-ray sources have undergone considerable 
progress and research activities have significantly improved the 
performances achievable with X-ray tubes. For example, nano-
focus sources enable the investigation of details too small to be 
discerned by micro-focus XCT [293], whereas liquid metal sources 
[173], compact light sources [126], microstructured targets [305] 
and laser-driven sources [109] allow to increase the attainable 
flux, hence reducing the difference between tube and synchrotron 
sources [252]. The following discussion will concentrate on the 
most common type of X-ray source used in industrial XCT – the X-
ray tube with filament cathode and solid anode (see Fig. 2). 

In a typical X-ray tube, the filament, which emits electrons due to 
the thermionic effect, consists of a tungsten wire bent into a V-
shaped knuckle and placed inside a Wehnelt cylinder, which serves 
as an electrostatic lens concentrating the emission of electrons at 
the tip of the knuckle. Therefore, correct positioning and centering 
of the so called ‘hairpin’ filament within the Wehnelt cylinder 
during its replacement is essential [290]. For example, Townsend 
et al. [268] reported a 1 % change in surface areal parameters of a 
measured sample after filament change. Electronic lenses further 
steer and focus the accelerated electrons towards the target. When 
changing the source settings, the electron beam needs to be 
realigned to avoid focal spot shift and associated scatter inside the 
X-ray tube, which degrades the signal-to-noise ratio ([101],[215]). 

A non-ideal focal spot (i.e. with a finite size and possibly a non-
symmetrical shape) yields blurring of the projections, which 
consequently affects the reconstructed 3D models in terms of 
reduced edge sharpness and structural resolution. Specification 
standards, such as EN 12543-5 [86], ASTM E1165 [17], and IEC 
60336 [129], describe the procedures for qualifying the focal spot 
width and height. These procedures rely on a small, detailed 
structures placed in front of the X-ray source and imaged with the 
highest possible magnification; examples of such structures are the 
QRM Micro CT Bar Pattern NANO Phantom, the JIMA mask and the 
Siemens star [29]. Probst et al. [217] applied the inverse Radon 
transform to a series of line spread functions (LSFs) obtained from 
a projection of the Siemens star pattern to reconstruct a 2D 
intensity profile of the focal spot (see Fig. 9). Similar approaches 
have been proposed based on a disk [77]  or a rotating edge [241]. 
Baier et al. [18] furthermore implemented a star-pattern-based 
method for automated evaluation of the modulation transfer 
function (MTF) and focal spot characteristics (Fig. 10). 

 



 
Fig. 9. 2D images of the focal spot reconstructed through the inverse Radon 
transform on projections of a Siemens star pattern at different settings; the 
red arrow indicates a localized intensity variation attributed to the pitting 
of the target material [217]. 
 

 
Fig. 10. Focal spot characterization performed using a star pattern [19]. 
Left: spatial resolution limits (radial scale in micrometres) determined on 
a simulated X-ray projection without noise contribution. Right: same as 
the image on the left but for the flat-field corrected projection with all 
system components contributing to the resolution.  

 
 The shape and position of the focal spot may change during use, 

e.g. depending on the X-ray source settings (i.e. voltage and 
current, and hence power), which are typically varied substantially 
based on the application (Fig. 9). Higher powers demand larger 
spot sizes to avoid target damage due to the increased heat load on 
the target. Electron optics control the focal spot size and position, 
with diameter dilation of 1 µm·W-1 being common [199]. The 
orientation of the target with respect to both the incident electron 
beam and the X-ray window of the source assembly moreover 
determine the effective size of the focal spot, though this design 
parameter is limited by the occurrence of electron backscatter. The 
temperature variation may change the focal spot position, hence 
influencing distances between the different components of the XCT 
device. Also, filament changes result in position changes of the 
focal spot. The influence is largest when scanning at high 
magnification, e.g. with the aim of areal surface texture data 
extraction [268]. Therefore, performing several new qualifications 
(e.g. of the voxel size) is necessary during the use of a XCT system. 

During acquisition, the X-ray tube is subject to thermal 
expansion due to the heat load, which results in the focal spot drift 
([122],[283]). Although the focal spot positional instabilities are 
mainly due to thermal effects, they can also be due to, e.g., unstable 
magnetic focusing inside the X-ray source that produces spatial 
fluctuations of the accelerated electron beam. Typically, external 
cooling can significantly reduce this drift, but does not completely 
eliminate it [216]. Fig. 11 shows the results of measurements of the 
focus drift performed immediately after the warm-up phase of an 
X-ray tube [122]. 

 

 
Fig. 11.  Example of focal spot drift in the horizontal (X) and vertical (Y) 
spatial directions, after an effective warm-up time of approximately 20 
minutes. The dashed lines are least-squares fitted curves that can be 
subsequently used to compensate the drift [122]. 

Different methods can be applied to compensate for the residual 
positional drift. One method is based on the use of a priori 
knowledge, by previous measurements of the focal spot position 
during time, which are then used for predicting and compensating 
for the errors in future XCT measurements ([38],[218]). A second 
method is based on the direct measurement of the temperature at 
the source and on the assumption of a correlation between the 
temperature and the drift ([137],[283]). Another method is based 
on acquiring, together with the rotating object being XCT scanned, 
additional stationary reference objects (e.g. spheres) which can be 
used to determine the positional drift directly on the X-ray images 
(see Fig. 12 and [216]). 
 

 
Fig. 12. Compensation of focal spot drift using stationary reference 
spheres. (top) experimental set-up; (bottom left) reconstructed datasets 
before and after correction; (bottom right) Improvement of Signal-to-Noise 
Ratio for five experimental runs [218]. 

 
2.3 Detectors 

The characteristics of the X-ray detectors are fundamental for 
the quality of the X-ray projections and, consequently, of the 
reconstructed XCT volumes. Many different detector solutions are 
available, ranging from linear (1D arrays of pixels) to flat-panel 
detectors (2D pixel array), and from energy-integrating (i.e. 
producing a signal that is nominally proportional to the total 
energy of all photons deposited within the readout time) to 
photon-counting detectors (which also register spectral 
information, enabling material decomposition by so-called 
spectral XCT) [248]. Details on the different types of detectors, as 
well as on their capabilities and limitations, are available 
elsewhere [63]. Most industrial XCT systems are cone beam 
systems using a flat-panel energy-integrating detector that, in 



most cases, consists of a scintillating layer that converts the X-rays 
into visible light, which is subsequently sensed by a photodetector 
(see Fig. 13). The topics discussed in this section mainly refer to 
flat-panel scintillation detectors. 

  

 
Fig. 13. Schematic representation of the principle of a scintillation detector 
[94]. 

The image quality of the projections, and hence of the XCT 
reconstructions, is dependent on several detector characteristics, 
including number of pixels, pixel size, geometric distortions, 
detection efficiency (i.e. geometric efficiency and quantum 
efficiency), afterglow and internal scatter, pixel cross sensitivity, 
response time and image lag, dynamic range, burn in, and stability 
over time. More detailed information on the detector 
characteristics can be found elsewhere ([63],[68]). In the 
following, some of the key detector characteristics are introduced, 
along with methods for characterizing and correcting them. 

X-ray detectors often have between 1000×1000 and 4000×4000 
pixels. Depending on the number of pixels, to achieve high 
resolution, and hence small voxel size, in cone-beam XCT the 
magnification factor should be sufficiently high, compatibly with 
the size of the investigated sample or part. Therefore, a trade-off is 
required between the voxel size and the field of view (FoV), 
although other solutions are possible using the stitching of 
multiple reconstructed images [170]. Detecting small features 
(such as small topographic features) can be a challenge in the 
typical FoV of medium sized manufactured components. In such 
cases, a possible solution is given by local (region of interest) 
tomography. Scans performed with material outside the FoV can 
introduce significant imaging artefacts yet methods exist to 
compensate; this allows good reconstruction of the geometry 
within the region of interest, although shifts in the contrast values 
are possible ([42],[171],[299]). 

Geometric distortions, i.e. deviations in the actual sizes and 
positions of the detector pixels, can result from problems due to 
the single components of the detector, as well as from the detector 
mounting and stability. To achieve accurate reconstructions, 
procedures have been developed to characterize and correct such 
distortions. For example, Weiss et al. [288] acquired X-ray 
projections of a calibrated grid at several in-plane orientations of 
the detector. An error separation approach was used to 
discriminate errors caused by in-plane distortions of the detector 
from misalignments and deviations of the grid. A detector 
distortion map was then obtained (see Fig. 14), which allowed re-
binning of the subsequently acquired projections, thus correcting 
the determined in-plane distortions prior to reconstruction. A 
more recent study by Lüthi et al. [187] separated in-plane detector 
distortions from out-of-plane distortions (that are also called 
detector topography) placing a calibrated ball plate close to the 
detector to acquire X-ray projections at different detector 
positions along the magnification axis, i.e. at different SDDs. Lüthi 
et al. found flatness errors of approximately 1 mm, which they 
attributed to stresses originated by the detector mounting. The 
maximum distortion due to the flatness error was 0.95 pixels for 
an SDD of 1 m, and it increased for lower SDDs. Additional 

distortions of up to 0.15 pixels originated from detector 
temperature variations of up to 3 °C, confirming that appropriate 
temperature control of the detector can be critical for accurate XCT 
measurements (see Section 2.4). 

Spatial non-uniformity and non-linearity in the output of the 
detector is influenced by several factors, including energy- and 
geometry-dependent phenomena in the detector, thickness 
variations in the scintillator,  and background signals ([22],[160]). 
The overall signal and noise performance of a detector can be 
described by its detective quantum efficiency, measured according 
to IEC 62220-1 ([106],[136]). The latter typically ranges from 2 % 
to 50 % depending on the spatial frequency considered [256]. 
Fourier transform based metrics, such as the noise power 
spectrum and MTF, provide more complex indications of image 
quality [130]. Image lag, causing loss of contrast and resolution, is 
attributed to three steps in the detector operation: afterglow in the 
scintillator, trapped charge in the photodiode matrix, and 
incomplete readout of the photodiodes [122].  

X-ray intensity qualification of flat-panel detectors generally 
includes two corrections: the defective pixel correction and the 
intensity variation correction. The defective pixel correction, also 
called “bad” pixel correction, can be performed by acquiring a 
number of X-ray images taken with the free detector (without pre-
filters and objects in the FoV), which are then used to determine a 
map of the defective pixels; corrections to the identified bad pixels 
are then based on the mean of the neighbouring good pixels [63]. 
The intensity variation correction includes flat-field, dark-field and 
gain corrections. The flat field correction compensates for shading 
due to inverse square dropoff of X-ray intensity from the central 
beam axis. Before applying flat-field or ‘shading’ corrections, 
zingers (i.e. random events of emitted radiation [262]) need to be 
identified and removed, e.g. by determining the differences in the 
intensities of the corresponding pixels in two or more images 
acquired at nominally equal exposures. The elimination of zingers 
from every projection would be demanding, but it is necessary at 
least for those projections used in flat-field corrections, since 
unremoved zingers in such corrections would propagate to all 
projections to which the corrections are applied. Dark-field 
correction concerns residual detector signal when no X-rays are 
incident. Gain correction is used to correct for non-uniformities in 
the detector response, despite uniform incident X-rays. 
Normalized gain correction maps can be produced from observed 
variations in multiple images, using the same X-ray and exposure 
conditions (including tube voltage and filtration) as the test 
measurements [206]. The non-linearities of pixels response can be 
corrected based on multiple gain correction maps, determined at 
different emitted X-ray intensities, realized by piecewise ramping 
of the source current from zero up to the current specified for the 
acquisition, and then finding a gain correction function in the 
entire range of expected intensities, by interpolating the different 
gain correction maps ([169],[232]). 



 
Fig. 14. Detector in-plane distortions determined from the acquisition and 
evaluation of X-ray projections of a calibrated grid [288] (a) Vectorial 
distortion map showing four independent distortion measurements shown 
in different colours. (b) Histogram of the distortion magnitude. (c) X- and 
(d) Y-components shown separately with reference to the colour-coded 
scale between ±0.15 pixels. 

 
Gain corrections and their effectiveness assume that the incident 

intensity of the X-rays is uniform over all the pixels in the flat-field 
image. However, the Heel effect is a typical cause of spatial 
inhomogeneity of the spectra emitted by reflection-target X-ray 
tubes [269]. This effect produces a spatial variation in the X-ray 
source spectrum due to variations in the X-ray path length through 
the target material, resulting in a relatively higher flux of soft X-
rays reaching rows at one end of the detector and a slightly 
hardened beam reaching the opposite rows, as illustrated in Fig. 
15. Non-uniform source intensity is routinely addressed with flat-
field corrections or other correction methods [304], [112]. 
However, such corrections may reduce the sensitivity of the 
detector. Therefore, new source designs can be beneficial to obtain 
higher homogeneity of the emitted spectrum, hence reducing the 
dependence on flat-field corrections and the use of hardware 
filters [269]. 

  
Fig. 15. Heel effect: (top) illustration of the effect produced at an X-ray 
reflection tube; (bottom) diagram reporting an example of X-ray spectrum 
variations characterised at four vertically spaced sections at the detector 
with Section 1 a higher ray (less penetration length hence softer spectrum) 
and Section 4 the lower ray (more penetration, hence harder spectrum) 
[269].  

 
Properly applied procedures for detector pixel correction and 

intensity variation correction can be used to eliminate ring 
artefacts (i.e. image artefacts that are visible in the reconstructed 
volumes as concentric circles of alternating contrast). When ring 
artefacts persist even after such corrections, they can be 
eliminated by other methods, e.g. by translating the detector 
between projections during acquisition [72] or, more commonly, 
by applying software corrections during reconstruction [111] (see 
also Section 4.3). 

The imaging system is subject to drift, as the X-ray intensity at 
the detector is unstable over time. This instability is 
predominantly caused by thermal effects and, to a lesser extent, by 
unstable magnetic focusing inside the X-ray source (see Section 
2.2). Periodic monitoring of the imaging system is used to mitigate 
the effects of such temporal instabilities. Gain corrections 
performed before and after scanning, and possibly their 
interpolation over the scan time, can be used to control drifts in 
gain correction maps. Thermal heating of the detector components 
produces electronic noise and an offset of the pixel intensities 
(dark current), which can be mitigated through background 
subtraction (i.e. subtraction of a mean offset image determined 
from various raw radiographic images acquired without X-ray 
illumination [292]) and through temperature control (see Section 
2.4). 

 
2.4 Environmental conditions 

Temperature is one of the major influences in dimensional 
metrology in general. In XCT, temperature can be even more 
critical than with other coordinate measuring systems (CMS), since 
XCT systems include significant heat sources, primarily the X-ray 
tube (which dissipates approximately 99 % of its energy into heat 
– see Fig. 2), in addition to the detector (which may dissipate heat 
of the order of 100 J/s [40]), motors, drives and electronics. 
Furthermore, temperature variations can yield multiple direct and 
indirect influences on the XCT dimensional measurements: 
thermal expansion and deformation of the workpiece and of the 



machine kinematics, drift of the focal spot (see Section 2.2) and 
changes in the detector response (see Section 2.3). Traceable and 
accurate measurements require thermal stability of both the XCT 
system and the workpiece, as well as solutions to correct or 
eliminate the deviations from the standard temperature of 20 °C 
and the thermal gradients and transients (which can induce critical 
effects such as geometrical distortions). 

Thermal studies have been performed on the X-ray tube [100], 
cabinet [122] and detector [40]. For example, to ensure the long-
term stability needed for a sub-micrometre precision metrological 
XCT system, METAS developed a temperature control system 
managing all heat sources within the radiation shielded cabinet, 
comprising air conditioning, three individual water-cooling 
circuits and thirty calibrated temperature sensors used for 
monitoring and numerically compensating for thermal expansion 
[41]. Good practice is to place thermal sources, such as motion 
controllers and power supplies, outside the cabinet whenever 
possible. The heat generated by the X-ray tube and the detector can 
be removed by liquid cooling systems; otherwise, if only managed 
by the air conditioning, the temperature increase would be of 
several degrees Celsius, as demonstrated by experiments carried 
out at METAS [37]. Traditional X-ray tubes are actively cooled to 
avoid target damage; nevertheless, allowing the XCT system to 
reach a stable temperature before starting a high-precision 
measurement is often essential (see Section 2.2). Water-cooling of 
the detector is not common but has been recommended for 
metrological applications [40]. Temperature has a significant 
impact on the detector performance (see Section 2.3). Kuusk [168] 
reported dark signal deviations of up to 10 % for 1 °C detector 
temperature variations. METAS [40] developed an efficient 
shielded detector water-cooling system that keeps the detector 
mean temperature at 19 °C, as opposed to the 29 °C reached 
without active water-cooling. The main advantage of an optimised 
water-cooled detector is that it not only minimizes the heat flow 
into the XCT system and the consequent thermal and geometrical 
variations, but also strongly reduces start-up times and stabilizes 
dark currents and pixel gains (see Fig. 16). 

 

 
Fig. 16. Average dark grey value across all detector pixels relative to the 
detector average temperature; error bars indicate grey value (vertical) and 
temperature (horizontal) standard deviations across the detector [40].  
 

Other environmental factors are normally less critical than 
temperature. Mechanical vibrations induced from the air-
conditioning or from other external disturbances can reduce the 
precision of XCT results (e.g. due to augmented noise) or can 
impair the success of measurements (e.g. due to motion artefacts 
resulting from sample instability). Cuadra et al. [70] and Panas et 
al. [210] proposed methods to evaluate the measurement 
uncertainty for a single voxel using a measurement model which 
quantifies acquisition-specific noise parameters, including 
mechanical vibrations. Humidity is another environmental factor 
which may influence measurement uncertainty, e.g. through 
material expansion, especially for polymeric parts [55]. A further 

factor is environmental scattering, which depends on the 
characteristics of the X-ray beam and its cone angle, as photons 
missing the workpiece may be deviated by components that are 
within the environment of the XCT system cabinet. Investigations 
show that environmental scattering can contribute significantly to 
the total scattered radiation ([192],[237]). 

3. Influence factors related to workpiece and XCT device 

settings 

This section covers influence factors that are directly controlled 
by the XCT device operator as a function of the workpiece 
properties. It concerns more specifically X-ray source settings 
(Section 3.1), workpiece position and orientation (Section 3.2), 
and number of projections (Section 3.3). Finding the task-specific 
optimal combination of all settings remains a challenge. Therefore, 
a brief review of optimization procedures and a note on the 
influence of further workpiece properties are provided in Section 
3.4 and 3.5 respectively. 
 
3.1 X-ray source settings 

The spectrum emitted by the X-ray source is strongly dependent 
on the source settings and target material (Fig. 17). Metal targets 
with low atomic mass, such as copper and molybdenum, primarily 
produce low-energy X-ray photons, hence are preferred for 
imaging low X-ray absorption materials, such as polymers [157]. 
Tungsten is preferred for highly absorbing materials, as it 
produces a larger share of high-energy photons and has a 
relatively high melting point (see Section 2). 

The electrical current running through the tungsten filament 
(Fig. 2) determines the number of electrons emitted due to the 
thermionic effect, hence the photon count and the eventual 
contrast-to-noise ratio. Care needs to be taken when selecting the 
source voltage and current to ensure that the detector is not 
saturated, as this can negatively impact its long term operation. 

The acceleration voltage applied between anode and cathode in 
the X-ray tube influences the emitted photon energies, with the 
maximum photon energy being proportional to the acceleration 
voltage.  Therefore, the voltage determines the maximum 
penetrable material thickness (See Table 1) while also influencing 
contrast. If the tube voltage is too low for a given measurement 
task, then there will be one or more X-ray trajectories in the 
acquisition that will succumb to insufficient photon transmission 
through the workpiece, a phenomenon known as photon 
starvation. The result is an extremely low signal-to-noise ratio for 
the corresponding projection intensities and subsequent creation 
of so called extinction artifacts in the reconstructed image. 

The polychromaticity  of the photon spectrum is an important 
cause of image artefacts. Conventional FBP reconstruction 
algorithms presume energy-independent attenuation, despite 
attenuation being an energy-dependent phenomenon (see the 
variable E for energy in the Beer-Lambert law, equation 1). The 
consequence of this discrepancy between the polychromaticity of 
the acquisition and the monochromaticity presumed by the 
reconstruction algorithm is the creation of so called beam 
hardening artifacts (see Section 4.1). Hardware filters, typically 
metal plates, can be placed in front of the source to attenuate low-
energy photons, hence narrowing the spectrum. 



 
Fig. 17. Influence of source settings on the X-ray spectrum [213]. 

 
Table 3 
Length measurement errors on full image width induced by measured 
energy-dependent deviations in detector and focal spot positions [134]. 

Deviation Geometrical magnification 
2 10 50 

50µm detector shift 
due to voltage U 

10 µm 2.0 µm 0.4 µm 

100 µm detector shift 
due to filter 

20 µm 4.0 µm 0.8 µm 

10 µm source shift 
due to voltage U and filter 

2.0 µm 3.6 µm 3.9 µm 

 

The actual spectrum emitted by the source can be measured 
using photon counting detectors [260]. This, however, bears the 
drawbacks of experimental setup changes as well as of excluding 
the original detector response. Another approach relies on 
estimating the spectrum based on transmission measurements of 
e.g. a step wedge by using expectation-maximization or truncated 
singular value decomposition algorithms [243], [58].   

Recent research has emphasized additional complexity related 
to spectrum-dependent source and detector positions in XCT 
(Fig.18). Tube voltage, filter material and workpiece material, all 
of which change the spectrum incident onto the detector, were 
each reported to induce variations of 50 µm to 100 µm in effective 
penetration depth for a 600 µm thick CsI scintillating layer 
([133],[134]). Similarly, due to the Heel effect (See Section 2.3), the 
effective position of the focal spot of the full polychromatic beam 
differs from the effective focal spot position of a hardened X-ray 
beam after hardware filtration ([133],[134]). Indications of the 
potential influence on dimensional measurements as a function of 
magnification are listed in Table 3. 
 

 
Fig. 18. Energy dependence of effective focal spot and detector positions [133]. 
 

3.2 Workpiece position and orientation 
The positioning of the rotation stage along the magnification axis 

determines the geometrical magnification, hence the voxel size of 
the reconstructed model, and has a significant influence on the 
structural resolution [306]. In most cases, magnification is 
maximized within the limits of detector coverage. Large 
magnifications enable measurement of small features and 
topographical details, sometimes outperforming optical 
techniques, such as confocal microscopy [307]. Nevertheless, 
Thompson et al. have reported an optimal magnification for 
surface topographical measurements at 20× magnification with 
bias increasing at smaller and larger magnifications and 
repeatability consistently decreasing at higher magnifications 
[266]. This degradation can be attributed to multiple effects, 
including additional noise due to increased X-ray flux per unit 
volume, increased scatter, and focal spot induced blur. 
Magnification is moreover limited by the focal spot size, since voxel 
sizes smaller than the focal spot size yield blurring [256]. 
Villarraga-Gómez showed that larger magnifications are 
associated with reduced bias and uncertainties for bidirectional 

measurements and form measurements (Fig. 19) [275]. Uni-
directional length measurements were less influenced by the 
magnification. 

 
 



 
Fig. 19. Influence of workpiece magnification on measurement 
uncertainties [275]. 
 

The orientation of the workpiece in the XCT device influences the 
required source settings, as well as the presence of scatter, beam 
hardening and Feldkamp artefacts in the reconstructed volume, 
hence the accuracy and precision of the XCT dimensional 
measurements ([113],[279]). Moreover, orientation determines 
potential mounting strategies, which in turn influences stability 
hence measurement uncertainty [231]. Feldkamp artefacts occur 
since circular acquisition trajectories do not satisfy the Tuy-Smith 
data sufficiency conditions, which implies that the commonly used 
filtered back projection method for reconstruction (Section 4.2) is 
only approximate except from the central slice [270]. Particularly 
for large cone beam angles, this approximation yields Feldkamp 
artefacts visible as smeared and noisy surfaces, hence increasing 
the apparent form error of the surface. As a general rule, planar 
surfaces should, therefore, not be oriented perpendicular to the 
scanner’s axis of rotation. In a case reported in [7], optimal 
orientation of the workpiece could reduce the workpiece surface 
area affected by Feldkamp artefacts from 23 % to 0 %. Alternative 
scanning strategies, such as helical scanning, can also eliminate 
Feldkamp artefacts ([4],[120]). An optimal scanning orientation 
moreover minimizes the variance of the traversal path length 
throughout the workpiece during the scan. An extensive 
experimental study on the influence of workpiece orientation has 
been reported in [279] for a set of objects sized between 5 mm and 
70 mm. The authors conclude that, especially for form 
measurements, an optimal orientation can reduce deviations 
compared to tactile measurement results by 40 % to 70 %. 
 

3.3 Number of projections 
The number of projections has a major influence on the 

structural resolution of the reconstructed image, which is 
particularly important when studying pore size, morphology and 
distribution, e.g., in an additively manufactured part ([85],[211]). 
Reconstructions performed from an insufficient number of 
projections yield view aliasing visible as streaks emanating from 
sharp edges in the reconstructed volume [152]. The minimum 
number of projections required for an optimal reconstruction 
result is directly related to the Nyquist-Shannon criterion. For a 
detector row coverage of M pixels, the theoretical minimum 
number of projections equals 𝜋 ∙ 𝑀 2⁄  [54]. Nevertheless, acquiring 
fewer projections can also yield acceptable results, while reducing 
the acquisition time ([277],[287]). 

Sinogram interpolation can be used to virtually increase the 
number of projections of undersampled scans with the aim of 
increasing speed while limiting view aliasing artefacts and loss of 
structural resolution [110]. Körner et al. [161] have shown 

sinogram interpolation based on 40 % to 60 % of the theoretically 
required number of projections to yield promising results for 
characterizing surface topography at significantly reduced 
scanning times. Other approaches are currently under 
development that rely on either machine learning approaches 
([212],[297],[298]) or that employ prior-knowledge in the form of 
a CAD-model as additional information to compensate for a 
reduced number of projections. In the latter case, iterative 
reconstruction methods ([31],[33],[249]) or machine learning 
based approaches [88] are preferred over conventional filtered 
back projection. 

 
 

3.4 Optimization procedures 
The optimal combination of XCT device settings remains a 

challenging task that is largely based on experience and expert 
judgement, leading to large variations as illustrated in Fig. 20. 
Often, extensive experimental studies relying on Design of 
Experiment approaches are performed in order to determine an 
optimal combination of scan settings, e.g. ([85],[211],[266]).  

 
 

 
Fig. 20. Selection of X-ray source settings of two parts by twenty 
experienced operators (based on [13]). 
 

An approach to identify a minimal number of projections 
yielding a sufficient reconstruction quality based on frequency 
analysis has been proposed in [51]. The optimal orientation of a 
workpiece can be found based on its CAD model and analysis of 
associated tolerances. Computationally efficient methods have 
been developed that enable identification of surface regions that 
cannot be accurately reconstructed under given orientations 
([7],[108],[113],[301]). Ray tracing furthermore enables the 
prediction of the variation and maximum of the transversal path 
length during a circular scan. Research on the optimal way of 
combining Feldkamp artefact reduction and transversal path 
length criteria has hitherto not yet been performed [279].  

There have been studies on a number of user support systems 
aimed at identifying optimal combinations of user settings without 
the need for extensive simulations. Schmitt et al. [234] propose a 
case-based reasoning system that identifies similarities between a 
workpiece CAD model and cases stored in a database for this 
purpose (Fig. 21). Giedl-Wagner et al. [103] rely on machine 
learning for identifying similarities. However the need for a large 
training dataset, combined with the need for associated reference 
measurements, hinders the practical applicability of the approach 
[230].  
 
 



 
 
Fig. 21. Structure of knowledge-based system to predict adequate setup 
parameter values [234]. 

 
3.5 Workpiece 

The influence of workpiece properties on the eventual 
measurement result is significant and covered throughout this 
paper. Attenuation properties of the workpiece material, in 
combination with the workpiece size and geometry, influence 
source settings, beam hardening, scatter, among other effects. The 
complex dependence of XCT measurement deviations on the 
workpiece properties complicates, e.g., the definition of suitable 
reference objects for generic acceptance testing, as described in 
Section 5 [28]. 

In addition, surface texture also influences bias between XCT 
measurements and tactile measurements, which are often 
considered as reference. Several authors have experimentally 
determined such bias for turned [43], sandblasted [233], cast [25], 
or additive manufactured parts [3], and demonstrated successful 
compensation. The surface texture parameter Rp was suggested as 
a generalizable offset of the XCT least-squares surface [62], but 
more research is needed here. 

4. Influence factors from the CT data processing pipeline  

The conventional XCT data processing pipeline for performing 
dimensional measurements comprises the reconstruction of a 3D 
grey value model from the set of acquired projections (Section 4.1), 
followed by surface determination (Section 4.2) and final 
measurement (Section 4.4). In between, optional data 
enhancement steps can be applied (Section 4.3). The following 
sections provide a review of the different steps with particular 
emphasis on the influence on measurement performance. 

 
4.1 3D reconstruction 

XCT requires the reconstruction of a 3D voxel model from the 
acquired 2D projections, where each voxel in the model is 
characterized by a grey value representing the local X-ray 
attenuation. The most common approach to tomographic 
reconstruction from 2D projections acquired from a circular 
trajectory use the Feldkamp-Davis-Kress (FDK) algorithm, which 
is an extension of the filtered back projection (FBP) algorithm to 
cone-beam geometry [89]. To reduce noise and avoid image blur 
due to discretized sampling, filters, such as ramp, Hanning, cosine, 
Butterworth, and Shepp-Logan, are applied row-wise to the 
projections prior to back projecting [63]. On low-noise datasets, all 
filters reportedly result in similar reconstructions and thus 
measurement results [255], though Hamming and cosine filters 
have a tendency for reducing structural resolution by as much as 
20 %, when compared to ramp filters, due to high-frequency cut-
offs [46]. Conversely, these filters yield better performance on 
noisy data sets.  

FBP based algorithms suffer from a number of reconstruction 
artefacts due to the underlying approximations [184]. FBP 

reconstruction is known to suffer from beam hardening artefacts, 
due to the assumption of beam monochromaticity. Since low-
energy photons are more readily absorbed than high-energy 
photons, this leads to e.g. cupping artefacts overemphasizing the 
grey values at the edges of the reconstructed workpiece, or streak 
artefacts between highly absorbing object regions (Fig. 22). 
Placing a hardware filter in front of the X-ray source narrows the 
beam spectrum and reduces beam hardening artefacts. Beam 
hardening correction by software is common and remains a field 
of intensive research (Section 4.3). The recent development of 
photon-counting detectors, which preserve the energy 
information of each photon, is also promising; high-energy 
thresholding can subsequently be used to select a narrow band of 
measured photon energies used for reconstruction [80].  

As indicated in Section 3.2, FBP reconstruction based on circular 
acquisition trajectories yields cone beam artefacts. For example, 
the sphericity deviations of the spheres shown in Fig. 23 are up to 
five times higher at the polar regions, which are affected by cone 
beam artefacts. Strategies investigated to reduce cone beam 
artefacts include the use of non-circular scanning trajectories (e.g., 
helical scanning), correction during reconstruction ([11],[23], 
[104],[107],[165]), or iterative reconstruction methods (see 
below). 

Considerable research efforts have been dedicated to the 
development of alternatives for FBP by means of iterative 
reconstruction algorithms that exploit the continuously increasing 
computational power. Based on an initial estimate of each voxel’s 
attenuation value, simulated forward projections are compared to 
acquired projections leading to a subsequent update of the 
estimated attenuation values. This procedure is iterated a 
predefined number of times or until a mathematical condition is 
met. Assuming sufficient computation power, iterative 
reconstruction methods have the inherent capability to consider 
the polychromatic nature of the X-ray beam, finite and 
inhomogeneous focal spots, misalignments and scatter [33]. 

Research is being devoted to the development of novel 
reconstruction methods for non-conventional sets of projections. 
Such research concerns, e.g., incomplete circular trajectories 
comprising only a limited set of projections ([36],[220],[244]) or 
even fully flexible robot XCT scans ([125], [155],[172]). Methods 
are being proposed that enable task-specific identification of the 
set of projections for optimal scan results either before 
([47],[98],[115]) or during the scan ([32],[71]).  

 

 
Fig. 22. Beam hardening artefacts: cupping artefact (top) and streak 
artefact (bottom) [57]. 

 
 



 
Fig. 23. Fit point deviations of an 8 mm sphere with (left) and without 
(right) cone beam artefacts at the polar regions (Courtesy of PTB). 

 
 

4.2 Surface determination 
The XCT reconstruction step discussed in the previous section 

yields a 3D grey-value model, where the grey value of each voxel is 
ideally representing the X-ray attenuation at the voxel position. A 
combination of effects (e.g. partial volume effect, beam hardening, 
scatter, misalignments, finite focal spot) complicates the 
identification of the eventual edge of the investigated components, 
especially in the case of multi-material components with complex 
geometries [46].  

The algorithm used for surface determination has a direct 
influence on bidirectional dimensional measurements, and in case 
of low-quality scans or non-symmetry, also an indirect effect on 
unidirectional measurements. Nevertheless, segmentation 
accuracies reaching below 10 % of a voxel size have been reported 
for mono-material objects under optimal scanning conditions 
([10],[222]). The influence becomes particularly strong in the case 
of complex 3D geometries with varying X-ray penetration lengths, 
where both artefact removal and the definition of the measurand 
become non-trivial. In these cases, surface determination becomes 
one of the most influential factors contributing to the eventual 
measurement uncertainty [267]. 

A growing variety of segmentation methods is being used, 
including global thresholding algorithms that employ a single grey 
value threshold for the entire volume, such as ISO-50 % or Otsu 
[208]; local adaptive thresholding algorithms that rely on an 
assessment of grey value gradients ([59],[302]), or region growing 
starting from a seed until a homogeneity criterion is no longer met 
[35]. An extensive discussion and quantitative performance 
evaluation of thresholding techniques used for nondestructive 
testing and image applications is available from [239]. 
Repeatability of segmentation steps reported in literature is high 
[253]. Local iterative surface determination has been shown to be 
more accurate compared to global thresholding methods for both 
geometrical measurements of mono- and multi-material objects 
[46] and surface texture parameter generation [268] for high-
quality scans. The eventual surface detection of local adaptive 
thresholding as available in commercial software implementations 
has been shown to be robust, though conflicting results have been 
reported on the influence of the chosen starting contour; hence, 
further research is required ([46],[124]). 

 

 
Fig. 24. Effect of number of projections and chosen segmentation 
algorithm on porosity detection. (top) grey-scale images based on a 
number of projections decreasing from 3143 to 99. (middle) Binarized 
images using Otsu segmentation. (bottom) Binarized deep learning 

segmentation (based on [34]). 
 
Recently, deep learning-based segmentation is gaining attention. 

This form of segmentation concerns, in particular, methods to 
identify and segment, e.g., defects, pores or fibres in noisy data sets 
([34],[159]). An example of the potential performance of such 
methods is depicted in Fig. 24. 

 
4.3 Artefact correction and noise reduction 

Throughout the data processing chain, algorithms are applied to 
reduce noise and artefacts, and to enhance the data quality. 
Corrections and enhancements applied to the projections are 
aimed at avoiding the need to propagate the corresponding errors. 
Such algorithms concern, e.g., corrections for defective pixels, pixel 
intensity variations, source drift, and geometric distortion of the 
detector, as discussed in Section 2.3. Reduction methods for major 
artefacts, such as those due to beam hardening and scatter, and 
noise are targeted at different stages: prior to, during, and after 
reconstruction.  

Noise can have an important contribution to measurement 
uncertainty due to its influence on the segmentation of the XCT 
volume.  While the influence on, e.g., sphere centre-to-centre 
distance measurements remains limited due to averaging over 
many points captured on the spheres, probing errors are widely 
believed to be more strongly influenced by noise. An overview of 
quantities influencing XCT image noise and of metrics used for 
assessing noise in XCT can be found in [223]; see also Fig. 25. 
Quantum noise is influenced by source settings, object properties 
and placement, and detector characteristics. Detectors can add 
variable levels of electronic noise. The eventual noise in the XCT 
image strongly depends on the reconstruction algorithm used, 
with some iterative reconstruction methods reportedly 
outperforming FBP methods [316]. Also, the number of projections 
is a key contributor ([34],[277],[313]), so research targets noise 
reduction in the projections, during reconstruction, in the 
reconstructed volume model, and in the segmented surface model 
and point cloud. The challenge concerns reducing noise in a 
computationally efficient way, while preserving edge information 
and not compromising structural resolution [26]. An in-depth 
discussion on the applicability of different filters in the medical 
domain is available from [271]. Overall, better trade-offs between 
noise reduction and structural resolution are reported when 
reducing noise during and after reconstruction, as compared to 
pre-reconstruction filtering [16]. For example, Bartscher et al. [26] 
show that applying a 2D 3 × 3 median filter on the projections is 
promising but does not perform as well as filtering during or after 
reconstruction. Rodriguez-Sanchez et al. [223] conclude that a 
predictable correlation between existing noise metrics and 
dimensional measurement uncertainty values has hitherto not yet 
been established, and that efforts for a combined study of noise, 
blur and artefacts are required, as proposed by e.g. ([185],[197]). 



 
Fig. 25. Main influence quantities of XCT image noise [223].  
 

A common software solution for beam hardening correction 
(BHC) is the process of linearization, which adapts the acquired 
projection grey values into pseudo-monochromatic attenuation 
data [163]. Linearization can be based on prior knowledge, such as 
theoretical assumptions about the spectrum and attenuation 
coefficients or on empirically determined coefficients using a 
dedicated phantom, e.g., a step wedge ([50],[65],[116],[191]). 
Careful consideration of the transferability of presumed 
polynomial coefficients for the envisaged linearization is required, 
since deviating coefficients rapidly worsen eventual measurement 
errors ([56],[74]). Other approaches require no prior knowledge 
but are based on iterative optimization via repeated 
reconstruction and forward projection ([127],[151],[226]). Such 
approaches are currently less applied industrially due to high 
computational demands. Kachelriess et al. proposed a 
referenceless BHC strategy based on cupping artefact reduction, 
requiring only N+1 reconstructions for an Nth order polynomial 
linearization [153]. For objects consisting of multiple materials 
with strongly deviating attenuation coefficients, dual energy 
methods have been proposed ([6],[251]). These methods require 
two scans of the workpiece at distinctly different settings. 
Comparisons of different BHC methods for multi-material objects 
have been published ([27],[56],[183],[221]). It can be concluded 
that strong beam hardening effects risk leading to measurement 
deviations of up to three times the voxel size for geometrically 
simple objects, which can be reduced by adequate BHC by a factor 
between three and ten. For complex geometries, edge detection 
can be severely limited by beam hardening artefacts leading to 
considerably larger deviations if not corrected. 

Since Compton scattering represents a dominant X-ray 
attenuation mechanism in common industrial XCT applications 
[166], the presence of scattered photons onto the detector is 
somewhat unavoidable. Moreover, detector-internal scatter has 
been shown to yield important additional contributions to the 
overall scatter signal [236], followed by radiation scattered by the 
device enclosure. Filters, beam collimation and collimated linear 
detector arrays are hardware solutions to reduce scatter, though 
the latter comes at the expense of severely increased scan time 
requirements. Common software-based scatter correction 
strategies rely on a second set of projections acquired in the 
presence of either a beam stop array (BSA) yielding zones with 
only scatter information, a beam hole array (BHA) yielding 
complementary zones with nearly only primary signal, or a 
modulator with an equidistantly spaced pattern (Fig. 26). Hence, 
estimated scatter contributions are subtracted from the 
projections before reconstruction. In order to avoid the need for 

an additional set of projections, methods have been developed that 
use a moving modulator [235] or beam stopper ([303],[314]). 
Projection data that is missing due to the presence of the beam 
stoppers is then estimated using interpolation. Software methods 
are based on the deconvolution of the scatter affected projections 
by a scatter kernel generated either empirically or through CAD-
based Monte-Carlo simulation ([179],[258],[263]). More recently, 
machine learning based approaches are being developed 
([138],[180]). A comparison between different scatter correction 
methods can be found in [163]. Since scatter yields not only 
increased noise levels but also streak artefacts and cupping effects 
similar to beam hardening [128], it is essential to consider scatter 
in order to avoid over-correction of beam hardening artefacts 
[181].  

Ring artefacts caused by non-ideal detector response can be 
reduced both in the projections – e.g., interpolating adjacent pixels 
or by exploiting the frequency properties of the sinograms 
([202],[261],[282]) – and in the reconstructed volume e.g. 
([214],[245]). A comparative study of ring artefact correction 
algorithms performed at different stages is available in [12].  

A promising new research field is the use of deep learning for 
XCT artefact correction. Würfl et al. showed that reconstruction 
errors of limited angle XCT could be reduced by a factor of two by 
machine learning based determination of weights and filters for 
reconstruction [297]. Euler et al. successfully used deep learning 
techniques for reconstruction based on four projections and prior 
knowledge [88]. Other uses of deep learning concern blocked 
artefact and beam hardening correction ([57],[250],[285]) and 
scatter estimation [188]. 

(a)  

(b)  

 



(e)  
 
Fig. 26. Schemes of a beam-stop array (a,c) and beam-hole array (b,d) 
consisting of a lead sheet with small apertures placed in between source 
and object [236] and modulator (e) [163]. 

 
4.4 Measurement strategy 

Dimensional measurements can be performed after fitting either 
a CAD-model or substitute features, such as planes or cylinders, 
onto the determined surface model. The influences of these final 
measurement steps have been investigated by a number of 
researchers, often in combination with different filtering and 
surface determination approaches (e.g. [124], [162], [193], [198], 
[200], [253]). Eventual measurement accuracy and repeatability 
are highly influenced by the fitting strategy chosen, especially on 
noisy data sets [201].  

5. Performance verification 

Before accepting an XCT system or any CMS, the customer 
performs a series of tests to verify whether the system delivers the 
performance stated in the specifications; this procedure is known 
as performance verification, while the test is called the acceptance 
test. Subsequently, the system performance is checked periodically 
– commonly to a reduced extent – by executing reverification tests 
[29]. It is important that acceptance and reverification tests reflect 
the typical use of the XCT system and encompass the entire 
measurement process. Verifying the dimensional measurement 
performance therefore requires the application of reference 
objects. Section 5.1 provides an overview of the current status 
regarding standardization. Both probing error tests (Section 5.2) 
and length measurement error tests (Section 5.3) are subsequently 
discussed. In addition, the measurement capability of an XCT 
device for small structures, such as edges and slits, is described by 
its structural resolution (Section 5.4).  

 
5.1 Standards 

At present, XCT performance verification is the subject of a 
German national guideline (VDI/VDE 2630-1.3) [272] and of a 
draft international standard ISO/DIS 10360-11 ‘Geometrical 
product specifications (GPS) — Acceptance and reverification tests 
for coordinate measuring systems (CMS) — Part 11: CMSs using 
the principle of X-ray computed tomography (CT)’ [141], which 
has been developed by Working Group 10 (WG10) of ISO Technical 
Committee 213. As consensus could not yet be reached on all 
comments on the DIS, it was recently decided to first create a 
Technical Specification (TS) for performance testing of XCT 
systems. This TS will be based on the latest DIS version but will 
cover different options for some tests.  

The performance verification tests should be executed under the 
rated operating conditions and cover all relevant error sources of 
the tested XCT system, as described in Sections 2 to 4. Whereas the 
test results characterize the 3D error behavior of the overall XCT 
system, they don’t necessarily expose individual error sources. 
ISO/DIS 10360-11 describes two complementary types of tests for 
CMSs using XCT: 

1. The local P-test (probing error) checks the performance of the 
XCT system to measure a surface locally, i.e. within a small 
measurement volume. The local P-test originally was defined to 
characterize the probing system of tactile CMMs [227]. The 
mandatory characteristics “probing form error All” (PForm.Sph.All.j::CT) 
and “probing size error All” (PSize.Sph.All.j::CT) are deduced from 
measurements of ideally perfect spheres (or half spheres), using 
all measurement results, while the parameter “probing form 
dispersion error” (PForm.Sph.D95%.j::CT) is based on using 95 % of the 
measurement data. The index j is a designation of material class of 
the probing sphere and of an obstructive body which shall be 
measured together with the sphere. In ISO/DIS 10360-11 the 
material classes j = Pl for class “plastic”, j = Al for class “aluminium”, 
and j = Fe for class “steel” are defined. The material class Pl is not 
expected to be included in the TS, as sufficiently stable reference 
standards are not yet available. 

2. The global E-test (length measurement error) analyses the 
performance of the XCT system in the entire measurement volume. 
Originally it was conceived to check the translation axes of tactile 
CMMs [227]. The mandatory characteristic “volumetric length 
measurement error” (EVol.j::CT) is determined from length 
measurements between features of spherical or cylindrical inner 
or outer geometries. The index j is again a designation of a material 
class.  

It is expected that these two types of tests will also be included 
in the TS. However, the selection of mandatory and optional 
characteristics may still change. Moreover, characteristics may 
also be deleted or new parameters added in the TS. 

The “maximum permissible error” (MPE) is defined in the ISO 
10360 standards as the largest permissible error or deviation of a 
measurement from a reference quantity value. MPE values are 
specified in data sheets of CMSs [176]. Acceptance and verification 
tests check conformance with these MPE values. The proof of 
conformance with specifications is, however, not a mere 
comparison of test results with MPE values, yet needs to also 
consider the test value uncertainty U. The latter concerns the 
uncertainty of the determined characteristics due to the tester and 
the tester’s equipment (e.g., reference object). The general 
methodology and criteria for determining the test value 
uncertainty are described in ISO 14253-5:2015 [142]. Important 
contributions to U are related to reference objects: e.g., calibration 
uncertainty, geometrical imperfections (e.g. form deviations), or 
incomplete knowledge of its thermal expansion behaviour. If the 
manufacturer data sheet does not specify operating parameters 
(e.g. source settings, reference object, positioning and orientation) 
or details on the functions used for calculating measuring points, 
the tester can choose these freely. 

 
5.2 Probing Error Tests 

Probing error tests rely on the measurement of (arrangements 
of) spheres or spherical caps (called reference standard, Fig. 27) 
together with an obstructive body. The diameter(s) of the 
reference standard must be calibrated, its surface texture and form 
error must be negligibly small, and the material must have suitable 
properties to ensure stable dimensions and an appropriate 
attenuation coefficient. The obstructive body is “an uncalibrated, 
separate piece of material placed next to a reference standard to 
adjust the penetration length of the material seen by X-rays in 
individual projections of a CT scan” [141]. It is made of a material of 
the same material class as the sphere. 

 



 
Fig. 27. Werth® universal calibration sphere (left, [67]) and multi-material 
sphere developed by PTB (right) for testing XCT systems. 

 
First, the unconstrained Gaussian fitted sphere of the measured 

sphere points is determined. Subsequently the form and size error 
are evaluated as follows. The “probing form error All” 
PForm.Sph.All.j::CT corresponds to the range of all radial deviations of 
the measured points from the calculated sphere. The range of the 
radial deviations of 95 % of the measured points from the 
calculated sphere is the “probing form dispersion error” 
PForm.Sph.D95%.j::CT. The “probing size error All” PSize.Sph.All.j::CT 
represents the difference between the measured and the 
calibrated sphere diameter. 

Optional variants can also be determined, for instance, to 
increase the comparability to probing errors of a tactile CMM 
according to ISO 10360-5:2010 [140]. For example, PForm.Sph.1×25.j::CT 
expresses a probing form error determined from 25 measurement 
points on one sphere [42].  
 

5.3 Length Measurement Error Tests 
Length measurement error tests rely on measuring calibrated 

length standards. These can be, e.g., ball rods with two or more 
spheres, ball plates, gauge blocks or step gauges. These length 
standards are measured while located at different positions and in 
different orientations throughout the entire measurement volume. 

According to ISO/DIS 10360-11, the largest test length should 
cover at least 85 % of the (theoretical) longest possible length (line 
segment) that can be contained in the measurement volume under 
test. This requirement is different from other CMS standards, 
which specify the largest test length shall cover at least 66 % of the 
longest possible length. Another difference to existing CMS 
standards is that in ISO/DIS 10360-11 the determination of the 
bidirectional length measurement error is optional. However, 
volumetric lengths do not include all error sources, excluding e.g. 
errors stemming from surface determination. Therefore, these 
issues may change in the TS and future versions of ISO/DIS 10360-
11. 

Length standards employed for the determination of the length 
measurement error E, as well as for determining the scale factor 
for system qualification, most often contain either spheres, 
calottes, or cylindrical features; Fig. 28 provides an overview of 
different length standards in use. 

 

 
Fig. 28. Examples of length standards suitable for XCT [29] a) ball rail 
(Trapet Precision Engineering), b) multi-sphere standard [28], c) hole plate 
[28], d) star probe [21], e) CT tree [199], f) sphere tetrahedron [21], g) 
sphere tetrahedron [177], h) calotte cube [21], i) ball plate [199], j) pan 
flute standard [61], k) cactus standard [158], l) sphere disk (Courtesy of 
Nikon Metrology, Tring, UK), m) multi-material hole cube developed by 
PTB and n) miniature step gauge [55].  
 

 

 
Fig. 29. Step cylinders: (left) standard of NMIJ, Japan with 50 mm max 
diameter and central bore hole [28]; (right) 250 mm standard of PTB 
without central bore hole ([21],[28]). 
 

Step cylinders are applied to assess errors for different external 
test lengths simultaneously and can even comprise a uniform or 
stepped central bore hole to cover internal test lengths (see Fig. 
29). VDI/VDE 2630-1.3 also discusses step cylinders with a central 
bore hole to study material- and geometry-dependent effects. 

 
5.4 Structural resolution 

Data obtained by XCT for dimensional measurements consist of 
one or more discrete sampled surfaces in 3D space. Several 
influence factors limit the resolution capabilities of a XCT system, 
which can be sorted into technological (e.g. focal spot size or 
detector pixel size), physical (e.g. photon shot noise), and 
mechanical (e.g. drift or vibrations) causes. 

In the VDI/VDE 2630-1.3:2011 guideline the term structural 
resolution for dimensional measurements is defined as follows: it 
“describes the size of the smallest structure that can be measured 



dimensionally”. VDI/VDE 2630-1.3:2011 more specifically 
proposes to determine the structural resolution as the diameter of 
the smallest sphere that the XCT system can still measure within 
manufacturer stated error limits. Multiple limitations of this 
definition can be listed as: (1) it does not allow describing spatial 
anisotropy of resolution, (2) it is not transferrable to other CMSs, 
(3) it relies on the availability of a large number of spheres with 
different diameters, and (4) spheres with very small diameters 
down to common XCT system resolutions are difficult to 
manufacture. Therefore, two further definitions of structural 
resolution were proposed in [29]: metrological structural 
resolution (MSR) and interface structural resolution (ISR). 

The MSR is derived from a single curved surface element, that is 
topologically described by either its local curvature or its spatial 
frequency components. The curvature transfer function or the 
MTF then describes the transition from the real profile to the 
measured profile and can be used to determine a single length 
measure denoted as the MSR for dimensional measurements. 
Material standards used can comprise, e.g., a reference object with 
local curvature or radius values (see Fig. 30) [131], or multi-wave 
objects ([15],[16]). The MSR statement relies on a single curved 
surface element, and moreover allows comparison to CMSs relying 
on different sensing principles. 

The ISR assesses the ability of XCT to measure closely converging 
inner surfaces. In analogy to definitions for optical systems, it can, 
e.g., be defined as the minimal distance of parallel planes that can 
still be distinguished using a given criterion [53]. Another proposal 
to determine the ISR is to use two contacting spheres with known 
radii and to assess shape variations due to loss of resolution at the 
contact point of both spheres (Fig. 31) [306]. 

In ISO/DIS 10360-11, the two different types of resolution 
criteria are denoted in an informative annex as resolution type A 
(a form of single-sided surface resolution, single surface resolution 
or metrological structural resolution) and resolution type B (a 
form of double-sided surface resolution, multiple surface 
resolution or interface structural resolution). There is a technical 
report under development in WG 10 of ISO TC 213 to describe the 
resolution approaches in detail, including recent results on this 
topic, such as [135]. A task force was set up in ISO/TC 213/WG 10 
for this purpose. 

 

 
Fig. 30. Reference object for local curvature determination. a) Dimensional 
drawing overlaid over an electron-microscopic image, b) rendered XCT, c) 
exported data detail with fitted radius [29]. 

 
Fig. 31. (top) ‘Hourglass’ standard concept using two spheres for 
determining the interface structural resolution [306]. (bottom) 
Materialisation using a pair of identical ceramic spheres glued onto carbon 
fibre stems and XCT scan [29].  

 
A Stedman diagram situating the performance of XCT in 

amplitude-wavelength space compared to other dimensional 
metrology techniques is shown in Fig. 32. Six XCT key parameters 
were taken into account to generate this diagram: the range limit 
of the component size, the resolution limits (in vertical and 
horizontal direction), and the maximum slope and minimum 
radius of curvature of the surface profiles [268]. 

 

 
Fig. 32. Stedman diagram comparing performance of XCT with other 
dimensional metrology techniques [276]. 

6. Assessing task-specific XCT measurement uncertainty 

Uncertainty is a statistical dispersion of values that can be 
attributed to the result of a measurement [148]. A measurement 
result expressed as a single value corresponding to the estimate of 
the measurand is incomplete without a statement of uncertainty 
surrounding the estimate. Uncertainty determination is a difficult 
task for measurements conducted with any type of CMS, even for 
measurement of a simple geometrical feature, e.g. a smooth 
sphere. Due to the multitude of influence factors (see Sections 2-4) 
and the complexity of many CMS probing strategies, it is often 
impossible to find an analytical expression for the measurement 
model. ISO TC 213 WG 10 has therefore developed multiple 
uncertainty evaluation strategies for contact CMS. However, for 
non-contact CMSs the development of uncertainty evaluation 
strategies remains an important area for further research that is 
reviewed here. 

Demonstrating the traceability of measurements performed by 
CMSs remains difficult too. Formerly traceability was only 



demonstrated by carrying out ISO 10360-type performance 
verification tests on the CMS. It is, however, important to 
emphasize that mere performance verification of the CMS does not 
imply that measurements carried out with this CMS are calibrated 
and/or traceable ([194],[195]). It only validates that the machine 
is meeting its specification with respect to measuring simple 
lengths, i.e., it is not generalizable to all measurement tasks. The 
ISO 15530 series of specification standards describes four 
techniques to evaluate uncertainty of measurements performed by 
a CMS. The first approach is based on the methods stipulated in the 
Guide to the Expression of Uncertainty in Measurement (GUM) 
[149], a second approach uses the comparator principle (often 
referred to as substitution method) and the third approach uses 
simulation [143]. There is also a fourth approach under 
development, namely the multiple measurement strategies 
method, which is outlined in the draft ISO 15530 part 2. The latter 
method is based on measurement repetitions performed while 
varying the measurement conditions (e.g. placing the workpiece in 
different locations in the measuring volume and oriented 
differently relative to the CMS axes). Use of this approach for 
uncertainty evaluation is limited by the feasibility of reorienting 
and repositioning the workpiece in the measurement volume of 
the CMS, and moreover presumes that a significant part of the 
uncertainty is repeatability of the measurement. The four 
approaches have been applied to XCT CMS and are reviewed here.  

The GUM assumes there is a measurement model and then 
propagates the various influence factors for uncertainty through 
the model to give a final statement of uncertainty, with a 
statistically determined level of confidence. In XCT, determining an 
adequate measurement model is challenging due to the large 
number of influence factors, along with their potentially complex 
nature. Nevertheless, there have been several attempts to apply 
the GUM approach to XCT measurements, usually addressing 
elements of the process, rather than the entire measurement 
scenario. E.g., the sensitivity of the detection system (e.g. 
[75],[195]), motion systems (e.g. [194]), workpiece placement (e.g. 
[108]), the surface determination process (e.g. [185]) and the 
effects of noise (see [223]). Despite these efforts, the application of 
the conventional GUM approach to uncertainty evaluation in XCT 
remains a research challenge. 

As discussed in depth elsewhere [278], the GUM usually assumes 
that systematic errors have been corrected where possible. There 
are methods available to take account of uncorrected systematic 
errors, but the large number of potential scenarios can make the 
process complex [259]. As discussed in Section 2 through 4, in XCT 
there are many systematic sources of uncertainty and it is rarely 
possible to adequately determine, quantify and correct them all 
(although there have been attempts to correct for some effects, e.g. 
[187]).  

One relatively common attempt in practice to combine the 
various systematic errors into one term in an uncertainty 
calculation, is to use the MPE (see Section 5). An instrument’s MPE 
is often mistaken for the uncertainty of measurements performed 
on the instrument. Whereas MPE is fundamentally limited from a 
GUM perspective, there have been attempts to use MPE for 
uncertainty evaluation in XCT ([150], [228],[242],[275]), and it is 
often used as one of the contributions to evaluate the uncertainty 
through other methods [255].  

A method to achieve traceability for CMS measurements is 
described in ISO 15530 part 3 [144] and is specifically addressed 
for XCT in VDI/VDE 2630-2.1 [273]. This specification standard 
uses calibrated reference objects, enabling the CMS to act as a 
comparator. The uncertainty evaluation is based on a series of 
measurements on one or more calibrated objects. These 
measurements are executed in the same way and under the same 
circumstances as the workpiece measurements. This is referred to 
as the “substitution method”. The differences between the 

measurement results and the calibrated values of the reference 
object are used for estimating the measurement uncertainty. If, 
e.g., an external dimension is to be measured, one can mount a 
calibrated length bar of similar length adjacent to the object to be 
measured. The latter can then be measured as a comparison. 
Hence, many systematic influence factors will be common to both 
measurements and, therefore, result in a reduced combined 
uncertainty after their correction. Nevertheless, similarity 
conditions mentioned in ISO 15530-3 are not fulfilled completely. 
For CMS measurements on complex parts, uncertainty evaluations 
are usually not performed using the substitution method since the 
costs and efforts for developing a suitable calibrated artefact are 
rapidly exceeding available means. Many groups have investigated 
using the substitution approach to uncertainty evaluation for XCT 
([1],[24],[150],[178],[196],[201],[203],[207],[233],[274]), 
including for porosity measurements [118]. Some common 
conclusions are given below. 
1. It is important to correct systematic effects, especially when it 

is suspected that such effects may differ for the workpiece and 
reference object. Examples include voxel size errors, surface 
determination threshold error and the effect of the surface 
texture. 

2. There is a clear increase in evaluated measurement 
uncertainty when applying the substitution method to inner 
features (e.g. an inner as opposed to an outer diameter) and to 
wall thickness. This is often assumed to be due to increased 
effects from beam hardening and scattered radiation 
(although, interestingly, it has been demonstrated that beam 
hardening and scatter effects can sometimes mutually cancel 
[183]).  

3. The number of repetitions that is required by ISO 15530 and 
VDI/VDE 2630-2.1 (minimum of twenty) is rarely adhered to 
due to the long measurement times for XCT instruments. There 
is consensus that the high degree of averaging in the XCT 
process means that twenty repeats is too high, and this needs 
to be addressed on a case-to-case basis until good practice 
guidance is published [201]. 

4. It is suggested and partially demonstrated that the 
experimental effort can be reduced by relying partially on 
simulation to establish the magnitude of some influence 
factors. 

5. Publications differ in their interpretation of the effects of 
thermal drifts ([44],[100],[150]). More research is required 
here to establish good practice. 

6. There are clear cost implications when a specific reference 
object is needed for every specific measurement object. These 
costs are associated with the production or sourcing of the 
reference object and its calibration. 

Alternatively, a virtual measurement instrument can be used for 
the determination of the task-specific uncertainty of coordinate 
measurements. One such method is based on Monte Carlo 
repetition of a simulated environment and is described in ISO/TS 
15530 part 4 [145]. CMS suppliers as well as third-party 
companies are offering uncertainty-evaluating software known as 
“virtual CMMs” ([20],[99]). However, such software is currently 
only available for contact CMS (although optical virtual CMS are 
under development (see [176],[281]). Virtual X-ray CMS are still 
under development, but early results have been published by 
several authors ([9],[48],[97],[114],[121],[291],[295],[296]). 
Measurement uncertainty is determined using a virtual CMS by 
repeatedly running simulations while varying influence factors on 
the inputs and subsequently determining how these input 
variations affect the measurand. The software hence estimates the 
variability occurring in the physical CMS measurements for each 
point probed. Whereas known systematic uncertainty 
contributions are kept constant, the random and unknown 
systematic contributions are varied in each simulated 



measurement within their uncertainty intervals. By repeating the 
simulations a significant number of times it is possible to obtain a 
statistical evaluation of these virtual measurements, enabling a 
subsequent quantification of the expanded uncertainty. 

The Radon transform, which gives a mathematical foundation for 
XCT reconstruction, models XCT as a linear model where a 
measurement in each pixel is given by the sum of all volume 
elements along a ray from source to the detector pixel. As pixel size 
is much larger than X-ray wavelength and in absorption-contrast 
attenuation dominates over other X-ray-matter interaction 
mechanisms, XCT acquisition can be efficiently implemented using 
conventional ray-tracing used in e.g. computer vision. However, 
this oversimplification is not sufficient to fully reproduce XCT 
acquisition in the virtual environment as it does not take into 
account polychromatic X-ray spectrum, scattering and other 
effects that yield a highly non-linear transfer function. Therefore 
these effects are either approximated numerically or measured 
empirically and incorporated into the measurement model.  

Surface texture presents a significant issue for virtual CMS 
methods in terms of traceability through contact methods. The 
peak-to-valley deviation of the measured surface from the nominal 
is an important input for the uncertainty calculations. For 
commercial virtual CMS software packages (used with contact 
CMSs only), the ISO 4287 [139] Rz parameter can be used to define 
peak-to-valley deviation. Previous reviews showed that Rz values 
for metal surfaces lie between tens of nanometres to hundreds of 
micrometres (e.g., with an additively manufactured surface) and 
results show a high dependence of contact CMS measurement 
uncertainties on surface texture [228]. This surface texture issue 
is significant: it is not clear that contact CMSs can be used for 
traceable reference measurement without the use of a high-degree 
of filtering – this remains an open research question, especially 
with the rough surfaces encountered in additive manufacturing 
(AM) [174] (see Fig. 33). 

 

 
Fig. 33. Effect of surface texture on (a) contact, (b) optical and (c) XCT 
measurements [60]. 

In order to reduce excessive computational load of Monte Carlo 
approaches, several researchers have developed so-called 
“bootstrap” approaches (see Fig. 34). Bootstrapping refers to a 
specific type of Monte Carlo method, which evaluates properties of 
statistical parameters from an unknown probability distribution 
by repeated random drawings with replacement from the sample 
at hand [123]. It differs from traditional Monte Carlo approaches 
by not requiring prior assumptions regarding distribution 
functions or range of parameter values [2]. An approximated 
bootstrap method was developed providing straightforward 
uncertainty evaluation for tactile CMS measurements, and 
subsequently adapted to dimensional XCT [123]. In the cited 
examples, calibrated artefacts are used to aid the bootstrapping 
methods, rather than using them for task-specific uncertainty 
evaluation. However, the bootstrap method is primarily designed 
to account for random errors and cannot readily pinpoint 
systematic effects, so more research is required to investigate its 
feasibility for practical measurements. Recently, a Monte Carlo 
reconstruction approach was proposed that enables drastically 
reduced computational loads by reducing the required number of 
simulated projection datasets and by exploiting the concept of grey 
value uncertainty [97].  

 
Fig. 34. Flow diagram of a typical bootstrapping process for XCT 
uncertainty evaluation [123]. 

 
Despite all the efforts to develop partial or whole-process 

measurement models for XCT, the influence of random errors and 
repeatability is often neglected or simply equated with noise. The 
measurement times associated with XCT mean that it is rare to see 
repeat measurements carried out, nor is it clear that simply 
repeating a scan can fully represent “repeatability conditions” in a 
classical sense. A recent review of the influence of noise on 
uncertainty evaluation concluded that no authors have yet 
proposed a complete method to estimate XCT measurement 
uncertainty due to noise [223]. One can observe a recent shift in 
how the noise contribution is being addressed. It emerges from the 
observation that noise does not significantly affect unidirectional 
measurements, such as sphere centre-to-centre distances. 
Moreover, no predictable trend can be observed between noise 
and probing errors. Therefore, research approaches are now 
studying the noise contribution together with other image quality 
parameters, such as blurring and imaging artefacts. These 
approaches currently seem more promising than methods that 
focus on an uncertainty evaluation based on merely an estimation 
of the noise. Some authors have hence developed techniques to 
evaluate image quality, mainly due to random effects ([49],[197]) 
and there has been recent work on how to establish confidence 
intervals with point cloud data in general [240], which may be 
applicable to XCT. Again, more research is needed to establish 
methods to account for random errors in XCT measurements. 

The multiple measurement strategies method is currently being 
investigated in the EMPIR funded project EUCoM [87], but mainly 
for tactile CMS. The approach is based on repeated measurements 
of the uncalibrated workpiece placed in multiple orientations, in 
addition to measurements of simple length and form standards for 
traceability. Zanini et al. ([310],[311]) investigated the application 
of the multiple measurement strategies method to determine the 
uncertainty in the XCT measurement of an AM lattice structure. 
Besides testing the method on the lattice structure, Zanini et al. 
also compared the results of this method to those of the 
substitution approach, using a calibrated object developed for the 
purpose [310]. The authors pointed out that the main advantage of 
the multiple measurement strategies method compared to the 
substitution method is that it does not require calibrated artefacts 
similar to the objects that are typically measured. This advantage 
is potentially relevant for XCT measurements of components with 
complex and non-accessible geometries and surface topographies, 
which would be difficult or even impossible to calibrate using 
conventional CMSs. However, the method is not always applicable 
with XCT; e.g., not all objects are adequate to be measured by XCT 
in multiple orientations. Further research is needed to delimit the 
conditions in which method is actually applicable to ensure 
reliable uncertainty determination and correction of systematic 
errors. 



7. Performance in various applications and interlaboratory 

comparisons 

The application of industrial XCT continues to grow, spanning 
from defect analysis and material characterization to reverse 
engineering and dimensional metrology (Fig. 35). Various 
examples of industrial applications are provided elsewhere 
([52],[73]). This section presents a brief review of XCT 
performance for various applications. First an overview of 
interlaboratory comparisons targeting dimensional and 
geometrical feature measurements is given. Subsequently, recent 
insights into the performance for surface topography, porosity 
measurements, and particle and fibre measurements are 
presented. 
 

 
 
Fig. 35. Industrial applications of XCT [52]. 
 
7.1 Interlaboratory comparisons for dimensional and geometrical 
feature metrology 

The results from the first international comparison of XCT 
instruments used for dimensional metrology (“CT Audit”) were 
published in 2012 [61], involving fifteen instruments. Four 
calibrated reference objects were measured, with different 
dimensions, geometries and materials. This first comparison 
showed that, whilst most of the size measurements were 
performed with sub-voxel accuracy, form measurements were less 
accurate and, in more than half of the cases, the participants were 
not able to supply valid uncertainty statements or significantly 
overestimated the uncertainty. This early publication highlighted 
the need for traceability and standardisation; almost ten years on, 
research is still needed despite the progress made since then. 
Following CT Audit, a further comparison of dimensional 
measurements using XCT was published in 2014 [14], involving 
twenty-seven participants and the use of polymer and metal 
components (“CIA-CT”). The results were similar to those from CT 
Audit, with quoted expanded uncertainties ranging from 1 µm to 
50 µm, again highlighting the need for traceability and 
standardisation.  

As part of the EU-funded InteraqCT project, a comparison of 
twenty laboratories was conducted using physical (step gauge in a 
tube, calibrated using contact CMM) and virtual (data sets) 
assemblies [257]. Relatively good agreement between the 
reference and participants’ results was obtained and 90 % of the 
participants quoted measurement uncertainties (using a range of 
protocols). It was found that several participants were 
overestimating uncertainty but that they could significantly 
decrease their measurement times, with minimal effect on 
uncertainty. It was noted that the definition of datums is a 
significant issue for XCT measurements. Fig. 36 summarises the 
results from CT-Audit, CIA-CT and InteraqCT comparisons, and 

illustrates the range of the quoted uncertainties – still much larger 
in range and value compared to that for contact CMMs [276]. 

A comparison was conducted of industrial and medical XCT 
systems, with the premise that, when low resolutions can be 
tolerated, medical CT systems can be much faster (in terms of both 
scanning time and subsequent data analysis) and able to measure 
large objects [82]. This preliminary study showed some interesting 
results, but the limited availability of medical systems at industrial 
sites means that the concept is not being widely adopted in 
industry. 

With the increasing interest in measuring additively 
manufactured components, there have been some recent XCT 
comparisons involving AM components [84]. One comparison 
involves the measurement of a 10 mm cube, a 15 mm diameter 
cylindrical rod and a 40 mm by 60 mm complex bracket; all parts 
were metal. The parts were designed to compare the capabilities 
of the twelve participants to measure defect types, such as surface 
and bulk pores. Significant differences were found in the 
quantitative evaluations made by the participants, ranging from no 
quantitative measurements performed, to under and 
overestimation of the dimensional results. The comparison 
highlighted typical imaging artefacts and, again, the need for 
standards for measurement protocols and analysis pipelines. 
Another comparison concerning XCT for AM components was 
carried out under the European project AdvanCT. Reference 
standards featuring internal and external inserts in three materials 
(ABS, aluminium, and stainless steel), covering measurands from 
0.25 mm up to 28.5 mm, were circulated among 10 European 
laboratories [204]. The results show that the participants have 
reported XCT measurements in good agreement with the reference 
CMM measurements [205]. 

 

 
 
Fig. 36. Situating different CT interlaboratory intercomparisons [276]. 
 

7.2 Surface topography measurements 
Tomographic reconstruction consists of resolving the three-

dimensional photon attenuation map of a scanned object from the 
collection of projection measurement. The attenuation map is 
typically discretised onto regular 3D grid, i.e. voxel volume. Sharp 
change in attenuation corresponds either to interface between two 
materials with different X-ray attenuation properties or to the 
transition from background (air) to material. As surface 
determination allows to extract a surface corresponding to a 
specific part, XCT can be used to reconstruct the part surfaces and, 
if the resolution permits, surface texture (e.g. [219],[264],[268]).  

XCT is capable of capturing re-entrant surfaces, and even 
internal pores/cavities that would be otherwise inaccessible to 
other measurement technologies. XCT is the only method which 
gives access to deep recesses and otherwise difficult to reach 
surfaces of an AM component. This not only applies to generally 
planar AM surfaces that are challenging to measure because of high 
aspect ratio features (adhering powder particles, deep recesses, 



etc.), but also to the surfaces of AM parts of complex geometry 
(lattice structures, hollow parts, etc.) which would not be 
accessible with any other measurement method 
([73],[83],[265],[266],[268],[307]). An example topography of a 
laser-based powder bed fusion (L-PBF) surface measured by XCT 
is given in Fig. 37. Because of the fully 3D nature of the topography 
captured by the method, triangle mesh representations are 
required to store the measurement result and conversion to a 
height map is required before texture parameters can be 
computed. Recently research into computation of areal surface 
texture parameters on triangular meshed surfaces directly, avoids 
the need to convert from areal map to 3D mesh [209]. 

 

 
Fig. 37. AM surface texture as measured by XCT. 
 

Surface determination errors are relevant in dimensional 
metrology, and even more so when the interest is in the analysis of 
geometric formations existing at smaller scales (e.g., surface 
topography) that are comparable with the minimum observational 
scales currently possible with XCT measurement of dense metals 
([182],[306]). Other sources of error include voxel and focal spot 
size variations and beam hardening effects. There has been some 
recent work to develop methods for uncertainty evaluation for 
surface measurements with XCT. Zanini et al. [308] used a sample 
cross-section and obtained traceability through a vision CMS, 
although the uncertainty would be highly dominated by the 
calibration influence factor. Rodríguez-Sánchez et al. [224] are 
attempting to apply the ISO 25178-600 [147] metrological 
characteristic framework (see Leach et al. for a recent overview  
[175]) to XCT and are developing a dedicated artefact, shown in 
Fig. 38.  

 

 
Fig. 38. Artefact, comprising multiple ISO 25178-70 material measures, for 
the calibration of surface texture measurements using XCT [146]. 

 
Surface topography measurement using XCT has come a long 

way in the last five years and will continue to be an important 
measurement technology as internal surfaces need to be accessed. 
Today the measurement uncertainty can already be evaluated 

using ISO methods, although, as with all measurement 
technologies, there is still some research required to develop 
methods for evaluating the contribution to uncertainty due to 
topographic fidelity [175]. 

 
7.3 Porosity measurements 

An important application of industrial XCT is the study of the 
occurrence of porosity during manufacturing processes such as 
casting, welding or additive manufacturing [315]. Dimensional 
measurement challenges include locating the position of the pores, 
examining size distribution of pores and understanding the 
diversity in pore shape (spherical gas entrapment or “keyhole” 
pores, elongated sharply edged “lack of fusion” pores, etc.). Some 
algorithms are developed within research institutions, though 
some popular commercial algorithms are also commonplace (e.g., 
in VGStudioMAX 3.5 [284] commercial software). 

There have been many studies of porosity measurement 
recently, using a variety of detection algorithms. For example, Zhu 
et al. [315] used XCT to investigate the evolution of pore 
generation during subsequent steps of a binder jetting AM process, 
and revealed that reticulated pores in the green state break up 
during sintering, and subsequently evolve into smaller quasi-
spherical pores during hot isostatic pressing. Pavan et al. [211] 
used XCT to study the occurrence of interlayer pores in the 
polymer powder bed fusion process, noting that an increase in X-
ray power negatively influenced the porosity measured, likely due 
to the increase in the size of the source focal spot, and that 
algorithmic noise reduction tended to modify the size of the 
measured pores. So increasing the number of projections was 
preferred as a method of noise reduction. However, repeatability 
over various reconstructions of a single input dataset was high. 
Similarly, du Plessis et al. demonstrated an approach to porosity 
analysis using XCT, examining methods of porosity analysis on 2D 
slice images as well as 3D volumetric reconstructions [81]. These 
authors found that both forms of analysis were useful for 
investigating different aspects of part porosity, with 2D analysis 
providing indications of the porosity variation within an object and 
3D analysis providing pore size distribution, visual inspection of 
particular pores and pore categorisation. Xu et al. [300] examined 
the evolution of porosity in an additively manufactured part using 
XCT during a staged thermomechanical test, pausing the test at 
regular intervals to track the changes in pore shape and size during 
the test. By retrospectively examining the data, the authors were 
able to identify a pore that ultimately caused part failure and track 
its progression through the test. 

Efforts have been made to establish traceability in porosity 
measurements, such as in the work performed by Heřmánek et al. 
[119]. While traceability was established in this case, the authors 
note that, to do so, a traceable reference measurement must be 
made of a similar sample and this information used in the 
adjustment of the surface determination algorithm (i.e. the 
substitution method of uncertainty evaluation, see Section 6). 
While the substitution method is viable in many scenarios, it 
requires reference measurements to be made on a reference object 
that is similar in composition, shape, and size to the test object and 
such an uncertainty evaluation cannot easily be generalized to 
dissimilar workpieces. As such, as far as the authors of this paper 
are aware of, a method for traceable measurement of pores 
independent from the object material has not yet been 
demonstrated in the literature. 

Recent studies into XCT porosity measurement have further 
developed the available technology, through the application of 
machine learning to porosity detection (e.g. [34],[105]). The 
authors of such studies used machine learning to automatically 
segment pores from the surrounding material, though noted issues 
relating to the impact of imaging artefacts and noise on the 
machine learning algorithm’s performance. In these studies, 



neural network parameter optimisation and the range of 
segmentation methodologies were used to train the machine 
learning algorithm; however, traceability was not discussed in 
reference to porosity measurement. Similarly, Lifton and Liu [186] 
recently presented a locally adaptive method for segmentation of 
pores from background material, developed to address the 
influence of beam hardening artefacts that occur during the 
measurement of particularly radiopaque parts. The authors 
compared results from their algorithm to reference measurements 
made using the Archimedes principle, finding more accurate 
results compared to the current state of the art in pore detection 
algorithms, but noting continuing challenges relating to limited 
voxel resolution, multi-material parts, computational expense and 
the influence of different XCT scan settings. Lifton and Liu also 
discuss difficulties in establishing traceability for AM porosity 
measurements in reference to the work performed by Heřmánek 
et al. [119], particularly noting that “the machined hemispherical 
features of the reference object used [in Heřmánek et al.’s work] to 
represent internal pores cannot be considered to be 
representative of the variety of pore shapes and sizes encountered 
in AM parts, nor is a single part geometry representative of the 
wide variety of part geometries achievable using AM”. Comparison 
of XCT with other methods is therefore essential to validate the 
capability of XCT to measure the actual characteristics of pores. 
Several works investigated the ability of XCT on detecting small 
pores, in relation to the voxel size and compared to other methods 
such as Archimedes and ultrasonic testing (e.g., see [117],[294]). 

In addition to the difficulties faced in establishing measurement 
traceability, there remains a difficulty in XCT porosity 
measurement with understanding the algorithms used to identify 
pores – academic studies (see, e.g. Xu et al. [300]) commonly 
explain detection methods in detail but are relatively rudimentary 
in their approaches, while commercial algorithms (e.g., the 
algorithm employed in VGStudioMAX 3.5 [284]) claim notably 
more advanced detection paradigms, but the specific 
methodologies employed by those algorithms (understandably) 
remain shrouded behind the veil of commercial secrecy. Such 
secrecy is essential for the success of the companies supplying 
these algorithms but presents an additional barrier in 
understanding how to detect porosity in a repeatable and reliable 
manner. The focus of ongoing work tends to be on iterating new 
methods of pore detection (e.g., see [105]) or, more commonly, to 
apply existing pore detection methods to novel scenarios (e.g., see 
[78],[79]). Beyond the work performed by Heřmánek et al. [119], 
there have been no further efforts to establish traceability in 
porosity measurement, and this problem remains a significant 
challenge to address in future porosity measurement research. 

 
7.4 Fibre and particle measurements 

Another relevant application of industrial XCT is fibre analysis 
for composite materials and particularly for fibre-reinforced 
polymers (FRPs). Several methods have been developed for 
measuring the geometrical characteristics of fibres reconstructed 
from XCT data ([63],[102]). In particular, the characteristics of 
interest are those having a direct influence on mechanical 
properties and the performance of FRP, including fibre orientation, 
length and volume fraction [289]. Recent research has focused on 
the traceability of XCT measurements of fibre characteristics, 
applying the substitution method and using reference objects with 
calibrated fibres ([189],[309]). 

Particle size distributions have been assessed using XCT [246] in 
view of, e.g., developing a better understanding of the influence of 
powder characteristics on the eventual properties of powder bed 
fusion AM workpieces [247]. It has been shown that XCT based 
characterization of powder using principal component analysis 
outperforms conventional 2D data-based methods for particle 

analysis, whereby the latter overestimated particle mass by a 
factor of 2.3 [225].  

8. Conclusions and research needs 

Over the last decades, industrial XCT has seen a strong expansion 
of its capabilities and applications, due to a continuous 
improvement in its performance, resulting from a combination of 
improved X-ray sources, detectors, algorithms, computing 
capabilities, and sound metrological practice. There is little reason 
to believe that this progress will stall. For example, many advanced 
solutions for enhanced X-ray sources are now available and 
continue to be developed, allowing for increased attainable X-ray 
fluxes at small focal spot sizes, therefore, bridging the gap between 
tube and synchrotron sources, and enabling faster yet higher-
resolution tomography. Similarly, new imaging methods continue 
to emerge and advance, such as multi-energy XCT. New detectors 
are and will continue to offer possibilities that were not available 
or too expensive a few years ago, including photon-counting 
detectors that enable material decomposition and spectral XCT.  

Computational performance will enable further developments 
regarding iterative reconstruction as well as various XCT artefact 
corrections (see Section 4.3). Major challenges are related to the 
unsolved trade-off between speed and quality, since high-quality 
scans are excessively time consuming regarding both set-up times 
and actual scanning times. Important developments are, therefore, 
to be expected regarding XCT based on a reduced expert user input 
(see Section 2.3) as well as faster XCT acquisition, while 
maintaining or even improving image quality and ensuring 
traceability. 

In order to achieve traceability of XCT, it is essential to further 
increase the understanding of how the X-ray physics and 
deviations from the ideal conditions propagate through the 
complex data processing pipeline [124]. Artefact correction (e.g. 
scatter, beam hardening, etc.) that is based on such an 
understanding will remain a subject of further study and 
developments for the foreseeable future with special emphasis on 
the performance of multi-material scans. Advanced artefact 
correction algorithms are essential to reduce systematic and 
random errors, but also contribute to an increased complexity of 
the data processing chain and, thus, to additional challenges for 
traceable metrology. One observes, e.g., that XCT will also in future 
be steered increasingly by deep learning-based data processing 
algorithms. Despite their popularity in many engineering 
disciplines, their lack of capability to estimate prediction 
uncertainty nevertheless causes issues in their implementation for 
measurement applications: they are effectively “black-box” 
systems, or ever-changing shades of grey. A further challenge with 
the established methods to evaluate uncertainty is that error 
propagation is based on the availability of supporting, 
deterministic models that describe how information propagates 
through the various stages of data processing and analysis [286]. 
The introduction of machine learning methods raises currently 
unanswered questions related to how such support models may be 
adapted to accommodate machine learning data processing steps 
[66]. Whilst machine learning may be “just another model” and 
error propagation may be trivial, there has been little research to 
date to investigate this [30]. 

Moreover, the use of non-standard trajectories, such as limited 
angle and robot-based XCT are expected to gain importance. 
Additional research will be required to fully exploit the potential 
of XCT as an integral part of the manufacturing intelligence loop. In 
the context of decreasing lot sizes, traditional methods of quality 
inspection are becoming inadequate. Thus, big data collected by 
fully in-line XCT systems needs to be coupled to the manufacturing 
process planning, simulation, and machine learning in order to 
exploit its full potential, to increase the understanding of key 



manufacturing processes, and to allow first-time-right 
manufacturing. 

Faster acquisition will benefit from the use of multiple X-ray 
tubes to collect many projections in rapid succession, which may 
enable XCT as an in-line measurement tool for several 
manufacturing processes. Such developments will need to be 
accompanied by dedicated, fast methods for traceability 
establishment, including tailored procedures and calibrated 
objects for error characterisation and metrological performance 
verification. Fast XCT is being used in some fields of research for 
time-lapse and 4D imaging  (3D + time). When sufficiently fast 
metrological solutions will be available in addition to the large 
computing power required for analysing 4D data, 4D imaging can 
become a real possibility for XCT manufacturing metrology.  

Acknowledgements 

The authors extend thank to Dr. Evelina Ametova (Karlsruhe 
Institute of Technology), Prof. Andreas Archenti (KTH), Prof. 
Leonardo De Chiffre (DTU), Dr. Alkan Donmez (NIST), Dr. 
Massimiliano Ferrucci (LLNL), Prof. Jean-Pierre Kruth (KU 
Leuven), Dr Ulrich Neuschaefer-Rube (PTB), Dr Adam Thompson 
(Univ. of Nottingham), Dr. Filippo Zanini (Univ. Padova) for their 
valuable contributions and comments. We are moreover grateful 
to the colleagues of CIRP STC-P who have contributed to the 
quality of this paper through valuable discussions, comments and 
feedback. For the financial support thanks are devoted to the many 
organizations that have funded research on CT metrology in the 
labs of the authors, including the FWO MetroFlex project 
(S004217N). 

References 

[1] Affenzeller C, Gusenbauer C, Reiter M, Kastner J (2015). Measurement 
uncertainty evaluation of an X-ray computed tomography system. Proc. Digital 
Industrial Radiology and Computed Tomography, Ghent, 22-25 June. 

[2] Aggogeri F, Barbato G, Barini EM, Genta G, Levi R (2011). Measurement 
uncertainty assessment of coordinate measuring machines by simulation and 
planned experimentation. CIRP Journal of Manufacturing Science and 
Technology 4:51-56. 

[3] Aloisi V, Carmignato S (2016). Influence of surface roughness on X-ray 
computed tomography dimensional measurements of additive manufactured 
parts. Case studies in nondestructive testing and evaluation, 6, 104-110. 

[4] Aloisi V, Carmignato S, Schlecht J, Ferley E (2016). Investigation on 
metrological performances in CT helical scanning for dimensional quality 
control. Proc. iCT2016 Conference on Industrial Computed Tomography, Wels, 
9-12 February. 

[5] Aloisi V, Schlecht J, Ferley E, Carmignato S (2019). Characterization of the 
effects of detector angular misalignments and accuracy enhancement of X-ray 
CT dimensional measurements. Proc. iCT2019 Conference on Industrial 
Computed Tomography, Padova, 13-15 February. 

[6] Alvarez RE, Macovski A (1976). Energy-selective reconstructions in x-ray 
computerised tomography. Physics in Medicine & Biology, 21(5), 733. 

[7] Ametova E, Ferrucci M, Dewulf W (2017). A tool for reducing cone-beam 
artifacts in computed tomography data, Proc. iCT2017 Conference on 
Industrial Computed Tomography, Leuven, 7-9 February. 

[8] Ametova E, Ferrucci M, Chilingaryan S, Dewulf W (2018). Software-based 
compensation of instrument misalignments for x-ray computed tomography 
dimensional metrology. Precision Engineering, 54, 233-242. 

[9] Ametova E, Ferrucci M, Chilingaryan S, Dewulf W (2018). A computationally 
inexpensive model for estimating dimensional measurement uncertainty due 
to x-ray computed tomography instrument misalignments. Meas. Sci. Technol. 
29 065007. 

[10] Ametova E (2019). Quantification and compensation of geometry-induced 
errors in cone-beam X-ray computed tomography. PhD Dissertation, KU 
Leuven. 

[11] Amirkhanov C, Heinzl M, Reiter J, Kastner M, Gröller E (2011). Projection-
based metalartifact reduction for industrial 3D X-ray computed tomography. 
IEEE Trans. Vis. Comput. Graph. 17(12), 2193–2202. 

[12] Anas EMA, Kim JG, Lee SY, Hasan MK (2011). Comparison of ring artifact 
removal methods using flat panel detector based CT images. Biomedical 
engineering online, 10(1), 1-25. 

[13] Angel J, De Chiffre L (2013). Inter laboratory comparison on Industrial 
Computed Tomography. CIA-CT comparison. Final Report. DTU, Lyngby. 

[14] Angel J, De Chiffre L (2014). Comparison on Computed Tomography using 
industrial items. CIRP Annals, 63(1), 473-476. 

[15] Arenhart FA, Nardelli VC, Donatelli GD (2015). Characterization of the 
metrological structural resolution of CT systems using a multi-wave standard. 
Proc. XXI IMEKO World Congress, Prague, 30 August – 4 September, p. 1340-
1345. 

[16] Arenhart FA, Baldo CR, Fernandes TL, Donatelli GD (2016). Experimental 
Investigation of the Influencing Factors on the  Structural Resolution for 
Dimensional Measurements with CT Systems. Proc. iCT2016 Conference on 
Industrial Computed Tomography, Wels, 9-12 February. 

[17] ASTM E1165-12 (2017). Standard Test Method for Measurement of Focal 
Spots of Industrial X-Ray Tubes by Pinhole Imaging. 

[18] Baier M et al. (2018). A new conversion approach between different 
characterization methods to measure the spot size of micro computed 
tomography systems. Proc. 18th euspen conference, Venice, Italy, 4-8 June, p. 
445-446. 

[19] Baier M (2021). Enhancing the precision of metal additive manufacturing 
through advanced metrological X-ray computed tomography. PhD thesis, 
University of Padova. 

[20] Balsamo A, Di Ciommo M, Mugno R, Rebaglia BI, Ricci E, Grella R (1999). 
Evaluation of CMM uncertainty through Monte Carlo simulations. Annals CIRP 
48:425–428. 

[21] Bartscher M, Hilpert U, Härtig F, Neuschaefer-Rube U, Goebbels J, Staude A 
(2008) Industrial computed tomography, an emerging coordinate 
measurement technology with high potentials, Proc. NCSL 2008 International 
workshop & symposium, 3-7 August, ISBN 1-584-64058-8 

[22] Barna SL, Tate MW, Gruner SM, Eikenberry EF (1999). Calibration procedures 
for charge-coupled device x-ray detectors. Rev Sci Instrum 70(7):2927–2934. 

[23] Barrett JF, Keat N (2004). Artifacts in CT: Recognition and Avoidance. 
Radiographics, 24:1679–1691. DOI: 10.1148/rg.246045065 

[24] Bartscher M, Neukamm M, Hilpert U, Neuschaefer-Rube U, Härtig F, Kniel K, 
Ehrig K, Staude A, Goebbels J (2010). Achieving traceability of industrial 
computed tomography. Key Engineering Materials 437:79-83.  

[25] Bartscher M, Neukamm M, Koch M, Neuschaefer-Rube U, Staude A, Goebbels J, 
Ehrig K, Kuhn C, Deffner A, Knoch A (2010). Performance assessment of 
geometry measurements with micro-CT using a dismountable work-piece-
near reference standard. Proc. 10th European Conference on Non-Destructive 
testing, Moscow, 7-11 June. 

[26] Bartscher M, Staude A, Ehrig K, Ramsey A (2012). The influence of data filtering 
on dimensional measurements with CT. Proc. World conf. of Nondestructive 
testing, Durban; 16-20 April. 

[27] Bartscher M, Sato O, Härtig F, Neuschaefer-Rube U (2014). Current state of 
standardization in the field of dimensional computed tomography. 
Measurement Science and Technology, 25(6), 064013. 

[28] Bartscher M, Illemann J, Neuschaefer-Rube U (2016). ISO test survey on 
material influence in dimensional computed tomography. Case studies in 
nondestructive testing and evaluation, 6, 79-92. 

[29] Bartscher M, Neuschaefer-Rube U, Illemann J, de Oliveira FB, Stolfi A, 
Carmignato S (2018). Qualification and testing of CT systems. In: Carmignato 
S, Dewulf W, Leach RK. Industrial x-ray computed tomography. Springer. 

[30] Basu T, Einbeck J, Troaes MCM, Forbes A (2019). Robust uncertainty 
quantification for measurement problems with limited information ISIPTA 
2019 Ghent, 3-6 July. 

[31] Batenburg KJ, Sijbers J (2011). DART: A Practical Reconstruction Algorithm for 
Discrete Tomography. IEEE Trans Image Process 2011;20:2542–53. 

[32] Batenburg KJ, Palenstijn WJ, Balázs P, Sijbers J (2013). Dynamic angle selection 
in binary tomography. Computer Vision and Image Understanding, 117(4), 
306-318. 

[33] Beister M, Kolditz D, Kalender WA (2012). Iterative reconstruction methods in 
X-ray CT. Physica medica, 28(2), 94-108. 

[34] Bellens S, Vandewalle P, Dewulf W (2021). Deep learning based porosity 
segmentation in X-ray CT measurements of polymer additive manufacturing 
parts. Procedia CIRP, 96, 336-341. 

[35] Beucher S (1979). Use of watersheds in contour detection. In Proceedings of 
the International Workshop on Image Processing. CCETT, p. 17-21. 

[36] Bieberle M, Fischer F, Schleicher E, Hampel U, Koch D, Aktay KDC, Menz HJ, 
Mayer HG (2007). Ultrafast limited-angle-type x-ray tomography. Applied 
Physics Letters, 91(12), 123516. 

[37] Bircher BA, Meli F, Küng A, Thalmann R (2017). Towards metrological 
computed tomography at METAS. Euspen’s 17th International Conference & 
Exhibition, Hannover, 29 May – 2 June. 

[38] Bircher BA, Meli F, Küng A, Thalmann R (2018). A geometry measurement 
system for a dimensional cone-beam CT. Proc. iCT2018 Conference on 
Industrial Computed Tomography, Wels, 6-9 February. 

[39] Bircher BA, Meli F, Küng A and Thalmann R (2019). CT geometry 
determination using individual radiographs of calibrated multi-sphere 
standards. Proc. iCT2019 Conference on Industrial Computed Tomography, 
Padova, 13-15 February. 

[40] Bircher BA, Meli F, Küng A, Thalmann R (2019). CT machine geometry changes 
under thermal load. Proc. iCT2019 Conference on Industrial Computed 
Tomography, Padova, 13-15 February. 

[41] Bircher BA, Meli F, Küng A, Thalmann R (2020). METAS-CT: Metrological X-ray 
computed tomography at sub-micrometre precision. Proc. the 20th euspen 
international conference, 8-12 June, pp. 281–284. 

[42] Boas FE, Fleischmann D (2012). CT artifacts: causes and reduction techniques. 
Imaging Med. 4, 229–240. 

[43] Boeckmans B, Tan Y, Welkenhuyzen F, Guo Y, Dewulf W, Kruth JP (2015). 
Roughness offset differences between contact and non-contact measurements. 



In Proceedings of the 15th international conference of the European society 
for precision engineering and nanotechnology, 1-5 June, pp. 189-190. 

[44] Borges De Oliveira F, de Campos Porath M, Nardelli VC, Arenhart FA, Donatelli 
GD (2014). Characterization and correction of geometric errors induced by 
thermal drift in CT measurements. Key Engineering Materials, Vol. 613, pp. 
327-334. 

[45] Borges de Oliveira FB, Bartscher M, Neuschaefer-Rube U (2015). Analysis of 
combined probing measurement error and length measurement error test for 
acceptance testing in dimensional computed tomography. Proc. Digital 
Industrial Radiology and Computed Tomography, Ghent, 22-25 June. 

[46] Borges de Oliveira F, Stolfi A, Bartscher M, De Chiffre L, Neuschaefer-Rube U 
(2016). Experimental investigation of surface determination process on multi-
material components for dimensional computed tomography. Case Stud. 
Nondestruct. Test. Eval., Vol. 6B, pp.93-103. 

[47] Bouhaouel F, Bauer F, Grosse CU (2020). Task-specific acquisition trajectories 
optimized using observer models. Proc. iCT2020 Conference on Industrial 
Computed Tomography, Wels, 4-7 February. 

[48] Bredemann J, Schmitt RH (2018). Task-specific uncertainty estimation for 
medical CT measurements. Journal of Sensors and Sensor Systems, 7:627-635. 

[49] Brierley N, Nye B, McGuinness J (2019). Mapping the spatial performance 
variability of an X-ray computed tomography inspection. NDT & E 
International, 107:102127. 

[50] Brooks RA, Di Chiro G (1976). Beam hardening in x-ray reconstructive 
tomography. Physics in medicine & biology, 21(3), 390. 

[51] Buratti A, Ben Achour S, Isenberg C, Schmitt R (2016). Frequency-based 
method to optimize the number of projections for industrial computed 
tomography. Proc. iCT2016 Conference on Industrial Computed Tomography, 
Wels, 9-12 February.  

[52] Buratti A, Bredemann J,  Pavan M, Schmitt R, Carmignato S (2018). Applications 
of CT for Dimensional Metrology. In Carmignato S., Dewulf W, Leach RK, 
Industrial X-ray Computed Tomography, Springer. 

[53] Busch M, Hausotte T (2021) Determination of the Interface Structural 
Resolution of an Industrial X-Ray Computed Tomograph Using a Spherical 
Specimen and a Gap Specimen,  Consisting of Gauge Blocks. Key Engineering 
Materials, Vol. 883, pp. 41-48. 

[54] Buzug TM (2008) Computed tomography: from photon statistics to modern 
cone-beam CT. Springer. 

[55] Cantatore A, Andreasen JL, Carmignato S, Müller P, De Chiffre L (2011) 
Verification of a CT scanner using a miniature step gauge. Proc. 11th euspen 
conference, Como, 23-26 May, pp. 46–49. 

[56] Cao W, Sun T, Kerckhofs G, Fardell G, Price B, Dewulf W (2018). A simulation-
based study on the influence of the x-ray spectrum on the performance of 
multi-material beam hardening correction algorithms. Measurement Science 
and Technology, 29(9), 095002. 

[57] Cao W (2019). Development of Beam Hardening Correction Algorithms for 
Industrial Computed Tomography. PhD Dissertation, KU Leuven. 

[58] Cao W, Pauwels R, Fardell G, Price B, Dewulf W (2019). Influencing factors in 
x-ray spectral estimation of industrial CT using transmission measurements. 
Proc. iCT2019 Conference on Industrial Computed Tomography, Padova, 13-
15 February. 

[59] Canny J (1986). A computational approach to edge detection. IEEE 
Transactions on pattern analysis and machine intelligence, (6), 679-698. 

[60] Carmignato S, Savio E (2011) Traceable Volume Measurements Using 
Coordinate Measuring Systems. CIRP Annals, 60:519-522. 

[61] Carmignato S (2012). Accuracy of industrial computed tomography 
measurements: Experimental results from an international comparison. CIRP 
Annals, 61:491-494. 

[62] Carmignato S, Aloisi V, Medeossi F, Zanini F, Savio E (2017). Influence of 
surface roughness on computed tomography dimensional measurements. 
CIRP Annals, 66(1), 499-502. 

[63] Carmignato S, Dewulf W, Leach R (2018) Industrial X-ray Computed 
Tomography. Springer. 

[64] Carmignato S, De Chiffre L, Bosse H, Leach RK, Balsamo A, Estler WT (2020). 
Dimensional artefacts to achieve metrological traceability in advanced 
manufacturing. CIRP Annals, 69(2):693–716. 

[65] Chase, R. C., & Stein, J. A. (1978). An improved image algorithm for CT scanners. 
Medical physics, 5(6), 497-499. 

[66] Cheung H, Braun JE (2016). A general method for calculating the uncertainty 
of virtual sensors for packaged air conditioners Int. J. Refrig. 63 225-236. 

[67] Christoph R, Neumann HJ (2011) X-ray Tomography in Industrial Metrology: 
Precise, Economical and Universal. Verlag moderne industrie. 

[68] Cierniak R (2011) X-Ray computed tomography in biomedical engineering. 
Springer. 

[69] CIRP (2019) CIRP Encyclopedia of Production Engineering. Springer. 
[70] Cuadra J, Divin C, Panas R (2017). Uncertainty quantification of an X-ray 

computed tomography system. Euspen special interest group meeting: 
additive manufacturing, Leuven, 10-11 October. 

[71] Dabravolski, A., Batenburg, K. J., & Sijbers, J. (2014). Dynamic angle selection 
in x-ray computed tomography. Nuclear Instruments and Methods in Physics 
Research Section B: Beam Interactions with Materials and Atoms, 324, 17-24. 

[72] Davis GR, Elliott JC (1997). X-ray microtomography scanner using time-delay 
integration for elimination of ring artefacts in the reconstructed image. Nucl 
Instrum Methods Phys Res Sect A 394(1-2), 157–162. 

[73] De Chiffre L, Carmignato S, Kruth JP, Schmitt R, Weckenmann A (2014). 
Industrial applications of computed tomography. CIRP Annals - Manufacturing 
Technology, 63, 655–677. 

[74] Dewulf W, Tan Y, Kiekens K (2012). Sense and non-sense of beam hardening 
correction in CT metrology. CIRP annals, 61(1), 495-498. 

[75] Dewulf W, Kiekens K, Tan Y, Welkenhuyzen F, Kruth JP (2013). Uncertainty 
determination and quantification for dimensional measurements with 
industrial computed tomography. CIRP Annals 62:535-538. 

[76] Dewulf W, Ferrucci M, Ametova E,  Heřmánek P, Probst G, Boeckmans B, 
Craeghs T, Carmignato S (2018). Enhanced Dimensional Measurement by Fast 
Determination and Compensation of Geometrical Misalignments of X-Ray 
Computed Tomography Instruments. CIRP Annals, 67:1, 523-526. 

[77] Di Domenico G, Cardarelli P, Contillo A, Taibi A, Gambaccini M (2016). X-ray 
focal spot reconstruction by circular penumbra analysis-Application to digital 
radiography systems. Med. Phys. 43 (1), 294-302. 

[78] Dilonardo E, Nacucchi M, De Pascalis F, Zarrelli M, Giannini C (2020). High 
resolution X-ray computed tomography: a versatile non-destructive tool to 
characterize CFRP-based aircraft composite elements. Compos. Sci. Technol. 
192:108093. 

[79] Dionnet Z, Suttle MD, Longobardo A, Rotundi A, Folco L, Della Corte V, King A 
(2020). X-ray computed tomography: morphological and porosity 
characterization of giant Antarctic micrometeorites. Meteorit. Planet. Sci. 
55:1581–1599. 

[80] Do TD, Sawall S, Heinze S, Reiner T, Ziener CH, Stiller W, Schlemmer HP, 
Kachelrieß M, Kauczor HU, Skornitzke S (2020). A semi-automated 
quantitative comparison of metal artifact reduction in photon-counting 
computed tomography by energy-selective thresholding. Scientific Reports, 
10(1), 1-10. 

[81] du Plessis A, Olawuyi BJ, Boshoff WP, le Roux SG (2016). Simple and fast 
porosity analysis of concrete using X-ray computed tomography. Mater. Struct. 
Constr. 49:553–562. 

[82] du Plessis A, le Roux SG, Guelpa A (2016). Comparison of medical and 
industrial X-ray computed tomography for non-destructive testing. Case 
Studies Nondestruc. Test. Eval. 6:17-25. 

[83] du Plessis A, Yadroitsev I, Yadroitsava I, Le Roux SG (2018). X-ray 
microcomputed tomography in additive manufacturing: A review of the 
current technology and applications. 3D Print. Addit. Manuf. 5:227-247. 

[84] du Plessis A, le Roux SG, Waller J, Sperling P, Achilles N, Beerlink A, Métayer JF, 
Sinico M, Probst G, Dewulf W, Bittner F, Endres HJ, Willner M, Drégelyi-Kiss Á, 
Zikmund T, Laznovsky J, Kaiser J, Pinter P, Dietrich S, Lopez E, Fitzek O, Konrad 
P (2019). Laboratory X-ray tomography for metal additive manufacturing: 
Round robin test. Additive Manufacturing, 30:100837. 

[85] du Plessis A, Tshibalanganda M, le Roux SG (2020). Not all scans are equal: X-
ray tomography image quality evaluation. Materials Today Communications, 
22, 100792. 

[86] EN 12543-5 (1999). Characteristics of Focal Spots in Industrial X-ray Systems 
for Use in Non-destructive Testing—Part 5: Measurement of the Effective 
Focal Spot Size of Mini and Micro Focus X-ray Tubes. 

[87] EUCoM project website. http://eucom-empir.eu/. Visited 10 April 2022. 
[88] Eulig E, Maier J, Bennett NR, Knaup M., Hörndler K, Wang A, Kachelrieß M 

(2020). Deep learning-aided CBCT image reconstruction of interventional 
material from four x-ray projections. Medical Imaging 2020: Physics of Medical 
Imaging, Vol. 11312, p. 113121L. International Society for Optics and 
Photonics. 

[89] Feldkamp LA, Davis J, Kress JW (1984) Practical cone-beam algorithm. J. Opt. 
Soc. Amer. 1 A6 (612-619). 

[90] Ferrucci M, Leach RK, Giusca C, Carmignato S, Dewulf W (2015). Towards 
geometrical calibration of x-ray computed tomography systems—a review. 
Measurement Science and Technology, 26(9), 092003. 

[91] Ferrucci M, Ametova E, Carmignato S, Dewulf W (2016). Evaluating the effects 
of detector angular misalignments on simulated computed tomography data. 
Precis Eng, 45, 230-241. 

[92] Ferrucci M, Heřmánek P, Ametova E, Carmignato S, Dewulf W (2018). 
Measurement of the X-ray computed tomography instrument geometry by 
minimization of reprojection errors—Implementation on simulated data. 
Precision Engineering, 54, 7-20.  

[93] Ferrucci M, Heřmánek P, Ametova E, Sbettega E, Vopalensky M, Kumpová I, 
Vavřík D, Carmignato S, Craeghs T, Dewulf W (2018). Measurement of the X-
ray computed tomography instrument geometry by minimization of 
reprojection errors—Implementation on experimental data. Precision 
Engineering, 54, 107-117. 

[94] Ferrucci M (2018). Systematic approach to geometrical calibration of X-ray 
computed tomography instruments. PhD dissertation, KU Leuven. 

[95] Ferrucci M, Ametova E (2021). Charting the course towards dimensional 
measurement traceability by X-ray computed tomography. Measurement 
Science and Technology. 32:092001 

[96] Ferrucci M, Dewulf W, Dönmez A (2021). Measurement of sample stage error 
motions in cone-beam X-ray computed tomography instruments by 
minimization of reprojection errors. Precision Engineering, 67, 48-57. 

[97] Ferrucci M, Ametova E, Dewulf W (2021). Monte Carlo reconstruction: a 
concept for propagating uncertainty in computed tomography. Meas. Sci. 
Technol. 32 115006 . 

[98] Fischer A, Lasser T, Schrapp M, Stephan J, Noël PB (2016). Object specific 
trajectory optimization for industrial x-ray computed tomography. Scientific 
reports, 6(1), 1-9. 

[99] Flack DR (2013). Co-ordinate measuring machines task specific measurement 
uncertainties. NPL Good Practice Guide No. 130, National Physical Laboratory. 

http://eucom-empir.eu/


[100] Flay N, Sun W, Brown S, Leach RK, Blumensath T (2015). Investigation of the 
Focal Spot Drift in Industrial Cone-beam X-ray Computed Tomography. Digit. 
Ind. Radiol. Comput. Tomogr., June, pp. 22–25 

[101] Flay  N (2016). An  investigation  of  the  factors  associated  with the X-ray tube 
and their influence on dimensional measurement in micro-focus  cone-beam  
industrial  X-ray  computed  tomography systems. PhD dissertation, University 
of Southampton. 

[102] Fröhler B, Weissenböck J, Schiwarth M, Kastner J, Heinzl C (2019). open_iA: A 
tool for processing and visual analysis of industrial computed tomography 
datasets. Journal of Open Source Software, 4(35), 1185. 

[103] Giedl-Wagner R, Miller T, Sick B (2012), Determination of Optimal CT Scan 
Parameters Using Radial Basis Function Neural Networks. Proc. iCT2012 
Conference on Industrial Computed Tomography, Wels, 19-21 September. 

[104] Gjsteby L, De Man B, Jin Y, Paganetti H, Verburg J, Giantsoudi D, Wang G (2016) 
Metal Artifact Reduction in CT: Where Are We After Four Decades? IEEE 
Access, 4,  5826 – 5849. 

[105] Gobert C, Kudzal A, Sietins J, Mock C, Sun J, McWilliams B (2020). Porosity 
segmentation in X-ray computed tomography scans of metal additively 
manufactured specimens with machine learning. Addit. Manuf. 36:101460. 

[106] Gransfors PR (2003). DQE methodology: step by step. AAPM 45th Annu. 
Meeting. 

[107] Grass M, Kohler T, Proksa R (2000). 3D cone-beam CT reconstruction for 
circular trajectories. Physics in Medicine and Biology, 45(2):329–347. 

[108] Grozmani N, Buratti A, Schmitt RH (2019). Investigating the influence of 
workpiece placement on the uncertainty of measurements in industrial 
computed tomography. Proc. iCT2019 Conference on Industrial Computed 
Tomography, Padova, Italy, 13-15 February. 

[109] Gruse JN, Streeter MJV, Thornton C, Armstrong CD, Baird CD, Bourgeois N, 
Cipiccia S, Finlaye OJ, Gregory CD, Katzir Y, Lopes NC, Mangles SPD, Najmudin 
Z, Neely D, Pickard LR, Potter KD, Rajeev PP, Rusby DR, Underwood CID, 
Warnett JM, Williams MA, Wood JC, Murphy CD, Brenner CM,  Symes DR 
(2020). Application of compact laser-driven accelerator X-ray sources for 
industrial imaging. Nuclear Instruments and Methods in Physics Research 
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 
983, 164369. 

[110] Hansen DC, Sørensen TS, Rit S (2016). Fast reconstruction of low dose proton 
CT by sinogram interpolation. Physics in Medicine & Biology, 61(15), 5868. 

[111] Hasan MK, Sadi F, Lee  SY (2012). Removal of ring artifacts in micro-CT imaging 
using iterative morphological filters. SIViP , 6: 41-53. 

[112] Haugh MJ, Charest MR, Ross PW, Lee JJ, Schneider MB, Palmer NE, Teruya AT 
(2012). Calibration of X-ray imaging devices for accurate intensity 
measurement. Powder Diffr 27(2):79–86. 

[113] Heinzl C,  Kastner J, Amirkhanov A, Gröller E, Gusenbauer C (2012) Optimal 
specimen placement in cone beam X-ray computed tomography, NDT&E Int. 
50:42–49. 

[114] Helmecke E, Fleßner M, Gröschl A, Staude A, Hausotte T (2015). Numerical 
measurement uncertainty determination for computed tomography in 
dimensional metrology. Proc. XXI MMEKO Congress, Prague. 

[115] Herl G, Hiller J, Maier A (2020). Scanning trajectory optimisation using a 
quantitative Tuybased local quality estimation for robot-based X-ray 
computed tomography. Nondestructive Testing and Evaluation, 35(3), 287-
303. 

[116] Herman GT (1979). Correction for beam hardening in computed tomography. 
Physics in Medicine & Biology, 24(1), 81. 

[117] Hermanek P, Carmignato S (2016). Reference object for evaluating the 
accuracy of porosity measurements by X-ray computed tomography. Case 
Studies in Nondestructive Testing and Evaluation, 6(B):122-127. 

[118] Hermanek P, Carmignato S (2017). Porosity measurements by X-ray computed 
tomography: Accuracy evaluation using a calibrated object. Precision 
Engineering, 49, 377-387. 

[119] Hermanek P, Zanini F, Carmignato S (2019). Traceable porosity measurements 
in industrial components using X-ray computed tomography. J. Manuf. Sci. Eng. 
Trans. ASME. 141:051004. 

[120] Hiller J, Kasperl S, Schön T, Schröpfer S, Weiss D (2010). Comparison of probing 
error in dimensional measurement by means of 3D computed tomography 
with circular and helical sampling. In 2nd International Symposium on NDT in 
Aerospace, pp. 1-7. 

[121] Hiller J, Reindl LM (2012). A computer simulation platform for the estimation 
of measurement uncertainties in dimensional X-ray computed tomography. 
Measurement, 4:2166-2182. 

[122] Hiller J, Maisl M, Reindl LM (2012). Physical characterization and performance 
evaluation of an x-ray micro-computed tomography system for dimensional 
metrology applications. Measurement Science and Technology, 23(8), 085404. 

[123] Hiller J, Genta G, Barbato G, De Chiffre L, Levi R (2014). Measurement 
uncertainty evaluation in dimensional X-ray computed tomography using the 
bootstrap method. International Journal of Precision Engineering and 
Manufacturing,15, 617–622. 

[124] Hiller J, Hornberger P (2016). Measurement accuracy in X-ray computed 
tomography metrology: Toward a systematic analysis of interference effects in 
tomographic imaging. Precision Engineering, 45, 18-32. 

[125] Hiller J, Landstorfer P, Marx P, Herbst M (2020). Evaluation of the impact of 
faulty scanning trajectories in robot-based x-ray computed tomography. 
Measurement Science and Technology, 32(1), 015401. 

[126] Hornberger B, Kasahara J, Gifford M, Ruth R, Loewen R (2019). A compact light 
source providing high-flux, quasi-monochromatic, tunable X-rays in the 
laboratory. Advances in Laboratory-based X-Ray Sources, Optics, and 

Applications VII, Vol. 11110, p. 1111003. International Society for Optics and 
Photonics. 

[127] Hsieh J, Molthen RC, Dawson CA, Johnson RH (2000). An iterative approach to 
the beam hardening correction in cone beam CT. Medical physics, 27(1), 23-
29. 

[128] Hunter AK, McDavid WD (2012). Characterization and correction of cupping 
effect artefacts in cone beam CT. Dentomaxillofacial Radiology, 41(3), 217-223. 

[129] IEC 60336 (2005). Medical Electrical Equipment – X-Ray Tube Assemblies for 
Medical Diagnosis – Characteristics of Focal Spots. 

[130] IEC 62220-1 (2015). Medical electrical equipment - Characteristics of digital 
X-ray imaging devices - Part 1-1: Determination of the detective quantum 
efficiency - Detectors used in radiographic imaging. 

[131] Illemann J, Bartscher M, Jusko O, Härtig F, Neuschaefer-Rube U, Wendt K 
(2014) Procedure and reference standard to determine the structural 
resolution in coordinate metrology. Meas Sci Technol 25:6. 

[132] Illemann J, Bartscher M, Neuschaefer-Rube U (2015). An efficient procedure 
for traceable dimensional measurements and the characterization of industrial 
CT systems. Proc. Digital Industrial Radiology and Computed Tomography, 
Ghent. 

[133] Illemann J, Bartscher M (2017). X-ray spectrum dependence of the 
magnification of cone-beam CT spectrum. Proc. iCT2017 Conference on 
Industrial Computed Tomography, Leuven, 7-9 February. 

[134] Illemann J, Neuschaefer-Rube U, Bartscher M, Bate D (2018). Determining 
spectrum-dependent source and detector positions in cone-beam CT. In Proc. 
iCT2018 Conf. on Industrial Computed Tomography, Wels. 

[135] Illemann J (2020) Traceable measurement of the instrument transfer function 
in dXCT. Proc. iCT2020 Conference on Industrial Computed Tomography, 
Wels, 4-7 February. 

[136] Illers H, Buhr E and Hoeschen C (2005). Measurement of the detective 
quantum efficiency (DQE) of digital x-ray detectors according to the novel 
Standrad IEC 62220-1 Radiat. Prot. Dosim. 114 39–44. 

[137] Ingachevaab AS, Buzmakovb AB (2019). Methods of Preprocessing 
Tomographic Images Taking into Account the Thermal Instability of the X-ray 
Tube. Optoelectronics, Instrumentation and Data Processing, 55, No. 2, pp. 42–
53 

[138] Iskender B, Bresler Y (2020). A Physics-Motivated DNN for X-Ray CT Scatter 
Correction. In 2020 IEEE 17th International Symposium on Biomedical 
Imaging (ISBI), pp. 609-613. IEEE. 

[139] ISO 4287:2000. Geometrical Product Specifications (GPS) — Surface texture: 
Profile method — Terms, definitions and surface texture parameters. 

[140] ISO 10360-5:2010. Geometrical product specifications (GPS) — Acceptance 
and reverification tests for coordinate measuring machines (CMM) — Part 5: 
CMMs using single and multiple stylus contacting probing systems 

[141] ISO/DIS 10360-11. Geometrical product specifications (GPS) — Acceptance 
and reverification tests for coordinate measuring systems (CMS) — Part 11: 
CMSs using the principle of X-ray computed tomography (CT) 

[142] ISO 14253-5:2015. Geometrical product specifications (GPS) — Inspection by 
measurement of workpieces and measuring equipment — Part 5: Uncertainty 
in verification testing of indicating measuring instruments 

[143] ISO 15530-1:2013. Geometrical product specifications (GPS) — Coordinate 
measuring machines (CMM): Technique for determining the uncertainty of 
measurement — Part 1: Overview and metrological characteristics, 
International Organization for Standardization. 

[144] ISO 15530-3:2011. Geometrical product specifications (GPS) — Coordinate 
measuring machines (CMM): Technique for determining the uncertainty of 
measurement — Part 3: Use of calibrated workpieces or measurement 
standards 

[145] ISO/TS 15530-4:2008. Geometrical product specifications (GPS) - Coordinate 
measuring machines (CMM): Technique for determining the uncertainty of 
measurement - Part 4: Evaluating CMM uncertainty using task specific 
simulation, International Organization for Standardization. 

[146] ISO 25178-70:2014. Geometrical product specifications (GPS) — Surface 
texture: Areal — Part 70: Material measures. International Organization for 
Standardization. 

[147] ISO 25178-600:2019. Geometrical product specifications (GPS) — Surface 
texture: Areal — Part 600: Metrological characteristics for areal topography 
measuring methods, International Organization for Standardization. 

[148] ISO/IEC GUIDE 99:2007 International vocabulary of metrology — Basic and 
general concepts and associated terms (VIM). 

[149] JCGM 100:2008. Evaluation of measurement data — Guide to the expression of 
uncertainty in measurement. 

[150] Jiménez R, Torralba M, Yagüe-Fabra JA, Ontiveros S, Tosello G (2017). 
Experimental approach for the uncertainty assessment of 3D complex 
geometry dimensional measurements using computed tomography at the mm 
and sub-mm scales. Sensors 17:1137. 

[151] Joseph PM, Spital, RD (1978). A method for correcting bone induced artifacts 
in computed tomography scanners. Journal of computer assisted tomography, 
2(1), 100-108. 

[152] Joseph PM, Schulz RA (1980). View sampling requirements in fan beam 
computed tomography, Medical physics, 7(6), 692-702. 

[153] Kachelrieß M, Sourbelle K, Kalender WA (2006). Empirical cupping correction: 
A first‐order raw data precorrection for cone‐beam computed tomography. 
Medical physics, 33(5), 1269-1274. 

[154] Kalender WA (2011). Computed tomography: fundamentals, system 
technology, image quality, applications. John Wiley & Sons. 



[155] Kang R, Probst GM, Slaets P, Dewulf W (2020). Investigation of the impact of 
various robot properties on a twin Robot-CT system. Nondestructive Testing 
and Evaluation, 35(3), 276-286. 

[156] Katić M, Baršić G (2019). Comparison of different voxel size calibration 
strategies. iCT2019 Conference on Industrial Computed Tomography, Padova, 
13-15 February. 

[157] Kerckhofs G (2009). Morphological and mechanical quantification of porous 
structures by means of micro-CT. PhD Dissertation, KU Leuven. 

[158] Kiekens K, Welkenhuyzen F, Tan Y, Bleys P, Voet A, Kruth JP, Dewulf W (2011). 
A test object with parallel grooves for calibration and accuracy assessment of 
industrial computed tomography (CT) metrology. Measurement Science and 
Technology, 22(11), 115502. 

[159] Konopczyński T, Rathore D, Rathore J, Kröger T, Zheng L, Garbe CS, Carmignato 
S & Hesser J (2019). Fully convolutional deep network architectures for 
automatic short glass fiber semantic segmentation from ct scans. arXiv 
preprint arXiv:1901.01211. 

[160] Konstantinidis A (2011). Evaluation of digital X-ray detectors for medical 
imaging applications. PhD thesis. University College London. 

[161] Körner L, Lawes S, Bate D, Newton L, Senin N, Leach RK (2019). Increasing 
throughput in x-ray computed tomography measurement of surface 
topography using sinogram interpolation. Measurement Science and 
Technology, 30(12), 125002. 

[162] Kraemer A, Lanza G (2016) Assessment of the measurement procedure for 
dimensional metrology with X-ray computed tomography. Procedia CIRP 
43:362–367 

[163] Kratz, B., Herold, F., Robbins, J. C., & Tamm, J. Study on the Influence of 
Scattered Radiation and the Usage of Scatter Reduction Methods for Computed 
Tomography. Proc. iCT 2017 Conference on Industrial Computed Tomography, 
Leuven, 7-9 February. 

[164] Kritikos M (2021). Porosity measurement by X-ray computed tomography: 
different porosity analysis application. In: Lecture Notes in Mechanical 
Engineering, 175–185, Springer, Berlin. 

[165] Krumm M, Kasperl S, Franz M (2008), Reducing non-linear artifacts of multi-
material objects in industrial 3D computed tomography. NDT & E 
International, 41, 242-251, Doi: 10.1016/j.ndteint.2007.12.001. 

[166] Kruth JP, Bartscher M, Carmignato S, Schmitt R, De Chiffre L, Weckenmann A 
(2011). Computed tomography for dimensional metrology. CIRP Annals - 
Manufacturing Technology, 60, 821–842. 

[167] Kumar J, Attridge A, Wood PKC, Williams MA (2011). Analysis of the effect of 
cone-beam geometry and test object configuration on the measurement 
accuracy of a computed tomography scanner used for dimensional 
measurement Meas. Sci. Technol. 22 035105. 

[168] Kuusk J (2011) Dark signal temperature dependence correction method for 
miniature spectrometer modules. J Sens 2011:1-9, 
doi:10.1155/2011/608157. 

[169] Kwan ALC, Seibert JA, Boone JM (2006). An improved method for flat-field 
correction of flat panel x-ray detector. Med Phys 33(2):391–393. 

[170] Kyrieleis A, Ibison M, Titarenko V, Withers PJ (2009). Image stitching 
strategies for tomographic imaging of large objects at high resolution at 
synchrotron sources. Nucl. Instr. Meth. Phys. Res. A 607, 677–684. 

[171] Kyrieleis A, Titarenko V, Ibison M, Connolley T, Withers PJ (2011). Region-of-
interest tomography using filtered backprojection: assessing the practical 
limits. J Microsc. 241(1):69-82. 

[172] Landstorfer P, Hiller J, Herbst M (2019). Investigation of positioning accuracy 
of industrial robots for robotic-based X-Ray computed tomography. Proc. 
iCT2019 conference of industrial computed tomography, Padova, 13-15 
February, pp. 13-15. 

[173] Larsson DH, Vågberg W, Yaroshenko A, Yildirim AÖ, Hertz HM (2016). High-
resolution short-exposure small-animal laboratory X-ray phase-contrast 
tomography. Sci. Rep. 6, 39074. 

[174] Leach RK, Bourell D, Carmignato S, Donmez A, Senin N, Dewulf W (2019). 
Geometrical metrology for metal additive manufacturing. CIRP annals, 68(2), 
677-700. 

[175] Leach RK, Haitjema H, Su R, Thompson A (2020). Metrological characteristics 
for the calibration of surface topography measuring instruments: a review. 
Meas. Sci. Technol. 32:032001. 

[176] Leach RK (2020). Advances in Optical Form and Coordinate Metrology, IOP 
Publishing. 

[177] Léonard F, Brown SB, Withers PJ, Mummery PM, McCarthy MB (2014). A new 
method of performance verification for x-ray computed tomography 
measurements. Measurement Science and Technology, 25(6), 065401. 

[178] Lettenbauer H, Georgi B, Weiß D (2007). Means to verify the accuracy of CT 
systems for metrology applications (in the absence of established 
international standards). Proc. Int. Symp. Digital Industrial Radiology and 
Computed Tomography, Lyon. 

[179] Li H, Mohan R, Zhu XR (2008). Scatter kernel estimation with an edge-spread 
function method for cone-beam computed tomography imaging. Physics in 
Medicine & Biology, 53(23), 6729. 

[180] Liang X, Li N, Zhang Z, Yu S, Qin W, Li Y, Chen Q, Zhang H, Xie Y (2019). Shading 
correction for volumetric CT using deep convolutional neural network and 
adaptive filter. Quantitative imaging in medicine and surgery, 9(7), 1242. 

[181] Lifton JJ (2015) The Influence of Scatter and Beam Hardening in X-ray 
Computed Tomography for Dimensional Metrology. PhD Thesis, University of 
Southampton. 

[182] Lifton, JJ, Malcolm AA, McBride JW (2015). On the uncertainty of surface 
determination in x-ray computed tomography for dimensional metrology. 
Meas. Sci. Technol. 26:035003. 

[183] Lifton JJ, Malcolm AA, McBride JW (2015). A simulation-based study on the 
influence of beam hardening in X-ray computed tomography for dimensional 
metrology. Journal of X-ray Science and Technology, 23(1), 65-82. 

[184] Lifton JJ, Carmignato S. (2017). Simulating the influence of scatter and beam 
hardening in dimensional computed tomography. Measurement Science and 
Technology, 28(10), 104001. 

[185] Lifton JJ, Liu T (2020). Evaluation of the standard measurement uncertainty 
due to the ISO50 surface determination method for dimensional computed 
tomography. Precision Engineering, 61, 82-92. 

[186] Lifton J, Liu T (2021). An adaptive thresholding algorithm for porosity 
measurement of additively manufactured metal test samples via X-ray 
computed tomography. Addit. Manuf. 39:101899. 

[187] Lüthi M, Bircher BA, Meli F, Küng A, Thalmann R (2019). X-ray flat-panel 
detector geometry correction to improve dimensional computed tomography 
measurements. Meas. Sci. Technol. 31. 

[188] Maier J, Sawall S, Knaup M, Kachelrieß M (2018). Deep scatter estimation 
(DSE): accurate real-time scatter estimation for X-ray CT using a deep 
convolutional neural network. Journal of Nondestructive Evaluation, 37(3), 1-
9. 

[189] Marinello F, Savio E, Carmignato S, De Chiffre L. (2008). Calibration artefact for 
the microscale with high aspect ratio: The fiber gauge. CIRP annals, 57(1), 497-
500. 

[190] Martz HE, Logan CM, Schneberk DJ, Shull PJ (2016). X-ray Imaging: 
fundamentals, industrial techniques and applications. CRC Press. 

[191] McDavid WD, Waggener RG, Payne WH, Dennis MJ (1977). Correction for 
spectral artifacts in cross‐sectional reconstruction from x rays. Medical 
physics, 4(1), 54-57. 

[192] Miceli A, Thierry R, Flisch A, Sennhauser U, Casali F, Simon M (2007) Monte 
Carlo simulations of a high-resolution X-ray CT system for industrial 
applications. Nuclear Instruments and Methods in Physics Research A 583, 
313-323. 

[193] Mohaghegh K, Andreasen JL, De Chiffre L (2020). Investigation on the effect of 
filtering and plane fitting strategies on differences between XCT and CMM 
measurements on a miniature step gauge. Proc. iCT2020 Conference on 
Industrial Computed Tomography, Wels, 4-7 February. 

[194] Muralikrishnan B, Shilling M, Phillips S, Ren W, Lee V, Kim F (2019). X-ray 
computed tomography instrument performance evaluation, Part I: Sensitivity 
to detector geometry errors. Journal of Research of the National Institute of 
Standards and Technology, 124, 1-16. 

[195] Muralikrishnan B, Shilling M, Phillips S, Ren W, Lee V and Kim F (2019). X-ray 
computed tomography instrument performance evaluation, Part II: Sensitivity 
of rotation stage errors. J. Res. NIST 124:1-13. 

[196] Müller AM, Hausotte T (2019). Comparison of different measures for the single 
point uncertainty in industrial X-ray computed tomography. In iCT2019 
Conference on Industrial Computed Tomography, Padova, 13-15 February. 

[197] Müller AM, Butzhammer L, Wohlgemuth F, Hausotte T (2020). Automated 
evaluation of the surface point quality in dimensional X-ray computed 
tomography. tm-Technisches Messen, 87(2), 111-121. 

[198] Müller P, Hiller J, Cantatore A, De Chiffre L (2012) A study on evaluation 
strategies in dimensional X-ray computed tomography by estimation of 
measurement uncertainties. Int J Metrol Qual Eng 3:107–115. 

[199] Müller P (2013). Coordinate metrology by traceable computed tomography, 
PhD Thesis. Technical University of Denmark. 

[200] Müller P, Cantatore A, Andreasen JL, Hiller J, De Chiffre L (2013) Computed 
tomography as a tool for tolerance verification of industrial parts. Procedia 
CIRP 10:125–132. 

[201] Müller P, Hiller J, Dai Y, Andreasen JL, Hansen HN, De Chiffre L (2014). 
Estimation of measurement uncertainties in X-ray computed tomography 
metrology using the substitution method. CIRP Journal of Manufacturing 
Science and Technology, 7(3), 222-232. 

[202] Münch B, Trtik P, Marone F, Stampanoni M (2009). Stripe and ring artifact 
removal with combined wavelet-Fourier filtering. Opt Express 17(10):8567-
8591. 

[203] Nardelli VC, Donatelli GD, Arenhart FA, Porath MC (2011). Uncertainty 
evaluation of computed tomography measurements using multiple calibrated 
workpieces. II CIMMEC, Natal, Brazil. 

[204] Obaton AF, Klingaa CG, Rivet C, Mohaghegh K, Baier S, Andreasen JL, Carli L, De 
Chiffre L (2020) Reference standards for XCT measurements of additively 
manufactured parts, iCT2020 Conference on Industrial Computed 
Tomography, Wels, 4-7 February. 

[205] Obaton AF, Yardin C, Liltorp K, Quagliotti D, De Chiffre L (2022) Comparison 
campaign of XCT systems using machined standards representative of 
additively manufactured parts. Proc. iCT2022 Conference on Industrial 
Computed Tomography, Wels, 8-11 February. 

[206] Orhan K, de Faria Vasconcelos K, Gaêta-Araujo H (2020) Artifacts in Micro-CT. 
In: Orhan K Micro-computed Tomography (micro-CT) in Medicine and 
Engineering, 35-48, Springer, Cham. Doi: 10.1007/978-3-030-16641-0_4. 

[207] Ortega N, Plaza S, Pascual A, Holgado I, Lamikiz A (2021). A methodology to 
obtain traceability for internal and external measurements of Inconel 718 
components by means of XRCT. NDT & E International 120:102436. 

[208] Otsu N (1979). A threshold selection method from gray-level histograms, IEEE 
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62-66. 



[209] Pagani L, Townsend A, Zeng W, Lou S, Blunt L, Jiang XQ, Scott PJ (2019). 
Towards a new definition of areal surface texture parameters on freeform 
surface: Re-entrant features and functional parameters. Measurement, 141, 
442-459. 

[210] Panas R, Cuadra JA, Mohan KA, Morales RE (2021). A Systems Approach to 
Estimating the Uncertainty Limits of X-Ray Radiographic Metrology. Journal of 
Micro- and Nano-Manufacturing 9, 010901. 

[211] Pavan M, Craeghs T, Kruth JP, Dewulf W (2018). Investigating the influence of 
X-ray CT parameters on porosity measurement of laser sintered PA12 parts 
using a design-of-experiment approach. Polymer Testing, 66, 203-212. 

[212] Pelt DM, Batenburg KJ, Sethian JA (2018). Improving Tomographic 
Reconstruction from Limited Data Using Mixed-Scale Dense Convolutional 
Neural Networks. J. Imaging 2018, 4, 128. 

[213] Poludniovski G, Evans P, DeBlois F, Landry G, Verhaegen F. SpekCalc 2009. 
http://spekcalc.weebly.com/ 

[214] Prell D, Kyriakou Y, Kalender WA (2009). Comparison of ring artifact 
correction methods for flat-detector CT. Phys Med Biol 54:3881-3895. 

[215] Probst G, Pavan M, Rathore J, Craeghs T, Kruth JP, Carmignato S, Dewulf W 
(2015). Influence of Electron Beam Alignment on Dimensional Metrology by 
Computed Tomography. In Proceedings of the 2015 International Symposium 
on Digital Industrial Radiology and Computed Tomography. 

[216] Probst G, Kruth JP, Dewulf W (2016). Compensation of drift in an industrial 
computed tomography system. Proc. iCT2016 conference on industrial 
computed tomography, Wels, 9-12 February. 

[217] Probst GM, Hou Q, Boeckmans B, Xiao Y, Dewulf W (2020). Characterization 
and stability monitoring of X-ray focal spots. CIRP Annals, 69(1), 453-456. 

[218] Probst GM (2022). Methods for assessing source and manipulator stability in 
Dimensional X-ray Computed Tomography. KU Leuven. 

[219] Pyka G, Kerckhofs G, Braem A, Mattheys T, Schrooten J, Wevers M (2010). 
Novel micro-ct based characterization tool for surface roughness 
measurements of porous structures. In: SkyScan User Meeting (pp. 1-5). 

[220] Rangayyan R, Dhawan AP, Gordon R (1985). Algorithms for limited-view 
computed tomography: an annotated bibliography and a challenge. Applied 
optics, 24(23), 4000-4012. 

[221] Reiter M, de Oliveira FB, Bartscher M, Gusenbauer C, Kastner J (2019). Case 
study of empirical beam hardening correction methods for dimensional x-ray 
computed tomography using a dedicated multi-material reference standard. 
Journal of Nondestructive Evaluation, 38(1), 1-15. 

[222] Rieth-Hoerst S, Reinhart C, Günther T, Dierig T, Fieres J (2014). Methods to 
ensure accuracy and reliability of analyses and measurements done on CT 
data-sets. In: Proceedings of 11th European Conference on Non-Destructive 
Testing, Prague, 6-11 October. 

[223] Rodriguez-Sánchez Á, Thompson A, Körner L, Brierley N, Leach RK (2020). 
Review of the influence of noise in X-ray computed tomography measurement 
uncertainty. Precision Engineering, Vol. 66, pp. 382-391. 

[224] Rodríguez-Sánchez A, Thompson A, Senin N, Eifler M, Hering J, Leach RK 
(2021). Calibration of X-ray computed tomography for surface texture 
measurement using metrological characteristics. Proc. 21st Int. euspen Conf. 

[225] Rothleitner C, Neuschaefer-Rube U, Illemann J (2016). Size and shape 
determination of sub-millimeter sized abrasive particles with X-ray computed 
tomography. In Proc. iCT2016 Conference on Industrial Computed 
Tomography, Wels, 9-12 February. 

[226] Rüegsegger P, Hangartner T, Keller HU, Hinderling T (1978). Standardization 
of computed tomography images by means of a material-selective beam 
hardening correction. Journal of Computer Assisted Tomography, 2(2), 184-
188. 

[227] Salesbury JG (2012) Developments in the international standardization of 
testing methods for CMMs with imaging probing systems. NCSL International 
Workshop & Symposium. 

[228] Santos VMR, Thompson A, Sims-Waterhouse D, Maskery I, Woolliams P, Leach 
RK (2020). Design and characterisation of an additive manufacturing 
benchmarking artefact following a design-for-metrology approach. Additive 
Manufacturing, 32, 100964. 

[229] Sbettega E, Zanini F, Carmignato S (2021). Sensitivity analysis of the 
geometrical misalignments of X-ray computed tomography systems on 
dimensional measurements. Proc. Euspen 21st International Conference & 
Exhibition, 7-10 June. 

[230] Schild L, Häfner B, Lanza G (2018). Knowledge Based User Support for 
Computed Tomography Measurements. In Congress of the German Academic 
Association for Production Technology (pp. 667-678). Springer. 

[231] Schild L, Jung M, Häfner B, Lanza G (2020). Influence of different mounting 
strategies on the random measurement error in industrial computed 
tomography. Proc. iCT2020 Conference on Industrial Computed Tomography, 
Wels, 4-7 February. 

[232] Schmidgunst C, Ritter D, Lang E (2007). Calibration model of a dual gain flat 
panel detector for 2D and 3D X-ray imaging. Med Phys 34(9):3649–3664. 

[233] Schmitt R, Niggemann C (2010). Uncertainty in measurement for x-ray-
computed tomography using calibrated work pieces. Measurement Science 
and Technology, 21(5), 054008. 

[234] Schmitt R, Isenberg C, Niggemann C (2012) Knowledge-based system to 
improve dimensional CT measurements. Proc. iCT2012 Conference on 
industrial computed tomography, Wels, 19-21 September. 

[235] Schorner K, Goldammer M, Stierstorfer K, Stephan J, Boni P (2012). Scatter 
correction method by temporal primary modulation in x-ray CT. IEEE 
Transactions on Nuclear Science, 59(6), 3278-3285. 

[236] Schörner K (2012) Development of Methods for Scatter Artifact Correction in 
Industrial X-ray Cone-beam Computed Tomography. PhD Thesis, Technische 
Universität München. 

[237] Schuetz P, Jerjen I, Hofmann J, Plamondon M, Flisch A, Sennhauser U (2014) 
Correction algorithm for environmental scattering in industrial computed 
tomography. NDT E Int Volume 64:59–64. 

[238] Seeram E (2015). Computed tomography: physical principles, clinical 
applications, and quality control. Elsevier Health Sciences. 

[239] Sezgin M, Sankur B (2004). Survey over image thresholding techniques and 
quantitative performance evaluation. J. Electron Imaging 13(1):146-168. 

[240] Senin N, Catalucci S, Moretti M, Leach RK (2021). Statistical point cloud model 
to investigate measurement uncertainty in coordinate metrology. Prec. Eng. 
70:44-62. 

[241] Shi L, Bennett NR, Wang AS (2021). Characterization of x-ray focal spots using 
a rotating edge. Journal of Medical Imaging, 8(2), 023502. 

[242] Shu S, Dai N, Cheng X, Zhou X, Wang L, Villarraga-Gómez H (2019). A study on 
factors influencing the accuracy evaluatiom of dimensional X-ray computed 
tomography with multi-sphere standards, Int. J. Prec. Eng. Manufac. 7. 

[243] Sidky EY, Yu L, Pan X, Zou Y, Vannier M (2005). A robust method of X-ray 
source spectrum estimation from transmission measurements: Demonstrated 
on computer simulated, scatter-free transmission data. Journal of applied 
physics 97/12, 124701. 

[244] Sidky EY, Kao CM, Pan X (2006). Accurate image reconstruction from few-
views and limited-angle data in divergent-beam CT. Journal of X-ray Science 
and Technology, 14(2), 119-139. 

[245] Sijbers J, Postnov A (2004). Reduction of Ring Artifacts in High Resolution 
Micro-CT Reconstructions. Phys Med Biol 49(14):247-253. 

[246] Sinico M, Ametova E, Witvrouw A, Dewulf W (2018). Characterization of AM 
metal powder with an industrial microfocus CT: Potential and limitations. In 
Proceedings of 2018 Summer Topical Meeting on Advancing Precision in 
Additive Manufacturing (Vol. 69, pp. 286-291). American Society for Precision 
Engineering. 

[247] Sinico M, Dewulf W, Witvrouw A (2019). The role of powder properties on 
precision additive metal manufacturing. In Additive Manufacturing Workshop 
2019-Present and future of Additive Manufacturing in Industry and Research, 
Date: 2019/09/20-2019/09/20, Location: Padova (PD), IT. 

[248] Sittner J, Godinho JRA, Renno AD, Cnudde V, Boone M, De Schryver T, Van Loo 
D, Merkulova M, Roine A, Liipo J (2020). Spectral X-ray computed micro 
tomography: 3-dimensional chemical imaging. X- Ray Spectrometry, 50(2), 
pp.92-105. 

[249] Six N, De Beenhouwer J, Sijbers J (2019). Poly-DART: A discrete algebraic 
reconstruction technique for polychromatic X-ray CT. Optics Express 27 (23), 
33670-33682. 

[250] Skaarup M, Edmund J, Kachelriess M, Vogelius I (2020). PO-1739: A deep 
learning neural network to remove metal artefacts via residual learning for 
cone-beam CT. Radiotherapy and Oncology, 152, S964-S965. 

[251] Stenner P, Berkus T, Kachelriess M (2007). Empirical dual energy calibration 
(EDEC) for cone‐beam computed tomography. Medical physics, 34(9), 3630-
3641. 

[252] Stock SR (2019). MicroComputed Tomography: Methodology and 
Applications, 2nd edn, Taylor & Francis. 

[253] Stolfi A, Thompson MK, Carli L, De Chiffre L (2016). Quantifying the 
contribution of post-processing in computed tomography measurement 
uncertainty. Procedia CIRP, 43, 297-302. 

[254] Stolfi A, De Chiffre L (2016). 3D artefact for concurrent scale calibration in 
Computed Tomography CIRP Annals, 65:1, 499–502. 

[255] Stolfi A (2017). Integrated quality control of precision assemblies using 
computed tomography. PhD Dissertation. Technical University of Denmark. 

[256] Stolfi A, De Chiffre L, Kasperl S (2018). Error Sources. In: Carmignato S, Dewulf 
W, Leach R. Industrial X-ray Computed Tomography. Springer. 

[257] Stolfi A, De Chiffre L, 2018, Interlaboratory comparison of a physical and a 
virtual assembly measured by CT. Prec. Eng. 51:263-270. 

[258] Sun M, Star-Lack JM (2010). Improved scatter correction using adaptive 
scatter kernel superposition. Physics in Medicine & Biology, 55(22), 6695. 

[259] Synek V (2005). Attempts to include uncorrected bias in the measurement 
uncertainty. Talanta 65:829-837. 

[260] Szeles C (2014). CdZnTe and CdTe materials for X-ray and gamma ray radiation 
detector applications. physica status solidi (b) 241/3, 783–790. 

[261] Tang X, Ning R, Yu R, Conover D (2001). Cone beam volume CT image artifacts 
caused by defective cells in x-ray flat panel imagers and the artifact removal 
using a wavelet-analysis-based algorithm. Med Phys 28(5):812-825. 

[262] Tate MW, Chamberlain D, Gruner SM (2005). Area X-ray detector based on a 
lens-coupled charge-coupled device. Rev Sci Instrum 76:081301. 

[263] Thierry R, Miceli A, Hofmann J (2007). Hybrid simulation of scattering 
distribution in cone beam CT.  Proc. International symposium on digital 
industrial radiology and computed tomography, pp. 25-27. 

[264] Thompson A, Senin N, Giusca C, Leach RK (2017). Topography of selectively 
laser melted surfaces: A comparison of different measurement methods. Ann. 
CIRP 66:543–546. 

[265] Thompson A, Senin N, Maskery I, Körner L, Lawes S, Leach RK (2018). Internal 
surface measurement of metal powder bed fusion parts. Addit. Manuf. 20:126–
133. 

[266] Thompson A, Senin N, Maskery I, Leach RK (2018). Effects of magnification and 
sampling resolution in X-ray computed tomography for the measurement of 
additively manufactured metal surfaces. Precision Engineering, 53, 54-64. 



[267] Torralba M, Jiménez R, Yagüe-Fabra JA, Ontiveros S, Tosello G (2018) 
Comparison of surface extraction techniques performance in computed 
tomography for 3D complex micro-geometry dimensional measurements. 
International Journal of Advanced Manufacturing Technology, 97, 441–453.  

[268] Townsend A, Pagani L, Blunt L, Scott PJ, Jiang X (2017). Factors affecting the 
accuracy of areal surface texture data extraction from X-ray CT. CIRP Annals, 
66(1), 547-550. 

[269] Turner N, Brierley N, Townsend A (2019) 3-in-1 X-ray computed tomography. 
Proc. iCT2019 Conference on Industrial Computed Tomography, Padova, 13-
15 February. 

[270] Tuy HK (1983). An inversion formula for cone-beam reconstruction. SIAM 
Journal on Applied Mathematics, 43(3), 546-552. 

[271] Van Laere K, Koole M, Lemahieu I, Dierckx R. (2001) Image filtering in single-
photon emission computed tomography: principles and applications Comput. 
Med Imag Grap 2001;25:127–33. 

[272] VDI/VDE 2630 Blatt 1.3 (2011) Computed tomography in dimensional 
measurement - Guideline for the application of DIN EN ISO 10360 for 
coordinate measuring machines with CT-sensors. 

[273] VDI/VDE 2630 Blatt 2.1 (2015) Computed tomography in dimensional 
measurement - Determination of the uncertainty of measurement and the test 
process suitability of coordinate measurement systems with CT sensors. 

[274] Villarraga-Gómez H, Lee C, Smith ST (2018). Dimensional metrology with X-
ray CT: A comparison with CMM measurements on internal features and 
compliant structures. Prec. Eng. 51:291-307. 

[275] Villarraga-Gómez H (2018) Studies of dimensional metrology with X-ray CAT 
scan. PhD dissertation, The University of North Carolina at Charlotte. 

[276] Villarraga-Gómez H, Herazo EL, Smith ST (2019). X-ray computed tomography: 
from medical imaging to dimensional metrology. Precision Engineering, 60, 
544-569. 

[277] Villarraga-Gómez H, Smith ST (2020). Effect of the number of projections on 
dimensional measurements with X-ray computed tomography. Precision 
Engineering, 66, 445-456. 

[278] Villarraga-Gómez H, Thousand JD, Smith ST (2020). Empirical approaches to 
uncertainty analysis of X-ray computed tomography measurements: A review 
with examples. Prec. Eng. 64:249-268. 

[279] Villarraga-Gómez H, Amirkhanov A, Heinzl C, Smith ST (2021). Assessing the 
effect of sample orientation on dimensional X-ray computed tomography 
through experimental and simulated data. Measurement, 178, 109343. 

[280] Visual Computing Lab - ISTI - CNR 2018 MeshLab (Available at 
https://www.meshlab.net/) Accessed: 14th June 2021. 

[281] Vlaeyen M, Haitjema H, Dewulf W (2021). Digital Twin of an Optical 
Measurement System. Sensors, 21(19), 6638. 

[282] Vo NT, Atwood RC, Drakopoulos M (2018). Superior techniques for eliminating 
ring artifacts in X-ray micro-tomography. Optics express, 26(22), 28396-
28412. 

[283] Vogeler F, Verheecke W, Voet A, Kruth JP, Dewulf W (2011). Positional stability 
of 2D x-ray images for computer tomography. Proc. Int. Symp. on Digital 
Industrial Radiology and Computed Tomography, Berlin. 

[284] VolumeGraphics 2021 VGStudioMAX 3.5 (Available at 
https://www.volumegraphics.com/) Accessed: 14th June 2021. 

[285] Wang B, Chen Z, Dewulf W, Pauwels R, Yao Z, Hou Q, Xiao Y. (2019). U-net-
based blocked artifacts removal method for dynamic computed tomography. 
Applied optics, 58(14), 3748-3753. 

[286] Wang J, Pagani L, Zhou L, Liu X, Lu W, Leach R K, Jiang X (2019) Uncertainty-
guided intelligent sampling strategy for high-efficiency surface measurement 
via free-knot B-spline regression modelling Prec. Eng. 56 38-52. 

[287] Weckenmann A, Krämer P (2013). Computed tomography in quality control: 
chances and challenges. Proceedings of the Institution of Mechanical 
Engineers, Part B: Journal of Engineering Manufacture, 227(5), 634-642. 

[288] Weiss D, Lonardoni R, Deffner A and Kuhn C (2012). Geometric image 
distortion in flat-panel x-ray detectors and its influence on the accuracy of CT-
based dimensional measurements Proc. iCT2012 Conf. on Industrial Computed 
Tomography, pp 173–81. 

[289] Weissenböck J, Amirkhanov A, Li W, Reh A, Amirkhanov A, Gröller E, Kastner J, 
Heinzl C (2014). Fiberscout: An interactive tool for exploring and analyzing 
fiber reinforced polymers. Proc. 2014 IEEE Pacific Visualization Symposium; 
pp. 153-160, IEEE. 

[290] Wen Z, Fahrig R, Conolly S, Pelc NJ (2007). Investigation of electron trajectories 
of an x‐ray tube in magnetic fields of MR scanners. Medical physics, 34(6:1), 
2048-2058. 

[291] Wenig P, Kasperl S (2006). Examination of the measurement uncertainty on 
dimensional measurements by X-ray computed tomography. Proc. 9th 
European Conference on Non-Destructive Testing (ECNDT), Berlin, 19-21 
September. 

[292] Williams TC, Shaddix CR (2007). Simultaneous correction of flat field and 
nonlinearity response of intensified charge-coupled devices. Rev Sci Instrum 
78:123702. 

[293] Withers PJ, Bouman C, Carmignato S, Cnudde V, Grimaldi D, Hagen CK, Maire E, 
Manley M, Du Plessis A, Stock SR (2021). X-ray computed tomography. Nature 
Reviews Methods Primers, 1(1), 1-21. 

[294] Wits WW, Carmignato S, Zanini F, Vaneker THJ (2016). Porosity testing 
methods for the quality assessment of selective laser melted parts. CIRP 
Annals, 65 (1):201–204. 

[295] Wohlgemuth F, Müller AM, Hausotte T (2018). Development of a virtual 
metrological CT for numerical measurement uncertainty determination using 
aRTist 2, Tech. Mess. 85:728–737. 

[296] Wohlgemuth F, Hausotte T (2020). Convergence behaviour of numerical 
measurement uncertainty evaluation using a virtual metrological computed 
tomography system, Proc. iCT2020 Conf. Industrial Computed Tomography, 
Wels. 

[297] Würfl T, Ghesu FC, Christlein V, Maier A (2016). Deep learning computed 
tomography. Proc. MICCAI2016 International conference on medical image 
computing and computer-assisted intervention, Athens, 17-21 October, pp. 
432-440. Springer. 

[298] Würfl T, Hoffmann M, Christlein V, Breininger K, Huang Y, Unberath M, Maier 
AK (2018). Deep Learning Computed Tomography: Learning Projection-
Domain Weights From Image Domain in Limited Angle Problems. IEEE 
Transactions on Medical Imaging, vol. 37, no. 6, pp. 1454-1463. 

[299] Xiao X, De Carlo F, Stock S (2007). Practical error estimation in zoom-in and 
truncated tomography reconstructions. Rev. Sci. Instr. 78, 063705. 

[300] Xu Z, Hyde CJ, Thompson A, Leach RK, Maskery I, Tuck C, Clare AT (2017). 
Staged thermomechanical testing of nickel superalloys produced by selective 
laser melting. Mater. Des. 133:520–527. 

[301] Xue L, Suzuki H, Ohtake Y, Fujimoto H, Abe M, Sato O, Takatsuji T (2015). 
Numerical analysis of the Feldkamp-Davis-Kress effect on industrial X-ray 
computed tomography for dimensional metrology, J. Comput. Inf. Sci. Eng. 15 
(2). 

[302] Yagüe-Fabra JA, Ontiveros S, Jiménez R, Chitchian S, Tosello G, Carmignato S 
(2013). A 3D edge detection technique for surface extraction in computed 
tomography for dimensional metrology applications. CIRP Annals, 62(1), 531-
534. 

[303] Yan H, Mou X, Tang S, Xu Q, Zankl M (2010). Projection correlation based view 
interpolation for cone beam CT: primary fluence restoration in scatter 
measurement with a moving beam stop array. Physics in Medicine & Biology, 
55(21), 6353. 

[304] Yu Y, Wang J (2012). Beam hardening-respecting flat field correction of digital 
X-ray detectors. IEEE International Conference on Image Processing, 30 
September – 3 October, pp 2085–2088. 

[305] Yun W, Lau SH, Stripe B, Lyon A, Reynolds D, Lewis SJ, Chen S, Semenov V, Spink 
RI (2016). Novel, high brightness x-ray source and high efficiency x-ray optic 
for development of x-ray instrumentation. Microscopy and Microanalysis, 
22(S3), 118-119. 

[306] Zanini F, Carmignato S (2017) Two-spheres Method for Evaluating the 
Metrological Structural Resolution in Dimensional Computed Tomography. 
Measurement Science and Technology 28(11):114002. 

[307] Zanini F, Pagani L, Savio E, Carmignato S (2019). Characterisation of additively 
manufactured metal surfaces by means of X-ray computed tomography and 
generalised surface texture parameters. Ann. CIRP 68:515–518. 

[308] Zanini F, Sbettega E, Sorgato M, Carmignato S (2019). New approach for 
verifying the accuracy of X-ray computed tomography measurements of 
surface topographies in additively manufactured metal parts. J. Nondestruc. 
Eval. 38:12. 

[309] Zanini F, Carmignato S (2019). Accuracy of fiber length measurements using 
X-ray computed tomography for the analysis of composite materials. Proc. 
Euspen. 

[310] Zanini F, Sorgato M, Savio E, Carmignato S (2021). Dimensional verification of 
metal additively manufactured lattice structures by X-ray computed 
tomography: Use of a newly developed calibrated artefact to achieve 
metrological traceability. Additive Manufacturing, 2021, 47, 102229. 

[311] Zanini F, Carmignato S, Savio E (2021). Two different experimental approaches 
for the uncertainty determination of X-ray computed tomography dimensional 
measurements on complex additively manufactured parts. Precision 
Engineering, submitted, under revision. 

[312] Zemek M, Blažek P, Šrámek J, Šalplachta J, Zikmund T, Klapetek P, Takeda Y, 
Omote K, Kaiser J (2020) Voxel Size Calibration for High-resolution CT. Proc. 
iCT2020 Conference on Industrial Computed Tomography, Wels, 4-7 February. 

[313] Zhao Z, Gang GJ, Siewerdsen JH (2014). Noise, sampling, and the number of 
projections in cone-beam CT with a flat-panel detector Med. Phys 
2014;41:061909. 

[314] Zhu L, Strobel N, Fahrig R (2005). X-ray scatter correction for cone-beam CT 
using moving blocker array. In Medical Imaging 2005: Physics of Medical 
Imaging, Vol. 5745, pp. 251-258. International Society for Optics and 
Photonics. 

[315] Zhu Y, Wu Z, Hartley WD, Sietins JM, Williams CB, Hang ZY (2020). Unraveling 
pore evolution in post-processing of binder jetting materials: X-ray computed 
tomography, computer vision, and machine learning. Addit. Manuf. 34:101183. 

[316] Ziegler A, Kohler T, Proksa R (2007). Noise and resolution in images 
reconstructed with FBP and OSC algorithms for CT. Med Phys 2007;34:585–
98. 

 


