Health-Related Quality of Life following Robotic-Assisted or Video-Assisted Lobectomy in Patients with Non-Small-Cell Lung Cancer: Results from The RVlob Randomized Clinical Trial

Runsen Jin, MD, PhD, Zhengyuan Zhang, MD, Yuyan Zheng, MD, Zhenyi Niu, MD, Siying Sun, MS, Yuqin Cao, MD, Yajie Zhang, MD, PhD, Abbas E. Abbas, MD, MS, FACS, Toni Lerut, MD, PhD, MPH, FACS, Jules Lin, MD, FACS, FCCP, Hecheng Li, MD, PhD, FACS

PII: S0012-3692(23)00015-6

DOI: https://doi.org/10.1016/j.chest.2022.12.037

Reference: CHEST 5455

To appear in: CHEST

- Received Date: 19 August 2022
- Revised Date: 5 December 2022

Accepted Date: 19 December 2022

Please cite this article as: Jin R, Zhang Z, Zheng Y, Niu Z, Sun S, Cao Y, Zhang Y, Abbas AE, Lerut T, Lin J, Li H, Health-Related Quality of Life following Robotic-Assisted or Video-Assisted Lobectomy in Patients with Non-Small-Cell Lung Cancer: Results from The RVlob Randomized Clinical Trial, *CHEST* (2023), doi: https://doi.org/10.1016/j.chest.2022.12.037.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Copyright © 2023 Published by Elsevier Inc under license from the American College of Chest Physicians.

Title page

Health-Related Quality of Life following Robotic-Assisted or Video-Assisted Lobectomy in Patients with Non-Small-Cell Lung Cancer: Results from The RVlob Randomized Clinical Trial Runsen Jin MD, PhD^{1#}; Zhengyuan Zhang MD^{1#}; Yuyan Zheng MD^{1#}; Zhenyi Niu MD¹; Siying Sun MS¹; Yuqin Cao MD¹; Yajie Zhang MD, PhD¹; Abbas E. Abbas MD, MS, FACS²; Toni Lerut MD, PhD, MPH, FACS³; Jules Lin MD, FACS, FCCP⁴; Hecheng Li MD, PhD, FACS^{1*}

- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Thoracic Surgery, Brown Surgical Associates and Lifespan Hospitals, Warren Alpert Medical School of Brown University, Rhode Island, USA
- 3. Department of Thoracic Surgery, University Hospital Leuven, Leuven, Belgium
- Section of Thoracic Surgery, University of Michigan Medical Center, Ann Arbor, Michigan, USA

#Equal Contributions: These authors contributed equally to this work.

*Corresponding Author: Hecheng Li, MD, PhD, FACS; Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China; E-mail: <u>lihecheng2000@hotmail.com</u>. Conflict of Interest and Source of Funding: Hecheng Li is currently receiving a Robotic Research Grant from Intuitive Surgical Operations, Inc. Jules Lin is a robotic

proctor for Intuitive Surgical, Inc. For the remaining authors none were declared. This study was supported by National Key Research and Development Program of China (2021YFC2500900), National Natural Science Foundation of China (82072557, 81871882), Shanghai Municipal Education Commission- Gaofeng Clinical Medicine Grant (20172005, the 2nd round of disbursement), program of Shanghai Academic Research Leader from Science and Technology Commission of Shanghai Municipality (20XD1402300), Natural Science Foundation of Shanghai (22ZR1439200) and Robotic Research Grant from Intuitive Surgical Operations, Inc **Running Head:** Quality of life following RVlob trial

Word counts: 3359

Acknowledgments: The authors acknowledge Professor Yunpeng Zhu for his revision of the manuscript. The preregistration can be accessed at https://clinicaltrials.gov/ct2/show/NCT03134534. We certify that the results of all preregistered analyses are reported. Hecheng Li has full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. The data of the present study are not available publicly, but available with the permission of the corresponding author.

Disclosure: Hecheng Li is currently receiving a Robotic Research Grant from Intuitive Surgical Operations, Inc. Jules Lin is a robotic proctor for Intuitive Surgical, Inc. For the remaining authors none were declared. The authors declare no other conflict of interest.

1	Key Words: Non-small cell lung cancer, Robotic-assisted lobectomy, Video-assisted
2	lobectomy, Quality of life, Postoperative pain, Randomized controlled trial.
3	Abstract
4	Background: Robotic-assisted lobectomy (RAL) is increasingly employed as an alternative
5	to video-assisted lobectomy (VAL) for resectable non-small-cell lung cancer (NSCLC).
6	However, there is little evidence for any difference in the postoperative health-related quality
7	of life (HRQoL) between these two approaches.
8	Research Question: Is robotic-assisted lobectomy (RAL) superior to video-assisted
9	lobectomy (VAL) in improving quality of life in patients with resectable non-small-cell lung
10	cancer (NSCLC)?
11	Study design and methods: We performed a single-center, open-label randomized clinical
12	trial from May 2017 to May 2020 with 320 patients undergoing RAL or VAL for resectable
13	NSCLC enrolled (RVlob trial, NCT03134534). Postoperative pain was evaluated with the
14	visual analogue score (VAS) or numeric rating score (NRS) on postoperative day 1 and at
15	weeks 4, 24, and 48. The European Organization for Research and Treatment of Cancer
16	(EORTC) Quality of Life Questionnaire (QLQ-C30), EORTC Quality of Life Questionnaire
17	in Lung Cancer (QLQ-LC13), and the European Quality of Life 5 Dimensions (EQ-5D)
18	questionnaire were also administered at weeks 4, 24 and 48 after surgery.
19	Results: 157 patients underwent RAL and 163 had VAL. The mean pain score of patients
20	after RAL was statistically lower at week 4 (2.097 \pm 0.111 vs 2.431 \pm 0.108, p=0.032). QLQ-
21	C30 and QLQ-LC13 summary scores (p>0.05) were similar for both RAL and VAL during the

22	first 48 weeks of follow-up. HRQoL score assessed with the EQ-5D questionnaire was also
23	comparable between the two groups ($p > 0.05$) during the whole study period.
24	Interpretation: Both RAL and VAL showed satisfactory and comparable HRQoL and
25	postoperative pain up to 48 weeks after surgery, despite some minor statistical differences at
26	week 4.
27	Clinical Trial registration: NCT03134534 (http://www.clinicaltrials.gov)
28	
29	
30	
31	Lung cancer is the leading cause of cancer-related death in the world ¹ , and non-small-
32	cell lung cancer (NSCLC) categories account for the most common pathological types of lung
33	cancer. Video-assisted lobectomy (VAL) is a standard surgical procedure for resectable
34	NSCLC, and uniportal lobectomy is considered one of the mainstream modalities ² . The
35	robotic platform, which provides technical benefits including three-dimensional, high-
36	definition visualization and better maneuverability, has become increasingly utilized in
37	various surgical fields since 1985 ³ . Melfi et al. described the first robotic-assisted lobectomy
38	(RAL) in 2002 ⁴ . Since then, several studies have also revealed the potential benefits of robotic
39	surgery regarding short-term outcomes compared to other modalities. Fewer studies have
40	described the long-term oncologic efficacy of robotic lobectomy ⁵ .
41	In addition to evaluating disease-free and overall survival, modern surgical research has
42	focused on changes in postoperative life quality after oncologic surgery. The health-related
43	quality of life (HRQoL) index was developed to evaluate a patient's physical, psychological

and cognitive status following a specific treatment. Several studies comparing the
postoperative HRQoL between robotic-assisted and laparoscopic surgery for other cancer
procedures such as rectal cancer resection⁶, pancreatectomy⁷ and hysterectomy⁸ have
demonstrated similar or marginally improved outcomes after robotic surgery. However, such
studies on the effect of robotic surgery compare to other approaches in lung cancer have
shown mixed results.

One small, retrospective study did report improved quality of life in lung cancer patients 50 undergoing robotic-assisted resection compared to thoracoscopic surgery in the short term⁹. 51 Meanwhile, another non-randomized prospective study reported that patients with stage I or II 52 NSCLC who underwent VAL had improved long-term quality of life and a lower incidence of 53 postoperative complications compared to patients who had RAL¹⁰. Unfortunately, 54 approximately 40% of patients in the latter study were lost to follow-up making the results 55 less reliable¹⁰. Due to this lack of clarity in the differences of HRQoL between RAL and 56 VAL, further evidence is clearly necessary. 57

We have previously launched a prospective, single-center, open-label and parallel-arm randomized controlled trial (ClinicalTrials.gov identifier, NCT03134534), to compare the safety and efficacy between VAL (uniport or biport) and RAL for patients with resectable NSCLC ¹¹. In addition to safety, feasibility, and long-term survival, we also compared HRQoL between the two surgical modalities and investigated the potential discrepancy which could be derived from robotic-assisted surgery.

64 **METHODS**

65 Trial Design

RVlob was a single-center, open-label, parallel-arm, non-inferiority trial comparing the 66 safety and efficacy of RAL and VAL. Details of inclusion and exclusion criteria, recruitment 67 and randomization procedures have been previously reported¹¹. Briefly, patients with 68 pulmonary tumors who were identified as suitable for minimally invasive lobectomy were 69 enrolled and randomized to receive RAL or VAL. A da Vinci S/Si surgical robot (Intuitive 70 Surgical, Inc, Santa Clara, CA) was used to perform RAL. Five ports were placed in the 71 following positions: a 12-mm camera port was placed in the 8th intercostal space (ICS) at the 72 73 mid-axillary line; three 8-mm working ports were placed separately in the 5th ICS at the anterior axillary line (#1 arm), the 8th ICS at the posterior axillary line (#2 arm), and the 8th 74 ICS at 2 cm lateral to the spine (#3 arm). Finally, the auxiliary port was placed in the 8th ICS 75 between the camera port and the anterior port. VAL was performed through a 4-cm incision, 76 which was placed in the 5th ICS at the anterior axillary line and covered with a protective 77 sleeve. When necessary, an additional auxiliary port was placed in the 7th or 8th ICS at the 78 79 mid-axillary line. All surgical instruments were inserted through the incision without spreading the ribs¹¹. Study protocol and amendments were approved by the ethics committee 80 of Ruijin Hospital, Shanghai Jiaotong University School of Medicine (approval number, 81 2017-58). All enrolled patients gave informed written consent before randomization. The trial 82 was registered at ClinicalTrials.gov (NCT03134534). 83 HRQoL Assessments 84

85	All patients were asked to complete four validated HRQoL instruments before surgery
86	and at weeks 4, 24, and 48 postoperatively: the European Organization for Research and
87	Treatment of Cancer Quality of Life Questionnaire (EORTC QLQ-C30) version 3.0 ¹² , the
88	EORTC Quality of Life Questionnaire in Lung Cancer (EORTC QLQ-LC13) ¹³ , the European
89	Quality of Life 5 Dimensions questionnaire (EQ-5D) ¹⁴ , and the numeric rating scale (NRS) or
90	visual analogue score (VAS) for postoperative pain evaluation. The EORTC QLQ-C30
91	assesses cancer-specific QoL, including 30 items divided into four domains: functioning
92	scales, symptom scales, single item for economic status and two items evaluating global
93	health status (GHS). The EORTC QLQ-LC13 serves as a complement to the EORTC QLQ-
94	C30 core cancer module. For EORTC QLQ-C30 and EORTC QLQ-LC13 ¹⁵ , the scores for
95	each domain range from 0 to 100 after linear transformation of the raw scores. An EORTC
96	QLQ-C30 summary score was calculated using the mean of 15 of the QLQ-C30 scores, while
97	an EORTC QLQ-LC13 symptom summary score was calculated with the same method. The
98	EQ-5D questionnaire consists of five questions (primary dimensions) including mobility, self-
99	care, usual activities, pain and discomfort, and anxiety and depression. Each question has
100	three possible answers ("no problems", "some problems", or "extreme problems"). For pain
101	evaluation, an eleven-point VAS (on postoperative day 1) and NRS (used during follow-up)
102	were used, where a score of 0 represents "no pain" while a score of 10 signifies the "worst
103	pain imaginable".

104 At follow-up, patients were administered these four QoL evaluation instruments during 105 clinic visits at weeks 4, 24, and 48 postoperatively (Figure 1). If a patient missed the

scheduled postoperative follow-up at our institution, a telephone follow-up was conductedinstead.

108 Statistical Analysis

109 Statistical methods for the primary analyses have been described previously¹¹. No power calculation was done for HRQoL. HRQoL assessment was carried out in all randomly 110 assigned patients who underwent RAL or VAL. The compliance rate was defined as the 111 proportion of patients who completed the indicated questionnaires among those who were 112 expected to complete one at each timepoint. Scores for EORTC QLQ-30 and EORTC QLQ-113 LC13 were calculated according to the published scoring manuals and the developer's 114 guidelines^{12,13}. The outcomes of EQ-5D questionnaires were converted by a linear formula 115 into the utility index respectively¹⁶. Comparisons between the two groups were done using 116 Student's t-test for normally distributed continuous variables which were represented as mean 117 \pm standard deviation (SD). In cases of non-compliance, continuous variables were presented 118 as median (interquartile range [IQR]) and compared by Mann-Whitney U test between the 119 groups. Classification data was compared using the chi-square test or Wilcoxon rank-sum test. 120 121 All statistical analysis was performed using IBM SPSS 22.0 (SPSS Inc; Chicago, IL, USA), GraphPad Prism version 8.0.0 for Windows (GraphPad Software, San Diego, 122 California USA, www.graphpad.com) and OriginPro, Version 2021 (OriginLab Corporation, 123 Northampton, MA, USA). The test level between the two groups was set at α =0.05 (bilateral), 124 and P values less than 0.05 were considered statistically significant. 125 126

127 **RESULTS**

128 Patient Inclusion and Questionnaire Participation

After screening, 320 patients (157 in the RAL group and 163 in the VAL group) were 129 enrolled and randomized. Table 1 describes the clinicopathological characteristics and 130 perioperative outcomes of both groups. Baseline characteristics were balanced between the 131 groups including age, sex, place of residence, employment status, education level, BMI and 132 smoking index (Table 1). There were no significant differences in pathological TNM stage, 133 operation time, rate of conversion to thoracotomy, postoperative length of stay or 134 postoperative complications (Table 1). And there were 21 deaths (7 RAL and 14 VAL) and 11 135 cases of recurrence (6 RAL and 5 VAL) by the time of 48 weeks of postoperative follow-up. 136 The rate of loss to follow-up was comparable in both groups; approximately 12% of 137 patients in the RAL group and 10% in the VAL group. We received 144 (92%) questionnaires 138 in the RAL group and 153 (94%) in the VAL group at week 4 and 139 (86%) in the RAL 139 group and 143 (88%) in the VAL group at week 24. By week 48, 131 (83%) in the RAL group 140 and 134 (82%) in the VAL group completed the QLQ-C30 and the QLQ-LC13. Meanwhile, 141 131 (83%) in the RAL group and 134 (82%) in the VAL group completed the EQ-5D at 48 142 weeks, and 265 patients completed the assessment for postoperative pain (131 (83%) in the 143 RAL group and 134 (82%) in the VAL group) at week 48. Overall, there were no significant 144 differences in survey completion or compliance rates between both groups at each timepoint 145 (Table 2). 146

147 EORTC QLQ-C30 and QLQ-LC13 Questionnaire Scoring

148 To evaluate the postoperative HRQoL in detail, we applied the EORTC QLQ-C30

149	questionnaire mainly consisting of functioning scale (physical function, role function,
150	emotional function, cognitive function, and social function), symptom scale (fatigue, nausea
151	and vomiting, dyspnea, etc.) two Global Health Status (GHS)/QoL evaluating items, and the
152	QLQ-LC13 questionnaire consisting of 13 specific symptoms for lung cancer. The mean
153	GHS/QoL scores decreased in both RAL and VAL groups after surgery, compared with the
154	baseline status. They maintained close levels between both groups at each time point for the
155	entire follow-up period (Figure 2A). The mean score changes from baseline of the GHS/QoL
156	at week 4, 24 and 48 showed no marked difference between both groups (-27.03 \pm 13.34 vs -
157	26.42 ± 13.41 , -12.41 ± 18.26 vs -8.68 ± 15.57 , -7.19 ± 16.60 vs -7.28 ± 17.65 , respectively,
158	p>0.05, Figure 2B and Supplementary Figure 1). The similarity between both groups in mean
159	GHS/QoL score at week 48 was consistent across QLQ-C30 and QLQ-LC13
160	functioning/symptom scales (Figure 2B and 2C). Both groups had similar scores in physical
161	function (p=0.59, Figure 2B) and coughing scores (p=0.85, Figure 2C) at week 48. By the end
162	of the 1-year follow-up period, the most commonly reported postoperative symptoms were
163	mainly fatigue, pain, dyspnea and coughing (Figure 2B and 2C). At week 48, no significant
164	differences were found in mean score changes from baseline in both groups for any functional
165	or symptom scales. Subgroup analyses for the GHS/QoL at weeks 4 and 48 showed no
166	differences with the outcomes in the overall population (Supplementary Figure 2).
167	At week 48, fewer patients in both the RAL and VAL groups had decreased QLQ-C30
168	GHS/QoL scores or lower functioning and symptom scales, which indicated that more
169	patients had stable even better feeling, compared with baseline condition before surgery. In
170	fact, a larger proportion of patients had stable or improved status, compared to postoperative

- 171 week 4 (Figure 3). A similar proportion of patients in both groups had decreased GHS/QoL
- scores (RAL group, 53% and VAL group, 49%). This trend was consistent with that seen in
- the rest of the QLQ-C30 functional and symptom scales (Figure 3).
- 174 EQ-5D Utility Index (UI)

The EQ-5D questionnaire assesses patient quality of life from five dimensions, including 175 mobility, self-care, usual activities, pain and discomfort, and anxiety/depression. A majority of 176 the individual dimensions on the EQ-5D questionnaires showed no differences between the 177 two groups at each timepoint. When specifically asked about usual activities, there were more 178 patients who chose "some problem" in the RAL group than the VAL group (26 RAL (19.8%)) 179 vs 15 VAL (10.3%), p=0.03, Figure 4A) at week 4. At week 48, there were no significant 180 differences in any of the specific dimensions (Figure 4B). When comparing the entire EQ-5D 181 utility index which represents the summary scores, both RAL and VAL patients had similar 182 scores (p > 0.05) at each timepoint (Figure 4C). Further analyses for EQ-5D summary scores 183 in subgroups at weeks 4 and 48 showed the comparable results with the outcomes in the 184 overall population (Supplementary Figure 3). 185

186 *Postoperative Pain*

Postoperative pain is an important component of assessing HRQoL after surgery. The VAS was used on postoperative day one while the NRS was used for baseline evaluation and after hospital discharge. Most patients (83.5%) had a relatively tolerable pain score between 0 to 3 at their first postoperative visit. Furthermore, there was a correlation between pain score and time, with both VAS and NRS scores showing a consistent decline with increasing time after surgery. Patients in the VAL group did report higher pain scores than those in the RAL

193	group at week 4 (2.431 ± 0.108 vs 2.097 ± 0.111 , p=0.03, Figure 5A). Otherwise, there were				
194	no significant differences at other timepoints. We also recorded the use and frequency of				
195	analgesics (Supplementary Table 1). Furthermore, the outcomes at week 4 in most clinical				
196	subgroups demonstrated that the patients who underwent RAL had a lower pain score. This				
197	was evident in groups including male, thinner population and urban residents, where the				
198	patients who underwent RAL showed the trend of lower pain scores compared with the VAL				
199	(Figure 5B).				
200					

DISCUSSION

202	RAL has been demonstrated to achieve superior surgical outcomes to conventional open
203	surgery ¹⁷ . An earlier report of a randomized study by this group revealed that RAL was safe
204	and feasible compared to VAL ¹¹ . There were also a few retrospective studies reporting the
205	potential long-term benefits of RATS, compared with VATS ^{18,19} . In 2017, David et al.
206	reported the HRQoL in patients undergoing robotic-assisted and conventional laparoscopic
207	surgery for rectal cancer, and showed no difference at 6 months ⁶ . In 2015, Jenny et al. ²⁰
208	demonstrated that there were no differences in postoperative pain between conventional
209	laparoscopy and robotic-assisted surgery for gynecologic procedures. Similarly, in comparing
210	the results of laparoscopic versus robotic-assisted prostatectomy for localized prostate cancer,
211	Ilic et al. reported ²¹ that urinary and sexual quality of life-related outcomes appeared similar
212	and the difference in postoperative pain was minimal. However, only two previous studies ^{9,10}
213	discussed the outcomes of HRQoL and postoperative pain after RAL. Both studies suffered
214	from small sample size and incomplete long-term follow-up. The HRQoL results of our
215	prospective clinical trial suggested that patients who underwent RAL reported lower pain
216	scores than the VAL group at week 4. However, the RAL group had less functionality (p <
217	0.05) in usual activities than the VAL group although the composite summary scores of EQ-
218	5D at week 4 were the same for both groups. Besides these minor differences between the 2
219	groups, there were no other differences in the overall scores of HRQoL or postoperative pain.
220	In addition to survival, having the ability to maintain a good quality of life is an
221	important consideration in clinical decision-making for all surgical fields, and is a key goal of
222	treatment ²² . Bendixen <i>et al.</i> performed a randomized controlled trial to analyze QoL after

223	video-assisted thoracoscopic surgery (VATS) and thoracotomy in 206 patients with early-stage
224	lung cancer ²³ . During the period of observation, self-reported QoL according to the EQ-5D
225	was significantly better after VATS. However, QoL according to QLQ-C30 was not different
226	between the groups. Williams et al. reported that VAL patients received higher QLQ-C30
227	summary scores, due to higher social scores and decreased postoperative dyspnea at 12
228	months ¹⁰ . In contrast, Zheng <i>et al.</i> revealed that the QoL scores according to QLQ-C30 in the
229	robotic-assisted thoracoscopic surgery (RATS) group were higher than those of the VATS
230	group 6 weeks postoperatively ⁹ . In this study, patients received the EORTC-C30 and QLQ-
231	LC13 questionnaire to determine their QoL scores. The EQ-5D questionnaire served as an
232	additional enrichment to the QoL evaluation. We found that both RAL and VAL groups
233	exhibited an obvious degree of fatigue, dyspnea, pain or coughing in the symptom scales at
234	each timepoint postoperatively. The same trend was also observed in functioning scales
235	(physical, role and social functioning). Meanwhile, the degree of score changes in functioning
236	and symptom scales was not different between the 2 groups at each timepoint during the
237	follow-up (Supplementary Figure 1 and 4). The GHS/QoL scores which represent general
238	self-reported QoL were also consistent between both groups at each timepoint postoperatively.
239	At long-term follow-up, both the symptom and function scores returned to near-baseline
240	levels gradually. Our study found few differences between the 2 groups in EQ-5D individual
241	dimensions during the study, except for the activity status at week 4, in which more patients
242	from the RAL group reported difficulty in working. Further data analysis revealed that the
243	proportion of patients in employment was larger in the RAL group (42.3% vs 26.7%,
244	p=0.317) among the same patients who felt difficult in usual activities at week 4. This was

245	consistent with the fact that there was a higher overall proportion of patients in employment
246	in the RAL group, compared to the VAL group (29.2% vs 21.6%, p=0.132). This may provide
247	a reasonable explanation for this discrepancy, since the usual activity status in the EQ-5D
248	questionnaire included study, housework and leisure activities in addition to work. Several
249	other factors could also have affected the subjective evaluation of usual activity status,
250	including recall bias, understanding bias, or incorrect responses during the assessment.
251	Overall, both RAL and VAL exhibited comparable impact on the HRQoL using the above
252	three questionnaires.
253	Both the VAS and NRS questionnaires are widely applied clinically as postoperative pain
254	assessment tools ²⁴ . Current studies demonstrate that both methods appropriately reflect the
255	degree of pain. NRS assesses the degree of pain according to its current intensity ^{24,25} .
256	However, VAS evaluates pain not only in intensity but also in its character, thus representing a
257	more nuanced description of the symptom. VAS was administered on the first day after
258	surgery, while NRS was used at preoperative baseline and during the follow-up period. The
259	pain score continued to decrease with time after surgery in both groups. There were no
260	differences between groups at the first day, week 24 and week 48 but the RAL group had
261	significantly lower pain scores than VAL group at postoperative week 4 (2.097 \pm 0.111 vs
262	2.431 ± 0.108 , p=0.03, Figure 5A). Among other studies that compared RAL and VAL, our
263	findings were consistent with the results of Zheng et al. who also showed a lesser proportion
264	of patients feeling pain after RAL than VAL in the early postoperative period ⁹ . Otherwise,
265	Testori et al. reported that the robotic group had a non-statistically significant superiority
266	toward the video-assisted group concerning the postoperative pain during one-year follow-up

267	in their retrospective study ²⁶ . Conversely, Novellis <i>et al</i> . reported that the VATS approach was
268	associated with less pain 2 weeks after surgery, but the difference was very small and the
269	clinical relevance was unclear ²⁷ . In our study, the lower postoperative pain score at week 4 in
270	RAL group was possibly due to less stress injury to the thoracic wall during surgical
271	manipulations owing to the unique internal wrist rotation system. This system allows the
272	machine arm to move more precisely and achieve a better operating angle all while remaining
273	at a fixed point in space ^{28,29} . Of note, most patients in the VAL group underwent uniportal
274	surgery, in which all the instruments were placed through a single larger incision, potentially
275	causing more pressure and torquing on the intercostal tissues. Indeed, we found that patients
276	underwent RAL had the similar level of postoperative pain in our clinical center, compared
277	with patients underwent VAL, despite the minor differences in the pain evaluation.
278	There are several limitations in our study. Firstly, the single-center nature of this clinical
279	trial makes it less persuasive than a multicenter study. Secondly, since no blinding to
280	treatment assignment was incorporated into this trial, the research findings may be influenced
281	by the subjective feelings of the patients. Thirdly, some patients were lost to follow-up at each
282	time point, contributing to an approximately 90% survey rate at week 48. Similar prospective
283	multi-center studies may be required to confirm and validate the long-term results.

284 **INTERPRETATION**

In conclusion, we reported the HRQoL and postoperative pain outcomes of the first prospective RCT comparing RAL and VAL in the treatment of resectable NSCLC. Both surgical modalities showed satisfactory and comparable HRQoL and postoperative pain up to 48 weeks after surgery, despite some minor statistical differences at week 4.

289

290 ACKNOWLEDGEMENTS

- 291 Author contributions: The authors acknowledge Professor Yunpeng Zhu for his revision of the
- 292 manuscript. The preregistration can be accessed at
- 293 https://clinicaltrials.gov/ct2/show/NCT03134534. We certify that the results of all
- 294 preregistered analyses are reported. Hecheng Li has full access to all the data in the study and
- takes responsibility for the integrity of the data and the accuracy of the data analysis. The data
- of the present study are not available publicly, but available with the permission of the
- 297 corresponding author.
- 298 Financial/nonfinancial disclosures: Hecheng Li is currently receiving a Robotic Research
- 299 Grant from Intuitive Surgical Operations, Inc. Jules Lin is a robotic proctor for Intuitive
- 300 Surgical, Inc. For the remaining authors none were declared. The authors declare no other
- 301 conflict of interest.
- 302 Additional information: The supplementary figure and table can be found in the
- 303 Supplemental Materials section of the online article.
- 304 Take-home Points
- 305 **Study Question:** Is robotic-assisted lobectomy (RAL) superior to video-assisted lobectomy
- 306 (VAL) in improving quality of life in patients with resectable non-small-cell lung cancer

307 (NSCLC)?

- **Results:** 157 patients underwent RAL and 163 had VAL. The mean pain score of patients
- 309 after RAL was statistically lower at week 4 (2.097 \pm 0.111 vs 2.431 \pm 0.108, p=0.032). QLQ-
- 310 C30 and QLQ-LC13 summary scores (p>0.05) were similar for both RAL and VAL during

- the first 48 weeks of follow-up. HRQoL score assessed with the EQ-5D questionnaire was
- also comparable between the two groups (p > 0.05) during the whole study period.
- 313 Interpretation: Both RAL and VAL showed satisfactory and comparable HRQoL and
- postoperative pain up to 48 weeks after surgery, despite some minor statistical differences at
- 315 week 4.
- 316
- 317

Journal Prevention

318 **References**

- Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer Statistics, 2021. *CA: a cancer journal for clinicians.* 2021;71(1):7-33.
- Bertolaccini L, Batirel H, Brunelli A, et al. Uniportal video-assisted thoracic surgery lobectomy: a
 consensus report from the Uniportal VATS Interest Group (UVIG) of the European Society of
 Thoracic Surgeons (ESTS). *European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery*. 2019;56(2):224-229.
- Ponnusamy K MC, Curet MJ. Clinical Outcomes With Robotic Surgery. *Curr Prob Surg.* 2011;48(9):577-656.
- Melfi FMA, Menconi GF, Mariani AM, Angeletti CA. Early experience with robotic technology for
 thoracoscopic surgery. *Eur J Cardio-Thorac.* 2002;21(5):864-868.
- Howington JA, Nasir D, Freeman RK, Putnam B, Cerfolio D, Hazelrigg SR. Performing Robotic
 Lobectomy and Segmentectomy: Cost, Profitability, and Outcomes DISCUSSION. *Ann Thorac Surg.* 2014;98(1):208-209.
- Jayne D, Pigazzi A, Marshall H, et al. Effect of Robotic-Assisted vs Conventional Laparoscopic
 Surgery on Risk of Conversion to Open Laparotomy Among Patients Undergoing Resection for
 Rectal Cancer: The ROLARR Randomized Clinical Trial. *Jama.* 2017;318(16):1569-1580.
- 335 7. De Pastena M, Esposito A, Paiella S, et al. Cost-effectiveness and quality of life analysis of
 336 laparoscopic and robotic distal pancreatectomy: a propensity score-matched study. *Surg Endosc.*337 2021;35(3):1420-1428.
- Elessawy M, Schneekloth S, Gunther V, Maass N, Mettler L, Alkatout I. Postoperative Telephone Based Questionnaire on Quality of Life after Robotic-Assisted Laparoscopic Hysterectomy versus
 Conventional Total Laparoscopic Hysterectomy. *J Clin Med.* 2020;9(9).
- 341 9. Zheng L, Song P, Jiang Y, et al. Outcomes and quality of life after Robot-assisted
 342 lobectomy/segmentectomy for lung cancer compared to video-assisted thoracoscopic surgery:
 343 both three-port procedures performed by a single surgeon. *Journal of thoracic disease.*344 2022;14(3):689-698.
- Williams AM, Zhao L, Grenda TR, et al. Higher Long-term Quality of Life Metrics After Video Assisted Thoracoscopic Surgery Lobectomy Compared With Robotic-Assisted Lobectomy. *The Annals of thoracic surgery.* 2020.
- Jin R, Zheng Y, Yuan Y, et al. Robotic-assisted Versus Video-assisted Thoracoscopic Lobectomy:
 Short-term Results of a Randomized Clinical Trial (RVlob Trial). *Annals of surgery*. 2022;275(2):295 302.
- Aaronson NK, Ahmedzai S, Bergman B, et al. The European Organization for Research and
 Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in
 oncology. *Journal of the National Cancer Institute.* 1993;85(5):365-376.
- Bergman B, Aaronson NK, Ahmedzai S, Kaasa S, Sullivan M. The EORTC QLQ-LC13: a modular
 supplement to the EORTC Core Quality of Life Questionnaire (QLQ-C30) for use in lung cancer
 clinical trials. EORTC Study Group on Quality of Life. *European journal of cancer (Oxford, England :*1990). 1994;30a(5):635-642.
- 358 14. EuroQol--a new facility for the measurement of health-related quality of life. *Health policy* 359 (*Amsterdam, Netherlands*). 1990;16(3):199-208.
- 36015.Koller M, Hjermstad MJ, Tomaszewski KA, et al. An international study to revise the EORTC361questionnaire for assessing quality of life in lung cancer patients. Annals of oncology : official

362 *journal of the European Society for Medical Oncology.* 2017;28(11):2874-2881.

- 16. Liu GG, Wu H, Li M, Gao C, Luo N. Chinese time trade-off values for EQ-5D health states. *Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research.* 2014;17(5):597-604.
- 366 17. Kent M, Wang T, Whyte R, Curran T, Flores R, Gangadharan S. Open, video-assisted thoracic
 367 surgery, and robotic lobectomy: review of a national database. *The Annals of thoracic surgery.*368 2014;97(1):236-242; discussion 242-234.
- Wu H, Jin R, Yang S, Park BJ, Li H. Long-term and short-term outcomes of robot- versus video assisted anatomic lung resection in lung cancer: a systematic review and meta-analysis. *European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery*. 2021;59(4):732-740.
- Yang HX, Woo KM, Sima CS, et al. Long-term Survival Based on the Surgical Approach to
 Lobectomy For Clinical Stage I Nonsmall Cell Lung Cancer: Comparison of Robotic, Video-assisted
 Thoracic Surgery, and Thoracotomy Lobectomy. *Annals of surgery*. 2017;265(2):431-437.
- Zechmeister JR, Pua TL, Boyd LR, Blank SV, Curtin JP, Pothuri B. A prospective comparison of
 postoperative pain and quality of life in robotic assisted vs conventional laparoscopic gynecologic
 surgery. *American journal of obstetrics and gynecology*. 2015;212(2):194.e191-197.
- 379 21. Ilic D, Evans SM, Allan CA, Jung JH, Murphy D, Frydenberg M. Laparoscopic and robotic-assisted
 380 versus open radical prostatectomy for the treatment of localised prostate cancer. *The Cochrane* 381 *database of systematic reviews.* 2017;9(9):Cd009625.
- 382 22. Morrison EJ, Novotny PJ, Sloan JA, et al. Emotional Problems, Quality of Life, and Symptom Burden
 383 in Patients With Lung Cancer. *Clinical lung cancer*. 2017;18(5):497-503.
- Bendixen M, Jørgensen OD, Kronborg C, Andersen C, Licht PB. Postoperative pain and quality of
 life after lobectomy via video-assisted thoracoscopic surgery or anterolateral thoracotomy for early
 stage lung cancer: a randomised controlled trial. *The Lancet. Oncology.* 2016;17(6):836-844.
- 387 24. Hjermstad MJ, Fayers PM, Haugen DF, et al. Studies comparing Numerical Rating Scales, Verbal
 388 Rating Scales, and Visual Analogue Scales for assessment of pain intensity in adults: a systematic
 389 literature review. *Journal of pain and symptom management.* 2011;41(6):1073-1093.
- 390 25. Bielewicz J, Daniluk B, Kamieniak P. VAS and NRS, Same or Different? Are Visual Analog Scale
 391 Values and Numerical Rating Scale Equally Viable Tools for Assessing Patients after
 392 Microdiscectomy? *Pain research & management.* 2022;2022:5337483.
- Testori A, Giudici VM, Voulaz E, Alloisio M, Bottoni E. Robotic and Video-Assisted Thoracic Surgery
 for Early-Stage Lung Cancer: Comparison of Long-Term Pain at a Single Centre. *Journal of clinical medicine.* 2022;11(4).
- 396 27. Novellis P, Maisonneuve P, Dieci E, et al. Quality of Life, Postoperative Pain, and Lymph Node
 397 Dissection in a Robotic Approach Compared to VATS and OPEN for Early Stage Lung Cancer.
 398 *Journal of clinical medicine*. 2021;10(8).
- Huang J, Li J, Li H, Lin H, Lu P, Luo Q. Continuous 389 cases of Da Vinci robot-assisted
 thoracoscopic lobectomy in treatment of non-small cell lung cancer: experience in Shanghai Chest
 Hospital. *Journal of thoracic disease.* 2018;10(6):3776-3782.
- 402 29. Veronesi G, Novellis P, Voulaz E, Alloisio M. Robot-assisted surgery for lung cancer: State of the
 403 art and perspectives. *Lung cancer (Amsterdam, Netherlands).* 2016;101:28-34.

Journal Pre-proof

- 406 **Table 1. Patient clinicopathological characteristics and perioperative outcomes**
- 407 ^aTwo patients underwent bilobectomy in the video-assisted group.
- 408 Abbreviations: BMI, body mass index; COPD, chronic obstructive pulmonary disease; ECOG
- 409 PS, Eastern Cooperative Oncology Group performance score; IQR, interquartile range; LLL,
- 410 left lower lobe; LUL, left upper lobe; RLL, right lower lobe; RML, right middle lobe; RUL,
- 411 right upper lobe.
- 412 Table 2. Completion and compliance for the questionnaires
- 413 Data are n (%) or n/N (%). Completion was defined as completing at least one item among the
- total HRQoL analysis population. Compliance was defined as completing at least one item at
- 415 each timepoint, as listed in the numerator for each group, among patients who were expected
- 416 to complete at each timepoint (except for deaths, dementia, or illiteracy, etc). Abbreviations:
- 417 EQ-5D, The European Quality of Life 5 Dimensions; HRQoL, health-related quality-of-life;
- 418 NRS, numeric rating scale; QLQ-C30, quality of life questionnaire core 30 items; QLQ-LC13,
- 419 quality of life questionnaire lung cancer 13 items; RAL, robotic-assisted lobectomy; VAL,
- 420 video-assisted lobectomy.
- 421 Figure 1. Patient Enrollment and Outcomes
- HRQoL assessments are shown according to planned procedure. Assessments were completed
 on paper by each patient in person at clinics or telephone interview. *Baseline data had been
 collected before surgery. Abbreviations: QoL, quality of life; RAL, robotic-assisted lobectomy;
 VAL, video-assisted lobectomy.
- 426 Figure 2. Mean scores in QLQ-C30 GHS/QoL (A), change from baseline to week 48 in (B)
- 427 QLQ-C30 functioning and symptom scales and (C) QLQ-LC13 symptoms
- 428 Mean scores in QLQ-C30 GHS/QoL at baseline, weeks 4, 24 and 48 (A). For GHS and

functioning scales, higher scores denote improved functioning; for symptom scales, higher			
scores denote worse symptoms (B, C). Mean score changes are based on a constrained			
longitudinal data analysis model. Error bars represent SEs. Abbreviations: CI, confidence			
interval; GHS, global health status; QLQ-C30, quality of life questionnaire core 30 items; QLQ-			
LC13, quality of life questionnaire lung cancer 13 items; QoL, quality of life; RAL, robotic-			
assisted lobectomy; SE, standard error; VAL, video-assisted lobectomy.			
Figure 3. Proportion of patients with improved, stable, and worse QLQ-C30 scores at			
week 4 (A) and 48 (B)			
Abbreviations: GHS, global health status; QLQ-C30, quality of life questionnaire core 30 items;			
QoL, quality of life; RAL, robotic-assisted lobectomy; VAL, video-assisted lobectomy.			
Figure 4. Proportion of 5 dimensions in EQ-5D at weeks 4 (A), 48 (B) and mean scores at			
common assessment time points for EQ-5D UI (C)			
Proportion of individual dimension in EQ-5D at week 4 and 48 (A, B). Mean scores for EQ-			
5D UI at baseline, weeks 4, 24, 48. Mean difference between RAL and VAL groups(C). Error			
bars indicate SEs. Abbreviations: CI, confidence interval; EQ-5D, The European Quality of			
Life 5 Dimensions; RAL, robotic-assisted lobectomy; SE, standard error; UI, utility index;			
VAL, video-assisted lobectomy			
Figure 5. Postoperative Pain Scores (A) and Subgroup Analyses Comparing Postoperative			
Pain Scores at week 4 (B)			
VAS was used in the first day after operation and NRS was used during baseline evaluation and			

450 cardiovascular disease, etc. *p<0.05. Abbreviations: BMI, body mass index; CI, confidence

- 451 interval; NRS, numeric rating scale; RAL, robotic-assisted lobectomy; SE, standard error; VAL,
- 452 video-assisted lobectomy.

453

ournal proprod

Table 1. Patient clinicopathological characteristics and perioperative outcomes

Chavastavistia	Robotic-assisted	Video-assisted	D
Characteristic	lobectomy (n=157)	lobectomy (n=163)	Р
Age [year], median (IQR)	61 (54-66)	62 (53-68)	0.29
Sex, No. (%)			0.44
Male	81 (51.6)	76 (46.6)	
Female	76 (48.4)	87 (53.4)	
Place of residence, No. (%)			0.44
Urban	100 (63.7)	97 (59.5)	
Rural	57 (36.3)	66 (40.5)	
Employment status, No. (%)			0.09
Employed	47 (29.9)	35 (21.5)	
Unemployed	3 (1.9)	8 (4.9)	
Retired	103 (68.2)	120 (73.6)	
Education level, No. (%)			0.29
College	53 (33.8)	42 (25.8)	
Middle school	70 (44.6)	81 (49.7)	
Less than middle school	34 (21.6)	40 (24.5)	
BMI [kg/m²], median (IQR)	23.4 (21.7-25.6)	22.9 (21.4-24.4)	0.05
Smoking index, No. (%)			0.66
No	110 (70.1)	110 (67.5)	
<400	14 (8.9)	12 (7.4)	
>=400	33 (21.0)	41 (25.2)	
ECOG PS, No. (%)			0.10
0	137 (87.3)	128 (78.5)	
1	19 (12.1)	32 (19.6)	
2	1 (0.6)	3 (1.8)	
COPD, No. (%)	1 (0.6)	4 (2.5)	0.37
Diabetes, No. (%)	19 (12.1)	14 (8.6)	0.40
Cardiovascular disease, No. (%)	6 (3.8)	6 (3.7)	>0.99
Hypertension, No. (%)	47 (29.9)	48 (29.4)	>0.99
Tumor location ^a , No. (%)			>0.99
LLL	21 (13.4)	22 (13.5)	
LUL	36 (22.9)	35 (21.5)	
RLL	21 (13.4)	22 (13.5)	
RML	26 (16.6)	29 (17.8)	
RUL	53 (33.8)	57 (35.0)	
Pathological TNM stage, No. (%)			0.89
0	2 (1.3)	1 (0.6)	
IA1	40 (25.5)	39 (23.9)	
IA2	67 (42.7)	59 (36.2)	
IA3	15 (9.6)	20 (12.3)	

IB	12 (7.6)	13 (8.0)	
IIA	3 (1.9)	6 (3.7)	
IIB	7 (4.5)	9 (5.5)	
IIIA	10 (6.4)	14 (8.6)	
IIIB	1 (0.6)	2 (1.2)	
Operation time [min], median (IQR)	110 (95–140)	120 (97.5–150)	0.25
Blood loss [mL], median (IQR)	100 (50–100)	100 (50–150)	0.04
Conversion to thoracotomy, No. (%)	7 (4.5)	9 (5.5)	0.86
Postoperative hospital stay [d], median (IQR)	4 (4–5)	5 (4–5)	0.76
Postoperative complications, No. (%)	23 (14.6)	30 (18.4)	0.45
Clavien Dindo I-II	18 (11.5)	24 (14.7)	0.49
Clavien Dindo III-IV	5 (3.2)	6 (3.7)	>0.99

	RAL group (n=157)	VAL group (n=163)
QLQ-C30, QLQ-C13 and EQ-5D		
Baseline	157 (100%)	163 (100%)
Week 4		
Completion	144 (92%)	153 (94%)
Compliance	144/155 (93%)	153/160(96%)
Week 24		
Completion	139 (86%)	143 (88%)
Compliance	139/154 (90%)	143/158 (91%)
Week 48		
Completion	131 (83%)	134 (82%)
Compliance	131/150 (87%)	134/149 (90%)
NRS/VAS		
Baseline	157 (100%)	163 (100%)
Post-op day 1	157 (100%)	163 (100%)
Week 4		
Completion	144 (92%)	153 (94%)
Compliance	144/155 (93%)	153/160(96%)
Week 24		
Completion	139 (86%)	143 (88%)
Compliance	139/154 (90%)	143/158 (91%)
Week 48		
Completion	131 (83%)	134 (82%)
Compliance	131/150 (87%)	134/149 (90%)

Table 2. Completion and compliance for the questionnaires

Figure 1. Patient Enrollment and Outcomes

HRQoL assessments are shown according to planned procedure. Assessments were completed on paper by each patient in person at clinics or telephone interview. *Baseline data had been collected before surgery. Abbreviations: QoL, quality of life; RAL, robotic-assisted lobectomy; VAL, video-assisted lobectomy.

Figure 2. Mean scores in QLQ-C30 GHS/QoL (A), change from baseline to week 48 in (B) QLQ-C30 functioning and symptom scales and (C) QLQ-LC13 symptoms

Mean scores in QLQ-C30 GHS/QoL at baseline, weeks 4, 24 and 48 (A). For GHS and functioning scales, higher scores denote improved functioning; for symptom scales, higher scores denote worse symptoms (B, C). Mean score changes are based on a constrained longitudinal data analysis model. Error bars represent SEs. Abbreviations: CI, confidence interval; GHS, global health status; QLQ-C30, quality of life questionnaire core 30 items; QLQ-LC13, quality of life questionnaire lung cancer 13 items; QoL, quality of life; RAL, robotic-assisted lobectomy; SE, standard error; VAL, video-assisted lobectomy.

Figure 3. Proportion of patients with improved, stable, and worse QLQ-C30

scores at week 4 (A) and 48 (B)

Abbreviations: GHS, global health status; QLQ-C30, quality of life questionnaire core 30 items; QoL, quality of life; RAL, robotic-assisted lobectomy; VAL, video-assisted lobectomy.

Proportion of individual dimension in EQ-5D at week 4 and 48 (A, B). Mean scores for EQ-5D UI at baseline, weeks 4, 24, 48. Mean difference between RAL and VAL groups (C). Error bars indicate SEs. Abbreviations: CI, confidence interval; EQ-5D, The European Quality of Life 5 Dimensions; RAL, robotic-assisted lobectomy; SE, standard error; UI, utility index; VAL, video-assisted lobectomy.

Figure 5. Postoperative Pain Scores (A) and Subgroup Analyses Comparing Postoperative Pain Scores at week 4 (B)

VAS was used in the first day after operation and NRS was used during baseline evaluation and at weeks 4, 24, 48. Error bars indicate SEs. Chronic disease^a included hypertension, diabetes, cardiovascular disease, etc. *p<0.05. Abbreviations: BMI, body mass index; CI, confidence interval; NRS, numeric rating scale; RAL, robotic-assisted lobectomy; SE, standard error; VAL, video-assisted lobectomy.

Journal Preve

Conflict of Interest and Source of Funding: Hecheng Li is currently receiving a Robotic Research Grant from Intuitive Surgical Operations, Inc. Jules Lin is a robotic proctor for Intuitive Surgical, Inc. For the remaining authors none were declared. This study was supported by National Key Research and Development Program of China (2021YFC2500900), National Natural Science Foundation of China (82072557, 81871882), Shanghai Municipal Education Commission- Gaofeng Clinical Medicine Grant (20172005, the 2nd round of disbursement), program of Shanghai Academic Research Leader from Science and Technology Commission of Shanghai Municipality (20XD1402300), Natural Science Foundation of Shanghai (22ZR1439200) and Robotic Research Grant from Intuitive Surgical Operations, Inc

Supplementary Figure 1. Change from baseline during follow-up in QLQ-C30 functioning and symptom scales

A, B represented the outcomes at weeks 4 and 24. For GHS and functioning scales, higher scores denote improved functioning; for symptom scales, higher scores denote worse symptoms. Mean score changes are based on a constrained longitudinal data analysis model. Error bars represent SEs. Abbreviations: GHS, global health status; QLQ-C30, quality of life questionnaire core 30 items; QoL, quality of life; RAL, robotic-assisted lobectomy; SE, standard error; VAL, video-assisted lobectomy.

Supplementary Figure 2. Subgroup Analyses Comparing GHS/QoL at weeks 4 (A) and 48 (B)

Chronic disease^a included hypertension, diabetes, cardiovascular disease, etc. Abbreviations: BMI, body mass index; GHS/QoL, global health status/quality of life; RAL, robotic-assisted lobectomy; VAL, video-assisted lobectomy.

RAL better VAL better

Supplementary Figure 3. Subgroup Analyses Comparing EQ-5D UI at weeks 4 (A) and 48 (B)

Chronic disease^a included hypertension, diabetes, cardiovascular disease, etc. Abbreviations: BMI, body mass index; EQ-5D, The European Quality of Life 5 Dimensions; RAL, robotic-assisted lobectomy; UI, utility index; VAL, video-assisted lobectomy.

Overall	144	150		
overall	144	123		
pTNM				
1	121	125		0.
11	10	12		0.
111	11	15		0.
BMI				
24.5+	51	38		0.
< 24.5	93	115		0.
Chronic disease ^a				
No	91	103		0.
Yes	53	50		0.
Education				
College	51	41		0.
High school	62	75		0.
Primary school	31	37		0.
Place of residence				
Rural	52	62		0.
Urban	92	91		0.
dof				
Unemployed	102	120		0.
Employed	42	33		0.
Age				
60+	84	94		0.
<60	60	59		0.
Sex				
Female	69	84		0.
Female Male	69 75	84 69	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0.
Female Male	69 75 RAL group Total N	84 69 VAL group Total N	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0.
Female Male Subgroup	69 75 RAL group Total N	84 69 VAL group Total N 134	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. P-v
Female Male Subgroup Dverall	69 75 RAL group Total N 131	84 69 VAL group Total N 134	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. P-v
Female Male Subgroup Overall oTNM	69 75 RAL group Total N 131	84 69 VAL group Total N 134 114	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0.
Female Male Subgroup Overall oTNM I	69 75 RAL group Total N 131 111	84 69 VAL group Total N 134 114	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0.
Female Male Subgroup Dverall JTNM I II	69 75 RAL group Total N 131 111 9 9	84 69 VAL group Total N 134 114 11 8	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. 0 0 0 0
Female Male Subgroup Dverall oTNM I II III MII	69 75 RAL group Total N 131 111 9 9	84 69 VAL group Total N 134 111 8	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. P-v
Female Male Subgroup Dverall oTNM I II III BMI 24.5+	69 75 RAL group Total N 131 111 9 9 47	84 69 VAL group Total N 134 114 11 8	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. P-1
Female Male Subgroup Overall oTNM I II III SMI 24.5+ < 24.5	69 75 RAL group Total N 131 111 9 9 47 84	84 69 VAL group Total N 134 114 11 8 32 102	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. P
Female Male Subgroup Overall oTNM I II III 3MI 24.5+ < 24.5	69 75 RAL group Total N 131 111 9 9 9 47 84	84 69 VAL group Total N 134 114 11 8 32 102	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. P-v
Female Male Subgroup Overall oTNM I II III 3MI 24.5+ < 24.5 Chronic disease ^a No	69 75 RAL group Total N 131 111 9 9 47 84 85	84 69 VAL group Total N 134 114 11 8 32 102 94	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. P-v
Female Male Subgroup Overall oTNM I II III 3MI 24.5+ < 24.5 Chronic disease ^a No Yes	69 75 RAL group Total N 131 111 9 9 47 84 85 46	84 69 VAL group Total N 134 114 11 8 32 102 94 40	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. P-v
Female Male Subgroup Overall oTNM I II III 3MI 24.5+ < 24.5 Chronic disease ^a No Yes Folucation	69 75 RAL group Total N 131 111 9 9 47 84 85 46	84 69 VAL group Total N 134 114 11 8 32 102 94 40	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Female Male Subgroup Overall oTNM I II III 3MI 24.5+ < 24.5 Chronic disease ^a No Yes Education College	69 75 RAL group Total N 131 111 9 9 47 84 85 46 50	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. P-v
Female Male Male Subgroup Dverall DTNM I II III 24.5+ < 24.5 Chronic disease ^a No Yes Education College Hish school	69 75 RAL group Total N 131 111 9 9 47 84 85 46 50 60	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38 68	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Female Male Male Subgroup Dverall oTNM I II III 3MI 24.5+ < 24.5 Chronic disease ^a No Yes Education College High school Primary school	69 75 RAL group Total N 131 111 9 9 47 84 85 46 50 60 21	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38 68 28	AL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Female Male Male Subgroup Dverall oTNM I II III 3MI 24.5+ <24.5 Chronic disease ^a No Yes Education College High school Primary school Pace of residence	69 75 RAL group Total N 131 111 9 9 47 84 85 46 50 60 21	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38 68 28	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Female Male Male Subgroup Doverall oTNM I II III 24.5+ <24.5 Chronic disease ^a No Yes Education College High school Primary school Priace of residence Rural	69 75 RAL group Total N 131 111 9 9 47 84 85 46 50 60 21 21	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38 68 28 28	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Female Male Male Subgroup Doverall oTNM I II II 24.5+ <24.5 Chronic disease ^a No Yes Education College High school Primary school Primary school Primary school Primary school Place of residence Rural Ulrhan	69 75 RAL group Total N 131 111 9 9 47 84 85 46 50 60 21 44 87	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38 68 28 28 53 81	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Female Male Male Subgroup Overall oTNM 1 1 1 1 24.5+ <24.5 Chronic disease ^a No Yes Education College High school Primary school Primary school Primary school Primary school Place of residence Rural Urban	69 75 RAL group Total N 131 111 9 9 47 84 85 46 50 60 21 44 87	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38 68 28 28 53 81	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Female Male Male Subgroup Overall DTNM I II II 301 24.5+ 24.5 Chronic disease ^a No Yes Education College High school Primary school Place of residence Rural Urban Iob Unemployed	69 75 RAL group Total N 131 111 9 9 47 84 85 46 50 60 21 44 87 86	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38 68 28 53 81 101	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Female Male Male Subgroup Overall DrNM I II III 24.5+ < 24.5 Chronic disease ^a No Yes Education College High school Primary school Place of residence Rural Urban ob Unemployed	69 75 RAL group Total N 131 111 9 9 47 84 85 46 50 60 21 44 87 86 45	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38 68 28 53 81 53 81 101 33	-0.04 -0.02 0.00 0.02 0.04 RAL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Female Male Male Subgroup Overall Overall DTNM 1 II III 301 24.5+ <24.5 Chronic disease ^a No Yes Education College High school Primary school Primary school Primary school Primary school Place of residence Rural Urban ob Unemployed Employed Age	69 75 131 111 9 9 47 84 85 46 50 60 21 44 87 46 85 46 50 60 21	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38 68 28 53 81 53 81 101 33	AL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
Female Male Male Subgroup Dverall DTNM I II III 24.5+ < 24.5 Chronic disease ^a No Yes Education College High school Primary school Primary school Primary school Primary school Primary school Primary school Dace of residence Rural Urban lob Unemployed Employed Age 60+	69 75 RAL group Total N 131 111 9 9 47 84 85 46 50 60 21 44 87 86 45 70	84 69 VAL group Total N 134 114 11 8 32 102 94 40 38 68 28 53 81 101 33 78	AL better VAL better	0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0

-0.02 -0.01 0.00 RAL better VAL better

0.02

0.01

0.17

0.62

Female

Male

62

69

77

Supplementary Figure 4. Change from baseline during follow-up in QLQ-LC13 symptoms

A, B represented the outcomes at weeks 4 and 24. For GHS and functioning scales, higher scores denote improved functioning; for symptom scales, higher scores denote worse symptoms. Mean score changes are based on a constrained longitudinal data analysis model. Error bars represent SEs. Abbreviations: QLQ-LC13, quality of life questionnaire lung cancer 13 items; RAL, robotic-assisted lobectomy; SE, standard error; VAL, video-assisted lobectomy.

	RAL group (n=157)	VAL group (n=163)
Analgesic drug		
Nonsteroidal		
Flurbiprofen axetil	6 (4%)	10 (6%)
Indometacin suppositories	0	1 (0.6%)
Tylox capsule	37 (24%)	25 (15%)
Ibuprofen	21 (13%)	27 (17%)
Compound Paracetamol Tablets(II)	2 (1%)	1 (0.6%)
Opioids		
Meperidine	3 (2%)	7 (4%)
Tramadol hydrochloride	1 (0.6%)	4 (2%)
Morphine hydrochloride	0	1 (0.6%)

Supplementary Table 1. The frequency of analgesic drug after operation

The table exhibited the frequency of analgesics three days after operation. Some patients used multiple analgesics.

Journal Pre-Pri