
Abstract 1 

Flooding of settlements is a growing concern in Europe, also in 2 

agricultural areas. Restoration and installation of vegetated landscape 3 

elements (vLE) such as hedges, lines of trees and grass buffers, along 4 

the parcel boundaries is increasingly recognized as a way to mitigate 5 

downstream flood risk. However, there is a lack of scientific evidence to 6 

support their implementation. We used the Landlab modelling 7 

framework to gain knowledge about the importance of the presence 8 

and characteristics of vLEs for the hydrological response in a 26 hectare 9 

undulating watershed representative for the Belgian loess belt for which 10 

a multitude of vLE scenarios were developed. Our model results 11 

demonstrated that the total runoff volume, the peak discharge rate and 12 

its lag time in such small watersheds are mainly controlled by the 13 

density of the vLE objects and their upstream area. First and foremost 14 

we demonstrated a negative correlation between the discharge volume 15 

and peak discharge rate and the density of the vLE objects and their 16 

upstream area. A positive correlation was observed between the lag 17 

time and density of the vLE objects for both dry and wet soils and 18 

between the lag tag time and upstream area for dry soils. Further, we 19 

found that the impact of the value of the saturated hydraulic 20 

conductivity of the soil covered by the vLE became increasingly 21 

important with increasing soil wetness, with the hydraulic conductivity 22 

being negatively correlated with the discharge volume and peak 23 
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discharge rate. The impact of hydraulic conductivity on the lag time was 24 

limited. A negative correlation between hydraulic conductivity and lag 25 

time for intermediate wet soils was demonstrated. Our model results 26 

also showed that the roughness, expressed as the Manning n-27 

coefficient, of the soil underneath a vLE and the spatial connectivity of 28 

the vLE objects have little impact on the hydrological response.  29 

 30 



Highlights 
 Modelling results confirm that landscape elements contribute to lowering flood risk 

 Higher initial soil wetness levels result in more and faster discharge 

 Runoff is controlled by the density of landscape elements and their upstream area 
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 Introduction 23 

Extensive areas throughout Europe are affected by flooding of rivers or 24 

from surface runoff. This can be demonstrated by the destructive 25 

events of July 2021 in Western Europe that caused an estimated loss of 26 

up to €5.8 billion and over 200 deaths (Kreienkamp et al., 2021). In the 27 

period between 1980 and 2013, almost 1500 flood and wet mass 28 

movement events happened within the European Union, more than half 29 

of them since 2000 (EEA, 2017). In Belgium, flood events are a common 30 

occurrence in the Belgian loess belt, which covers about 34 % (10576 31 

km²) of the Belgian territory. These flood events are often co-32 

determined by runoff from agricultural land. Between 1991 and 2004, 33 

79 % of the municipalities located within the Belgian loess belt were 34 

affected by floods resulting from runoff from arable land (Bielders et al., 35 

2003; Evrard et al., 2007a). Flood hazard is likely to increase in this 36 

region as a result of the expected global-warming related changes in the 37 

frequency and magnitude of extreme precipitation events (Fowler et al., 38 

2021; Kreienkamp et al., 2021). Climate-smart upstream land use 39 

systems, and hence climate-smart land use planning, are increasingly 40 

recognized as a way to mitigate downstream flood risk (Gabriels et al., 41 

2022; Minang et al., 2015). Vegetated landscape elements (vLEs) such as 42 

hedges, lines of trees and grass buffers are inherent components of 43 
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such climate-resilient agricultural land use systems (Burgess-Gamble et 44 

al., 2017; Ellis et al., 2021). Their typical geometrical arrangement 45 

following the edges of agricultural parcels creates networks of 46 

landscape elements. These networks alter the parcel and catchment 47 

hydrology since they create hydrological discontinuities by impeding 48 

flow paths (Mérot, 1999) or enhancing flow continuities exacerbating 49 

runoff. Hence, vLEs alter the runoff pattern and hence affect the 50 

frequency, extent, depth and duration of downstream flood events 51 

(Horn et al., 2007; Klaassen and Zwaard, 1974; Mérot, 1999; Richet et 52 

al., 2017). The attitude of landowners towards these potential natural 53 

flood protection measures is not always positive, which can partly be 54 

explained by the current lack of scientific evidence about their 55 

effectiveness (Bielders et al., 2003; Ellis et al., 2021; Wells et al., 2020). 56 

Still, there is a strong positive correlation between the probability of a 57 

landowner taking flood and erosion control measures (e.g. grass buffer 58 

strips) and the probability of having experienced runoff or erosion 59 

damage during the last decade (Bielders et al., 2003).  60 

To design evidence-based climate-smart landscapes, quantitative 61 

information about the effect of vLEs on the runoff in a catchment is 62 

needed. vLEs and their hydrological properties have been the subject of 63 

numerous studies. These studies demonstrate that the effect of the vLE 64 

on the infiltration capacity of the soil covered by that vLE depends on 65 

the type of vLEs with grass buffers decreasing the infiltration capacity 66 

compared to some common crop types while hedges increase the 67 
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infiltration capacity (Baartman et al., 2020; Holden et al., 2019). Further, 68 

it was shown that vLEs are typically associated with higher hydraulic 69 

roughness values (Baartman et al., 2020; Richet et al., 2017). This not 70 

only results in a decreased velocity of runoff but also in lower sediment 71 

transport. Previously, these studies focused mainly on the impact of 72 

vLEs on runoff at the field scale (Holden et al., 2019; Richet et al., 2017; 73 

Wallace et al., 2021). However, information on these effects at a 74 

catchment scale is at least equally important as many of the off-site 75 

consequences of flooding events have to be managed at a catchment 76 

scale. Also on the catchment scale, it becomes possible to assess the 77 

effect of the geometric characteristics of the vLEs (i.e. dimensions, 78 

position along the concentrated flow paths and connectivity) on runoff 79 

within a catchment, and to investigate how these characteristics affect 80 

the rainfall-runoff behaviours of the catchment.  81 

With this research, we aimed to gain knowledge about the importance 82 

of the presence and characteristics of vLEs on the hydrological response 83 

of a small watershed representative of the Belgian loess belt. We used a 84 

physically-based distributed rainfall-runoff model implemented in the 85 

Landlab modelling framework (Barnhart et al., 2020; Hobley et al., 2017) 86 

to quantify the effect of various configurations and characteristics of 87 

vLEs using a design storm (Willems, 2013). Our findings are meant to aid 88 

in the conservation and promotion of vLEs in an agricultural landscape 89 

in the future. This is important as shown by the declining trend in the 90 

presence of vLEs demonstrated by the disappearance of more than half 91 
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of the hedgerows between 1900 and 2002 in Flanders (Deckers et al., 92 

2005). 93 

The specific objectives of this research were:  94 

1. To assess the sensitivity of the hydrological modelling 95 

framework Landlab (Barnhart et al., 2020; Hobley et al., 2017) 96 

to changes in the hydrological properties of vLEs (i.e. Manning’s 97 

roughness coefficient (n) and saturated hydraulic conductivity 98 

of the underlying soil (Ks)); 99 

2. To compare the magnitude and timing of the flood peak 100 

discharge rate and the total runoff volume produced by a design 101 

storm between various configurations of vLEs; 102 

3. To assess the impact of contrasting initial soil moisture 103 

contents on the hydrological functioning of vLEs.  104 

 105 

 Methodology 106 

2.1. Rainfall-runoff model 107 

The open-source Python-coded Landlab modelling framework (Barnhart 108 

et al., 2020; Hobley et al., 2017) was used to simulate overland flow and 109 

infiltration in a real watershed with assumed vLEs. This modelling 110 

framework has previously been used and validated to model catchment 111 

runoff (Adams et al., 2017; Reitman et al., 2019; Zhang et al., 2020). 112 

Overland flow in the Landlab modelling framework is based on the two-113 

dimensional shallow water equations (SWE) as is the case for many 114 

physically-based hydrological models (e.g. Cea and Bladé, 2015; Defina, 115 
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2000; Warnock et al., 2014). The SWE are a simplification of the Navier-116 

Stokes equations in the vertical direction and consist of two parts, the 117 

conservation of mass (Eq. 1) and the conservation of momentum (Eq. 2 118 

and Eq. 3): 119 
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(3) 

where x [m] and y [m] are the planimetric Cartesian directions, t [s] is 120 

time, h [m] is water depth, qx and qy [m2 s-1] are the x and y components 121 

of the discharge per unit width vector q, (u, v) [m s-1] are the velocities 122 

at x, y-direction, z [m] is the bed elevation, g [m s-2] is the gravity 123 

acceleration, and n [s m-1/3] is the Manning’s n. Since full Shallow Water 124 

models are computationally expensive, some studies suggest 125 

approximating or omitting specific terms in the SWE (e.g. Bates et al., 126 

2010; Singh, 1997). We used LISFLOOD-FP, a simplified approximation of 127 

the SWE that omits the convective acceleration term in Eq. 2 and Eq. 3 128 

(Bates et al., 2010; Bates and De Roo, 2000; de Almeida et al., 2012; de 129 

Almeida and Bates, 2013). The original python code from the Landlab 130 
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library modelling framework was adapted to allow defining a unique 131 

Manning’s n for each cell in the gridded watershed. This roughness 132 

coefficient was used to drive overland flow. The flow direction is 133 

determined by defining for each cell the steepest path in the four 134 

cardinal directions. The outlet was selected to be the only location in 135 

the watershed where water can exit the watershed. Therefore, all other 136 

boundary cells were set as ‘no flux’ cells.  137 

For each time step, water losses due to infiltration were calculated after 138 

flow was routed by using the Green-Ampt Mein-Larson infiltration 139 

model (GAML) (Mein and Larson, 1971). GAML describes the infiltration 140 

rate as:  141 

𝑓 = 𝐾𝑒 (1 +
𝜓∆𝜃

𝐹
) (4) 

where f [m s-1] is the potential infiltration rate, F [m] is the cumulative 142 

infiltration, ψ [m] is the capillary pressure head at the wetting front, Δθ 143 

[m³ m-³] is the difference between saturated and initial volumetric 144 

moisture content, and Ke [m s-1] is the effective hydraulic conductivity. 145 

Ke is a lumped parameter that adjusts Ks to account for spatial variation 146 

in rainfall intensity and soil properties (e.g., soil crusting, surface 147 

microtopography and soil pore structure) (Langhans et al., 2010b; Van 148 

den Putte et al., 2013). The GAML describes a situation where runoff 149 

occurs only after some time, i.e. the ponding time. A minimum water 150 

depth on the surface of 1.0E-8 m that can not infiltrate was assumed. 151 

This was done to avoid numerical instability of the solutions of the 152 
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overland flow modelling resulting from the calculation of negative water 153 

depths, as suggested by Costabile et al. (2012).  154 

2.2. Model construction 155 

2.2.1. Study area 156 

A 26 ha agricultural watershed situated in the Belgian loess belt was 157 

selected (50.72° N, 5.12°E). This area has been repeatedly affected by 158 

floods as happens frequently in undulating agricultural areas on loamy 159 

soils in Flanders (Bielders et al., 2003; Evrard et al., 2007b). The 160 

elevation in the watershed was characterized by a 2 m resolution digital 161 

elevation model (DEM). Altitudes range between 106 m and 120 m 162 

above sea level. The majority of the land cover (94 %) in the study area 163 

is agricultural land (i.e. arable land and agricultural grassland) (ALV, 164 

2021).  165 

[Figure 1] 166 

2.2.2. Vegetation cover 167 

Existing field boundary patterns were used to generate different 168 

configurations of vLEs. The first three patterns (Figure 2, a-c) occur 169 

elsewhere in Belgium and were chosen to be representative of a typical 170 

agricultural field pattern (FP) in the region. These three patterns were 171 

selected by assessing the parcel configuration around a selection of 172 

1000 randomly chosen agricultural fields in the region and selecting a 173 

field pattern with a small, medium and large average plot size. FP1 174 

(Figure 2, a) is characterized by smaller plots with an average field size 175 

of 1.42 ha. FP2 (Figure 2, b) is characterized by medium-sized fields with 176 
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an average size of 1.89 ha. FP3 (Figure 2, c) is characterized by larger 177 

fields with an average field size of 2.33 ha. The fourth pattern (FP4, 178 

Figure 2, d) was generated to have field boundaries perpendicular and 179 

parallel to the flow directions in the watershed.  180 

[Figure 2] 181 

In total, 42 configurations of vLEs were created based on the field 182 

boundaries of FP1, FP2, FP3 and FP4. These configurations differ in the 183 

density of vLEs, connectivity, and upslope area. Three different values of 184 

vLE density were used: 87 m ha-1, 40 m ha-1 and 10 m ha-1. The highest 185 

vLE density represents the mean density of vLEs in Flanders in the year 186 

1900, while a density of 40 m ha-1 represents the average situation in 187 

2002 (Deckers et al., 2005). A watershed with a vLE density of 10 m ha-1 188 

represents a situation in which the density of vLEs in the landscape is 189 

further reduced, e.g. due to further intensification and heavy machinery 190 

use. For FP1, FP2 and FP3, four configurations per density level, with a 191 

range in connectivity, were generated. To do this, 10000 random 192 

combinations of field borders were selected and the beta connectivity 193 

index (β) was calculated as:  194 

𝛽 = 
𝑒

𝑣
 (5) 

with e the number of vLE segments and v the number of vLE nodes. A 195 

segment was defined as a side of an agricultural field boundary with the 196 

start and end point of the segment being defined as nodes. In case a 197 

start or end node of another segment was positioned along the 198 
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segment, the segment was split in two at the location of that node. The 199 

two configurations of field borders with the highest β per density level 200 

were then selected. Disconnections in these two configurations were 201 

created by rotating per vLE section of 60 m, the middle 20 m with an 202 

angle of 90 degrees. This was done to assess the impact of the 203 

connectivity of vLEs without changing the density or geographical 204 

position of the vLEs. For FP4, two configurations per density level were 205 

created, one where the vLEs were mainly positioned along the flow 206 

direction in the watershed and one where they were located 207 

perpendicular to the modelled flow direction. While in FP1, FP2 and FP3 208 

we aimed to assess the impact of vLE connectivity on runoff, we focused 209 

on vLE configurations positioned along with or perpendicular to the 210 

main slope in FP4. The vLE configurations were rasterized by assigning 211 

the land use class ‘vLE’ to all pixels intersected by a vLE field border. All 212 

other pixels in the watershed were considered to be ‘landscape’ pixels. 213 

The average number of ‘vLE’ pixels in the watershed was 166, 659 and 214 

1400 for a density level of 10 m ha-1, 40 m ha-1 and 87 m ha-1 215 

respectively. This corresponds to 0.29 %, 1.14 % and 2.34 % of the total 216 

number of pixels in the watershed. For all 42 vLE configurations, the β-217 

index (Eq. 5) and the upslope area per meter vLE were calculated. The 218 

average upslope area per meter vLE was calculated by assessing for 219 

each vLE pixel the size of the area that directly contributes water to that 220 

pixel. The sum of that area for all vLE pixels was then divided by the 221 

total length of the vLE objects in the watershed to obtain the average 222 
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upslope area per meter ‘vLE’. This gives an estimation of the runoff 223 

going through the vLEs in the watershed, with larger values indicating a 224 

larger proportion of the runoff that flows through the vLE. 225 

GAML parameters, Manning’s n and other soil parameters were 226 

selected based on values found in literature and are summarized in 227 

Table 1. We assumed that our watershed had a uniform loamy soil. The 228 

Ks, initial volumetric moisture content (θi) and capillary pressure head at 229 

wetting front were based on values derived by Van den Putte et al. 230 

(2013) from a dataset consisting of 350 rainfall experiments carried out 231 

on 21 arable fields in the Belgian loess belt. The Ks was equal to 19.2 232 

mm hr-1, which was the average effective hydraulic conductivity derived 233 

for rainfall experiments carried out in the summer period. The θi was set 234 

to a value between 0.02 cm³ cm-3 and 0.29 cm³ cm-3, which are the 235 

minimum and maximum θi values measured for experiments carried out 236 

in the summer period. Further, a θi of 0.155 cm³ cm-3 was used as a 237 

medium value of θi. The capillary pressure head at wetting front used in 238 

our model equals 172.7 mm, which was the average value derived for 239 

rainfall experiments carried out in the summer period. The Manning’s n 240 

was set to 0.08 s m-1/3. This value was based on the value measured by 241 

Takken et al. (1999) for land with the maize crop. Maize was selected as 242 

the only land cover type. Maize is the crop type with the largest spatial 243 

extent in Flanders (ALV, 2021).  244 

The vLEs were accounted for in the hydrological model by assigning 245 

adjusted values of Ks and of Manning’s n to vLE pixels. Three different 246 
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values for Ks for the soil under the vLEs were selected. The first value 247 

was equal to 102.4 mm hr-1 which is representative of loamy soils under 248 

hedges (Holden et al., 2019). The second value was equal to 20 mm hr-1 249 

which is representative of loamy soils under grass buffers (Baartman et 250 

al., 2020; Evrard et al., 2009). As a third value, an intermediate value 251 

was chosen, i.e. 51.2 mm hr-1. Further, also three values of the 252 

Manning’s n linked with vLEs were selected. We used 0.43 s m-1/3 and 253 

0.55 s m-1/3, which are the minimum and maximum values of Manning’s 254 

n for hedgerows calculated by Richet et al. (2017). Further, we also used 255 

a Manning’s n of 0.30 s m-1/3 which is the roughness coefficient 256 

associated with grass buffers (Baartman et al., 2020). 257 

 258 

2.2.3. Precipitation data 259 

This study uses a design storm, i.e. a hypothetical rainfall event 260 

associated with a specific duration and return period, as precipitation 261 

input in the model. Such design storms are often used for flood risk 262 

assessments (Jiang et al., 2019). The 2-hour spatially uniform design 263 

storm with a 50-year return period used in this study was calculated 264 

based on the intensity-duration-frequency (IDF) relationship derived 265 

from the Uccle 10 min rainfall time series (Demarée, 2003) for the 266 

period 1898-2007 (Willems, 2013). The calculation was done by using a 267 

frequency-based method that constructs the hyetograph from the 268 

entire IDF curve (Krvavica and Rubinić, 2020). The IDF relationship was 269 

adjusted to account for multidecadal climate oscillations (Willems, 270 
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2013). The peak intensity of the rainfall event was equal to 127.87 mm 271 

hr-1 while the total rainfall volume over the catchment in the considered 272 

2-hour period was around 11000 m³.  273 

2.3. Model application  274 

The rainfall-runoff model described in section 2.1 was applied for 378 275 

vLE scenarios using Python (Version: 3.9.7). These scenarios were 276 

derived by combining varying landscape patterns, different levels of vLE 277 

density, connectivity, and values of Ks and Manning’s n associated with 278 

the vLE objects (Appendix A). The 378 scenarios were run for θi equal to 279 

0.02 m³ m-3 0.155 m³ m-3 and 0.29 m³ m-3, hereafter referred to dry, 280 

intermediate wet, and wet soils. While the 50-year return period design 281 

storm had a length of 2 hours, the total model run time was set for an 282 

additional 2 hours after rainfall ceased to allow all runoff water to either 283 

reach the outlet of the watershed or infiltrate. After each model run, 284 

the total discharge volume (in m³), the peak discharge rate at the outlet 285 

(in m³ per second) and the lag time between the rainfall and discharge 286 

peaks (in seconds) were derived from the discharge time series.  287 

2.4. vLE feature impact on runoff 288 

The impact of the vLE features on the total discharge volume, the peak 289 

discharge rate and the lag time was assessed by comparing the 290 

differences in the output variables between different values of the vLE 291 

features in a multidimensional analysis on the one hand and in a one-292 

dimensional analysis on the other hand. All statistical analyses were 293 

done using R software (Version: 4.1.2). 294 
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2.4.1. Multidimensional analysis 295 

To take into account feature interactions and rank the importance of 296 

the impact of each considered vLE feature (density, connectivity, 297 

upslope area, Manning’s n and Ks) on the output variables, 9 random 298 

forest analyses were conducted, one for each combination of output 299 

variable (3) and soil wetness level (3) using the “randomForest” package 300 

(Version: 4.7-1). A randomly selected bootstrapped sample of 70 % of 301 

the 378 scenarios was used as a training set to fit 500 classification 302 

trees. The remaining 30 % of the observations were used as a testing set 303 

to evaluate the predictive performance of the models. The relative 304 

importance of the features within the model was determined to show 305 

the impact of each input feature on the total discharge volume, the 306 

peak discharge rate and the lag time. This was done by constructing the 307 

global variable importance curves using the package “vivo” (Version: 308 

0.2.1) and “DALEX” (Version: 2.4.1) and comparing the variable 309 

importance of each feature with the maximal variable importance in the 310 

model. Regression trees have previously proven to be successful to 311 

assess the relative impact of features (e.g., Poncelet et al., 2017).  312 

2.4.2.  One-dimensional analysis 313 

For each unique combination of density, Manning’s n and Ks, 14 vLE 314 

configurations were created (Appendix A). For these 14 configurations, 315 

the upslope area and connectivity were derived. For each of the vLE 316 

features (density, Manning’s n and Ks, connectivity, upslope area), a 317 

Kruskal-Wallis nonparametric test (Kruskal and Wallis, 1952) was used 318 

to evaluate whether at least one level of these features performed 319 
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significantly different from the others using the package “stats” 320 

(Version: 4.2.1). The impact of a feature on an output variable was 321 

considered significant if the P-value returned by the test was lower than 322 

0.05. If the impact of the feature was considered significant, a 323 

subsequent post-hoc Dunn’s test with a Bonferroni correction was 324 

performed using the package “dunn.test” (Version: 1.3.5) to determine 325 

which levels of the features differ from each other. These differences 326 

were considered significant if the P-value returned by the test was 327 

lower than 0.05. 328 

 Results 329 

Runoff simulations for the 378 scenarios at three different wetness 330 

levels resulted in 1134 hydrographs from which the discharge volume, 331 

peak discharge rate and lag time were derived. Initial soil moisture 332 

content was shown to have a large impact on the discharge volume, 333 

peak discharge rate and lag time. The average modelled discharge 334 

volume for all 378 scenarios was 3.08 m³, 17.01 m³ and 110.66 m³ for 335 

dry, intermediate wet, and wet soil respectively. The average modelled 336 

peak discharge rate was 0.01 m³ s-1, 0.02 m³ s-1 and 0.08 m³ s-1 337 

respectively, and the average modelled lag time was 360.32 s, 593.62 s 338 

and 593.17 s respectively. For dry soils, discharge in the watershed is 339 

dominated by runoff from a relatively small area close to the outlet as a 340 

large portion of the runoff from areas further away from the outlet can 341 

infiltrate and will not reach the outlet. This results in a discharge peak 342 

that closely follows the peak in rainfall. For wet soils, however, a smaller 343 
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proportion of the precipitation will infiltrate and more runoff will reach 344 

the outlet of the watershed. Runoff from areas further away from the 345 

outlet has longer travel times and therefore the peak in discharge will 346 

arrive later in time for wet soils. An illustration of the hydrograph of 347 

four distinct scenarios for wet soils with the associated hyetograph is 348 

given in Figure 3. The bimodal shape of the hydrographs is the result of 349 

different flow paths arriving at the outlet. The flow path conveying 350 

water from an area close to the outlet of the watershed results in a 351 

peak in discharge close to the peak in the rainfall. The flow path 352 

conveying water from an area at a larger distance from the outlet 353 

results in a peak of discharge later in time. The vLE characteristics of the 354 

four scenarios and their corresponding discharge volume, peak 355 

discharge rate and lag time values are given in Table 2. 356 

[Figure 3] 357 

3.1. Multidimensional analysis 358 

We used random forest regression models to take into account feature 359 

interactions and rank the importance of the impact of each considered 360 

feature on the output variables. The regression models explained 98 % 361 

of the variation of the output variable ‘discharge volume’ for all three 362 

wetness levels, between 96 % and 98 % of the variation of the output 363 

variable ‘peak discharge rate’ and between 33 % and 84 % of the 364 

variation of the output variable ‘lag time’ (Table 3). The relatively low R² 365 

value for wet soils suggests there could be other variables influencing 366 

the lag time after a storm than the variables here considered. Our 367 
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analysis revealed that the vLE features with the highest impact on the 368 

output variables differ per output variable and soil wetness level (Figure 369 

4). The vLE density in the watershed and the upslope area of the vLE 370 

objects were the two most important features in 7 out of 9 random 371 

forest models. For explaining the total discharge volume and peak 372 

discharge rate in wet soil conditions, the two most important variables 373 

were the Ks value associated with the vLE object and the upslope area of 374 

the vLE objects. The impact of connectivity of the vLE network on the 375 

total discharge volume and peak discharge rate was limited, but an 376 

increase of relative impact could be observed with increasing values of 377 

θi. A higher impact of connectivity of the vLE network on the lag time 378 

was observed, where the impact of the connectivity on the lag time 379 

decreased with increasing values of θi. Increasing soil wetness resulted 380 

in a higher relative impact of the Ks value associated with the vLE object 381 

on the total discharge volume and the peak discharge rate. This was not 382 

the case when the lag time was evaluated whereby the impact of the Ks 383 

value was limited for wet and dry soils. The Manning’s n associated with 384 

the vLE objects had little impact on all three output variables.  385 

[Figure 4] 386 

3.2. One-dimensional analysis 387 

A Kruskal-Wallis test was performed to identify whether at least one 388 

level of the considered vLE feature performed significantly different 389 

from the others. This was done for the output variable discharge 390 

volume, peak discharge rate and lag time. The considered vLE features 391 
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were vLE density, the connectivity of the vLE configuration expressed as 392 

β, the upslope area of the vLEs, the Ks associated with the soil 393 

underneath the vLEs, and the Manning’s n associated with the vLEs. The 394 

results are presented in Table 4.  395 

3.2.1. Effect of density of vLE objects 396 

The vLE density had a generally negative impact on the total discharge 397 

volume and peak discharge rate and a positive impact on the lag time: 398 

the larger the vLE density in the watershed, the lower the total 399 

discharge volume and peak discharge rate and the larger the lag time 400 

(Figure 5). These effects could also be seen when the storm 401 

hydrographs for scenarios with different density levels were compared 402 

(Figure 3 and Table 2, scenarios 1, 2, 3). An exception to this trend was 403 

observed when the median lag times between a vLE density of 10 m ha-1 404 

and of 40 m ha-1 for wet soils were compared. In this case, the lag time 405 

decreases with increasing vLE density. For all soil wetness levels, the 406 

Kruskal-Wallis test demonstrates that these differences were 407 

statistically significant when the discharge volume and peak discharge 408 

rate were evaluated (P-value < 0.05). These differences were more 409 

prominent with increasing levels of initial soil moisture. For the output 410 

variable ‘lag time’, no statistically significant differences were found 411 

between different levels of vLE density for intermediate wet soils. 412 

However, for dry and wet soils, statistically significant differences were 413 

found (P-value < 0.05) between different levels of vLE density. 414 

[Figure 5] 415 
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3.2.2. Effect of connectivity 416 

The connectivity of the vLE network had little impact on the total 417 

discharge volume, peak discharge rate and lag time (Figure 6). A 418 

Kruskal-Wallis test showed only a statistically significant difference 419 

between different levels of connectivity for the total discharge volume 420 

and peak discharge rate for dry soils (Table 4). Contrary to our 421 

expectations, we found that increasing values of the β-index (i.e. higher 422 

connectivity in the vLE network) result in a higher total discharge 423 

volume and higher peak discharge rates. No statistically significant 424 

differences were found between the different levels of connectivity and 425 

the lag time for dry soils, nor for any of the output variables for dry or 426 

intermediate wet soils. 427 

[Figure 6] 428 

3.2.3. Effect of upslope area 429 

The upslope area had a statistically significant negative impact on the 430 

total discharge volume and peak discharge rate for dry and wet soils 431 

and a significant positive impact on the lag time for dry soils (Figure 7 & 432 

Table 4). Different levels of upslope area in wet soils were shown to also 433 

have significant differences in lag time values but no uniform trend 434 

could be distinguished. The post-hoc Dunn’s test demonstrated that for 435 

the lower levels of upslope area, lag time decreased with increasing 436 

values of upslope area, while the highest level of upslope area was 437 

associated with significantly higher values of the lag time. The effects 438 

can also be observed when the storm hydrographs for scenarios with 439 
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different density levels are compared (Figure 3 and Table 2, scenarios 1 440 

& 2). While the Kruskal-Wallis test identified significant differences in 441 

the total discharge volume and peak discharge rate between different 442 

levels of upslope area in intermediate wet soils, no clear trend could be 443 

observed. Intermediate wet soils did not show any significant 444 

differences in lag time between different levels of upslope area.  445 

[Figure 7] 446 

3.2.4. Effect of saturated hydraulic conductivity 447 

A higher Ks associated with the soil underneath the vLE objects had a 448 

generally negative impact on the total discharge volume and peak 449 

discharge rate: the larger the Ks value, the lower the total discharge 450 

volume and peak discharge rate (Figure 8). These effects could also be 451 

seen when the storm hydrographs for scenarios with different levels of 452 

Ks values are compared (Figure 3 and Table 2, scenarios 3 & 4). The 453 

differences in total discharge volume and peak discharge rate between 454 

the different Ks levels were statistically not significant for dry soils (Table 455 

4). The Ks value associated with the vLE objects was proven to have a 456 

limited impact on the lag time. Only for intermediate wet soils, 457 

statistically significant differences could be identified for the lag time 458 

when different levels of Ks were considered, with increasing levels of Ks 459 

resulting in a modest decrease in lag time. The modelled difference 460 

between the median lag time of the lowest and highest level of Ks was 461 

only 0.04 seconds (Figure 8 & Table 4).  462 

[Figure 8] 463 
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3.2.5. Effect of Manning’s roughness coefficient 464 

The Kruskal-Wallis tests revealed no statistically significant differences 465 

between the different levels of the Manning’s n and the three output 466 

variables (Figure 9 & Table 4).  467 

[Figure 9] 468 

 Discussion 469 

4.1. Model construction 470 

We used the distributed rainfall-runoff model, implemented in the 471 

Landlab modelling framework, to quantify the impact of vLEs and their 472 

geometric and hydrological characteristics on runoff in a small 473 

watershed. Obviously, reality was simplified in multiple ways in the 474 

model setup. A spatially uniform rainfall event was assumed while in 475 

reality, rainfall is heterogeneously distributed over the catchment. 476 

Interception of rainfall by vegetation was not taken into account,  477 

neglecting the interception of rainfall that lowers the amount that 478 

reaches the soil surface. These interception losses occur both at the 479 

location of the agricultural land and vLE objects. It was quantified that 480 

hedgerows for example can intercept up to 2.6 mm of a precipitation 481 

event (Herbst et al., 2006). By not taking these interception losses into 482 

account, the rainfall amount that reaches the soil surface was 483 

overestimated. We also assumed that the soil parameters (i.e., θi, 484 

capillary pressure head at wetting front, Ks and Manning’s n) were 485 

spatially uniform in our watershed. These values were, if available, 486 

based on values found in literature reports about experimental studies 487 
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done in the same region as our study area. For hedgerows, we did not 488 

find Ks values measured in the Belgian loam belt in the literature. 489 

Therefore we used a value measured in a loamy soil in northern 490 

England. Field studies usually show a large heterogeneity in soil 491 

wetness, both in the horizontal and vertical dimensions (Merz and Plate, 492 

1997). This spatial heterogeneity can be attributed to a variety of 493 

factors including variations in soil characteristics, topography, and water 494 

routing processes (Merz and Plate, 1997). The presence of vLEs also has 495 

an impact on soil moisture, not only directly underneath the object but 496 

also up to 10 m beyond their peripheries (Wallace et al., 2021). The 497 

overland flow routing and therefore the infiltration was calculated 498 

based on a 2 m resolution DEM. At this spatial resolution, non-random 499 

microtopography-related variations of Ks (Langhans et al., 2010a) cannot 500 

be accounted for and the model assumes water is uniformly spread over 501 

the pixel. This results in an overestimation of the effective hydraulic 502 

conductivity that is dependent on the inundated fraction of the pixel, 503 

and therefore also in an overestimation of the fraction of the 504 

precipitation that can infiltrate. We calculated an average runoff 505 

coefficient (i.e., the total runoff volume divided by the total 506 

precipitation volume) of 0.0003 m³ m-³ for θi = 0.02 m³ m-³, 0.0015 507 

m³ m-³ for θi = 0.155 m³ m-³ and 0.0101 m³ m-³ for θi = 0.29 m³ m-³. 508 

These values are slightly lower but in the same range as the findings of 509 

Evrard et al. (2007b) and Evrard et al. (2008) who conducted a 510 

hydrological study near our study area. The slightly lower values of the 511 
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runoff coefficients we calculated could be explained by an 512 

overestimation of the Ks values used in this study. Hydraulic conductivity 513 

has been proven to be dependent on water depth and rainfall intensity 514 

due to non-random microtopography (Langhans et al., 2013). The Ks 515 

value used for the ‘landscape’ pixels, which covers the vast majority of 516 

the study area, was derived from rainfall experiments with an intensity 517 

of ca. 45 mm h-1 (Van den Putte et al., 2013). The design storm used in 518 

this study had an intensity lower than 45 mm h-1 for 92 % of the 519 

duration of the storm. Earlier research carried out on loam soils in 520 

Belgium has demonstrated a positive correlation between rainfall 521 

intensity and hydraulic conductivity (Langhans et al., 2010b). This 522 

implies an overestimation of the Ks value was made during the majority 523 

of the time covered by the modelled storm over our watershed and 524 

could have resulted in underestimated values of the runoff coefficient. 525 

Further, Ks has proven to be highly variable in the study region. Van den 526 

Putte et al. (2013) calculated a standard deviation of obtained hydraulic 527 

conductivity values of 13.4 mm h-1 for rainfall experiments carried out in 528 

the summer period. This high variability could have potentially led to an 529 

overestimation of Ks in our study area. Lastly, the observed runoff 530 

coefficients were derived for a catchment in which the average slope 531 

was 24 % higher compared to the study area used here. Catchments 532 

with higher slopes typically show higher values of the runoff coefficient 533 

(De Niel and Willems, 2019). 534 
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4.2. Impact of vLEs on runoff  535 

The impact of the vLE density, connectivity, upslope area, Ks and 536 

Manning’s n on the modelled total discharge volume, peak discharge 537 

rate and lag time was evaluated (Figure 4). A negative correlation was 538 

found between vLE density and discharge volume and peak discharge 539 

rate and a positive correlation between vLE density and lag time (Figure 540 

5). These findings are in line with previous research based on field 541 

experiments where higher vLE densities could be associated with 542 

increased infiltration, lower discharge volumes and peak discharge rates 543 

(Mérot, 1999; Viaud et al., 2005). Due to longer travel times and 544 

increased infiltration, the storm hydrograph is smoothed out (i.e., the 545 

lag time is longer and the peak discharge rate is reduced) in catchments 546 

with higher densities of vLEs (Mérot, 1999). This is also visualized in 547 

Figure 3 (scenarios 1, 2, 3): while Ks, Manning’s n and β remain 548 

completely, or nearly constant across the 3 scenarios, an increase in vLE 549 

density ρ results in a lower discharge volume and peak discharge rate 550 

and a larger lag time, regardless of changes in upslope area. Therefore, 551 

it is recommended that the number of vLEs in the agricultural landscape 552 

does not further decrease, and better even, increases. 553 

Besides testing the impact of vLE density, we also looked at the effect of 554 

the connectivity of vLEs in the landscape by creating disconnections in 555 

the vLE objects. In reality, the connectivity of the vLE network in a 556 

landscape context is interrelated with the density of that vLE network: 557 

denser vLE networks also demonstrate a higher level of connectivity 558 
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(Burel and Baudry, 2012; Deckers et al., 2005). By keeping the density 559 

constant, we aimed at studying the effect of the connectivity 560 

independently of the vLE density. No strong impact of vLE connectivity 561 

on catchment runoff was found (Figure 4). The correlations between the 562 

level of connectivity and the discharge volume on the one hand and 563 

peak discharge rate, on the other hand, were both weakly negative and 564 

only present when the initial soil moisture content is low (Figure 6).  565 

The upslope area of the vLE objects showed to have a strong impact on 566 

the total discharge volume, the peak discharge rate and the lag time 567 

(Figure 4). In both dry and wet soils, we identified a negative 568 

relationship between the upslope area of the vLE objects and the 569 

discharge volume and peak discharge rate. This is in line with our 570 

expectations and indicates that vLE objects positioned on preferential 571 

flow paths downstream in the watershed can make a greater difference. 572 

When vLEs are associated with large values of the upslope area, a large 573 

proportion of the runoff will flow to the footprint of the vLE object. Due 574 

to the higher Ks values associated with vLE objects compared to the 575 

landscape pixels, more water can infiltrate. This is the concept behind 576 

the installation of grassed waterways where an increase of infiltration is 577 

achieved by decreasing runoff velocities through increasing the 578 

roughness and Ks (Evrard et al., 2008). The negative relationship 579 

between upslope area and peak discharge rate and the positive 580 

relationship with lag time can also be observed when the storm 581 

hydrographs were compared (Figure 3, scenarios 1 & 2): while all other 582 
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vLE characteristics remain constant, an increase in the upslope area 583 

results in a decrease of the discharge volume and peak discharge rate 584 

and an increase in the lag time. 585 

vLE objects are associated with values of Ks that are up to 30 times 586 

higher compared to the surrounding agricultural land (Holden et al., 587 

2019), which enhances infiltration. We could observe this effect in our 588 

modelling results where higher values of Ks associated with the vLEs 589 

result in a decrease of the discharge volume (Figure 8). We found an 590 

increase of the impact of the Ks value associated with the vLE object on 591 

discharge volume and peak discharge rate with increasing levels of soil 592 

wetness. This is contradictory to the findings of Hu et al. (2015) who 593 

concluded that the impact of Ks variability on runoff increased for lower 594 

θi values. Besides their higher Ks values, vLE objects are also 595 

characterized by higher values of Manning’s n compared to surrounding 596 

agricultural land (Baartman et al., 2020; Richet et al., 2017). This 597 

increase in roughness is expected to reduce the velocity of the overland 598 

flow and thereby promoting infiltration and reducing the total runoff 599 

volume (Ferguson and Fenner, 2020). We did however not see this 600 

effect in our modelling results. 601 

We applied the rainfall-runoff model to a relatively small watershed 602 

(26 ha) to quantify the impact of vLEs and their characteristics on runoff 603 

by using a design storm. In larger catchments, the river network 604 

configuration determines which areas of the catchment have the largest 605 

impact on the discharge peak while in small catchments this peak is 606 
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dominated by run-off from hillslopes in response to the storm (Dadson 607 

et al., 2017; Mérot, 1999). Therefore, it cannot be assumed that the 608 

effect of small-scale interventions can simply be extrapolated to 609 

estimate the combined effect at a larger scale (Dadson et al., 2017).  610 

 Conclusions 611 

Using a distributed rainfall-runoff model, we demonstrated that total 612 

discharge volume, peak discharge rate and lag time to peak discharge 613 

are impacted more by the density of the vLE objects (positioned along 614 

the parcel boundaries) in the watershed and their upslope area in 615 

comparison to the vLE-connectivity, the saturated hydraulic conductivity 616 

of the soil underneath the vLE and the Manning’s n coefficient 617 

associated with the vLE. The initial soil wetness level does not alter this 618 

relationship fundamentally.  619 

Both for upslope area and vLE density, a negative correlation with the 620 

total discharge volume and peak discharge rate and a positive 621 

correlation with the lag time was demonstrated. The relationship is not 622 

linear though: e.g., a factor 8.7 increase in linear density leads to a 623 

reduction of some 20 % in discharge volume. The modelled impact of 624 

the Ks value associated with the soil underneath the vLE objects on the 625 

discharge volume and peak discharge rate was rather weak but 626 

increased with increasing wetness. Ks was shown to be negatively 627 

correlated with the discharge volume and peak discharge rate. 628 

Connectivity and the Manning’s n value associated with the vLE objects 629 

had a limited impact on the modelled discharge volume, peak discharge 630 
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rate and lag time. The connectivity of the vLE network had little impact 631 

on the total discharge volume, peak discharge rate and lag time  632 

We conclude that the more abundant the vLE along the agricultural 633 

parcel boundaries, the more rainfall is retained in the watershed. 634 

Hence, our modelling study confirms that vLEs contribute to a non-635 

negligible extent to lowering the downstream flood risk and increasing 636 

the time lag to peak discharge, providing more opportunities for 637 

implementing punctual security measures. 638 
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Appendix 892 

Overview of the 378 scenarios combining varying landscape patterns, 893 

different levels of vLE density, connectivity, and values of Ks and 894 

Manning’s n associated with the vLE objects. For each configuration, 9 895 

unique combinations of Ks and Manning’s n were modelled (indicated by 896 

the dotted lines).  897 

[Figure A.1]  898 
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Table 1. Hydro-physical parameters used in the distributed rainfall-899 

runoff model.  900 

Parameter Unit Value(s) 

θi cm³ cm-3 0.02 – 0.155 – 0.29 

Capillary pressure head at 

wetting front  

mm 172.7 

Landscape pixels   

Ks mm hr-1 19.2 

Manning’s n s m-1/3 0.08 

vLE pixels   

Ks mm hr-1 20 – 51.2 – 102.4 

Manning’s n s m-1/3 0.30 – 0.43 – 0.55  

 901 

Table 2. Description of four distinct model scenarios and their associated 902 

output for θi = 0.29 m³ m-3. 903 

 904 

Table 3. Accuracy of the random forest regression models applied on the 905 

testing set of vLE-scenarios predicting discharge volume, peak discharge rate 906 

and lag time for θi = 0.02 m³ m-³, θi = 0.155 m³ m-³ and θi = 0.29 m³ m-³.  907 

 
Discharge volume 

(m3) 

Peak discharge rate 

(m³ s-1) 
Lag time (s) 

 RMSE R² RMSE R² RMSE R² 

θi = 0.02 m³/m-³ 8.11E-02 0.98 2.79E-04 0.97 9.55E+00 0.84 

θi = 0.155 m³/m-³ 5.36E-01 0.98 6.70E-04 0.96 2.91E+01 0.84 

θi = 0.29 m³/m-³ 2.24E+00 0.98 1.35E-03 0.98 5.45E+01 0.33 

scenario 

vLE characteristics Output variables 

density 

(m ha-1) 

Ks  

(mm h-1) 

Manning’s n 

(s m-1/3) 

β 

(-) 

Upslope 

area 

(ha m-1 vLE) 

Discharge 

volume 

(m³) 

Peak 

discharge rate 

(m³ s-1) 

Lag 

time 

(s) 

1 10 102.4 0.43 0.55 8.0 94 0.067 623 

2 10 102.4 0.43 0.55 1.3 126 0.086 590 

3 87 102.4 0.43 0.58 4.0 66 0.047 706 

4 87 20 0.43 0.58 4.0 109 0.071 693 
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  908 

Table 4. Summary of the Kruskal-Wallis test results for different levels of initial 909 

soil moisture content (θi). 910 

Statistical significance of the relationship is noted as: * significant at ≤0.05, and ** at 911 

≤0.01. 912 

Feature Output variable 
χ² (P-value) 

θi = 0.02 m³ m-³ θi = 0.155 m³ m-³ θi = 0.29 m³ m-³ 

vLE density 

Discharge volume 65.179 (7.024E-15)** 140.580 (< 2.2E-16)** 171.530 (< 2.2E-16)** 

Peak discharge rate 45.411 (1.378E-10)** 147.760 (< 2.2E-16)** 136.070 (< 2.2E-16)** 

Lag time 38.516 (4.330E-09)** 5.551 (0.062) 32.745 (7.754E-08)** 

Connectivity 

Discharge volume 4.097 (0.043)* 1.324 (0.250) 2.231 (0.135) 

Peak discharge rate 5.751 (0.016)* 0.418 (0.518) 3.359 (0.067) 

Lag time 0.224 (0.636) 1.546 (0.214) 1.514 (0.219) 

Upslope area 

Discharge volume 71.307 (2.24E-15)** 32.970 (3.267E-07)** 136.04 (< 2.2E-16)** 

Peak discharge rate 72.101 (1.514E-15)** 32.419 (4.27E-07)** 137.97 (< 2.2E-16)** 

Lag time 41.263 (5.751E-09)** 5.379 (0.146) 199.52 (< 2.2E-16)** 

Ks 

Discharge volume 1.231 (0.540) 14.951 (5.668E-04)** 69.388 (8.561E-16)** 

Peak discharge rate 0.178 (0.915) 10.444 (5.395E-03)** 18.104 (1.172E-04)** 

Lag time 0.902 (0.637) 46.442 (8.229E-11)** 0.610 (0.737) 

Manning’s n 

Discharge volume 2.026 (0.363) 0.828 (0.661) 1.878 (0.391) 

Peak discharge rate 0.011 (0.995) 1.101 (0.577) 0.211 (0.900) 

Lag time 1.509 (0.470) 0.327 (0.849) 2.028 (0.363) 
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Figure 1. (A) Location of the watershed in the Belgian loess belt (grey) based on Evrard et al. (2007b). (B) 

Watershed elevation model. 

 

Figure 2. Landscape patterns in (A) FP1, (B) FP2, (C) FP3, and (D) FP4 considered in the watershed. 

 

Figure 3. Discharge at the watershed outlet for four different scenarios detailed in Table 2 and the 

associated hyetograph for θi = 0.29 m³ m-3. 

 

Figure 4. Global variable importance plots for the prediction of (A) the total discharge volume, (B) the 

peak discharge rate and (C) the lag time for θi = 0.02 m³ m-³ (dry soils, purple), θi = 0.155 m³ m-³ 

(intermediate wet soils, light green) and θi = 0.29 m³ m-³ (wet soils, dark green). The five considered 

variables are ‘upslope area’: the upslope area of the vLE objects, ‘density’: the density of the vLE objects 

in the watershed, ‘Ks’: the saturated hydraulic conductivity associated with the soil underneath the vLE 

objects; ‘β’: the beta-connectivity index of the vLE objects in the watershed, and ‘Manning’s n’: the 

Manning’s roughness coefficient associated with the vLE objects. The different shadings indicate 

different levels of initial soil moisture content.  

 

Figure 5. Impact of vLE density on total discharge volume, peak discharge rate and lag time for θi = 0.02 

m³ m-³ (A, B & C), θi = 0.155 m³ m-³ (D, E & F) and θi = 0.29 m³ m-³ (G, H & I). Lowercase letters above the 

boxplots show the results of the Dunn’s test, with statistically similar (P-value < 0.05) levels grouped by 

the same letter. 

 

Figure captions with no changes marked



Figure 6. Impact of connectivity expressed as beta connectivity index (β) on total discharge volume, peak 

discharge rate and lag time for θi = 0.02 m³ m-³ (A, B & C), θi = 0.155 m³ m-³ (D, E & F) and θi = 0.29 m³ m-³ 

(G, H & I).  

 

Figure 7. Impact of upslope area of the vLEs on total discharge volume, peak discharge rate and lag time 

for θi = 0.02 m³ m-³ (A, B & C), θi = 0.155 m³ m-³ (D, E & F) and θi = 0.29 m³ m-³ (G, H & I). 

 

Figure 8. Impact of the saturated hydraulic conductivity (Ks) associated with the vLE segments on total 

discharge volume, peak discharge rate and lag time for θi = 0.02 m³ m-³ (A, B & C), θi = 0.155 m³ m-³ (D, E 

& F) and θi = 0.29 m³ m-³ (G, H & I). Lowercase letters above the boxplots show the results of the Dunn’s 

test, with statistically similar (P-value < 0.05) levels grouped by the same letter. 

 

Figure 9. Impact of the Manning’s roughness coefficient (n) associated with the vLE segments on total 

discharge volume, peak discharge rate and lag time for θi = 0.02 m³ m-³ (A, B & C), θi = 0.155 m³ m-³ (D, E 

& F) and θi = 0.29 m³ m-³ (G, H & I). 

 

Figure A.1 Overview of the 378 scenarios used in this study.  


