1 Abstract

2	Flooding of settlements is a growing concern in Europe, also in
3	agricultural areas. Restoration and installation of vegetated landscape
4	elements (vLE) such as hedges, lines of trees and grass buffers, along
5	the parcel boundaries is increasingly recognized as a way to mitigate
6	downstream flood risk. However, there is a lack of scientific evidence to
7	support their implementation. We used the Landlab modelling
8	framework to gain knowledge about the importance of the presence
9	and characteristics of vLEs for the hydrological response in a 26 hectare
10	undulating watershed representative for the Belgian loess belt for which
11	a multitude of vLE scenarios were developed. Our model results
12	demonstrated that the total runoff volume, the peak discharge rate and
13	its lag time in such small watersheds are mainly controlled by the
14	density of the vLE objects and their upstream area. First and foremost
15	we demonstrated a negative correlation between the discharge volume
16	and peak discharge rate and the density of the vLE objects and their
17	upstream area. A positive correlation was observed between the lag
18	time and density of the vLE objects for both dry and wet soils and
19	between the lag tag time and upstream area for dry soils. Further, we
20	found that the impact of the value of the saturated hydraulic
21	conductivity of the soil covered by the vLE became increasingly
22	important with increasing soil wetness, with the hydraulic conductivity
23	being negatively correlated with the discharge volume and peak

- 24 discharge rate. The impact of hydraulic conductivity on the lag time was
- 25 limited. A negative correlation between hydraulic conductivity and lag
- 26 time for intermediate wet soils was demonstrated. Our model results
- 27 also showed that the roughness, expressed as the Manning n-
- 28 coefficient, of the soil underneath a vLE and the spatial connectivity of
- 29 the vLE objects have little impact on the hydrological response.
- 30

Highlights

- Modelling results confirm that landscape elements contribute to lowering flood risk
- Higher initial soil wetness levels result in more and faster discharge
- Runoff is controlled by the density of landscape elements and their upstream area

- 1 **Title:** The impact of vegetated landscape elements on runoff in a small
- 2 agricultural watershed: A modelling study
- 3 Authors names and affiliations:
- 4 Ine Rosier^A
- 5 ^ADepartment of Earth and Environmental Sciences, KU Leuven,
- 6 Celestijnenlaan 200E bus 2411, B-3001 Leuven, Belgium
- 7 ine.rosier@kuleuven.be
- 8 Jan Diels^A
- 9 ^ADepartment of Earth and Environmental Sciences, KU Leuven,
- 10 Celestijnenlaan 200E bus 2411, B-3001 Leuven, Belgium
- 11 jan.diels@kuleuven.be
- 12 Ben Somers^A
- 13 ^ADepartment of Earth and Environmental Sciences, KU Leuven,
- 14 Celestijnenlaan 200E bus 2411, B-3001 Leuven, Belgium
- 15 ben.somers@kuleuven.be
- 16 Jos Van Orshoven^A
- 17 ^ADepartment of Earth and Environmental Sciences, KU Leuven,
- 18 Celestijnenlaan 200E bus 2411, B-3001 Leuven, Belgium
- 19 jos.vanorshoven@kuleuven.be
- 20 **Corresponding author:** Ine Rosier (ine.rosier@kuleuven.be)

- 21 **Keywords:** surface runoff modeling; agricultural watershed; vegetated
- 22 landscape element; natural flood management

23 1. Introduction

24	Extensive areas throughout Europe are affected by flooding of rivers or
25	from surface runoff. This can be demonstrated by the destructive
26	events of July 2021 in Western Europe that caused an estimated loss of
27	up to €5.8 billion and over 200 deaths (Kreienkamp et al., 2021). In the
28	period between 1980 and 2013, almost 1500 flood and wet mass
29	movement events happened within the European Union, more than half
30	of them since 2000 (EEA, 2017). In Belgium, flood events are a common
31	occurrence in the Belgian loess belt, which covers about 34 % (10576
32	km ²) of the Belgian territory. These flood events are often co-
33	determined by runoff from agricultural land. Between 1991 and 2004,
34	79 % of the municipalities located within the Belgian loess belt were
35	affected by floods resulting from runoff from arable land (Bielders et al.,
36	2003; Evrard et al., 2007a). Flood hazard is likely to increase in this
37	region as a result of the expected global-warming related changes in the
38	frequency and magnitude of extreme precipitation events (Fowler et al.,
39	2021; Kreienkamp et al., 2021). Climate-smart upstream land use
40	systems, and hence climate-smart land use planning, are increasingly
41	recognized as a way to mitigate downstream flood risk (Gabriels et al.,
42	2022; Minang et al., 2015). Vegetated landscape elements (vLEs) such as
43	hedges, lines of trees and grass buffers are inherent components of

44	such climate-resilient agricultural land use systems (Burgess-Gamble et
45	al., 2017; Ellis et al., 2021). Their typical geometrical arrangement
46	following the edges of agricultural parcels creates networks of
47	landscape elements. These networks alter the parcel and catchment
48	hydrology since they create hydrological discontinuities by impeding
49	flow paths (Mérot, 1999) or enhancing flow continuities exacerbating
50	runoff. Hence, vLEs alter the runoff pattern and hence affect the
51	frequency, extent, depth and duration of downstream flood events
52	(Horn et al., 2007; Klaassen and Zwaard, 1974; Mérot, 1999; Richet et
53	al., 2017). The attitude of landowners towards these potential natural
54	flood protection measures is not always positive, which can partly be
55	explained by the current lack of scientific evidence about their
56	effectiveness (Bielders et al., 2003; Ellis et al., 2021; Wells et al., 2020).
57	Still, there is a strong positive correlation between the probability of a
58	landowner taking flood and erosion control measures (e.g. grass buffer
59	strips) and the probability of having experienced runoff or erosion
60	damage during the last decade (Bielders et al., 2003).
61	To design evidence-based climate-smart landscapes, quantitative
62	information about the effect of vLEs on the runoff in a catchment is
63	needed. vLEs and their hydrological properties have been the subject of
64	numerous studies. These studies demonstrate that the effect of the vLE
65	on the infiltration capacity of the soil covered by that vLE depends on
66	the type of vLEs with grass buffers decreasing the infiltration capacity
67	compared to some common crop types while hedges increase the

68	infiltration capacity (Baartman et al., 2020; Holden et al., 2019). Further,
69	it was shown that vLEs are typically associated with higher hydraulic
70	roughness values (Baartman et al., 2020; Richet et al., 2017). This not
71	only results in a decreased velocity of runoff but also in lower sediment
72	transport. Previously, these studies focused mainly on the impact of
73	vLEs on runoff at the field scale (Holden et al., 2019; Richet et al., 2017;
74	Wallace et al., 2021). However, information on these effects at a
75	catchment scale is at least equally important as many of the off-site
76	consequences of flooding events have to be managed at a catchment
77	scale. Also on the catchment scale, it becomes possible to assess the
78	effect of the geometric characteristics of the vLEs (i.e. dimensions,
79	position along the concentrated flow paths and connectivity) on runoff
80	within a catchment, and to investigate how these characteristics affect
81	the rainfall-runoff behaviours of the catchment.
82	With this research, we aimed to gain knowledge about the importance
83	of the presence and characteristics of vLEs on the hydrological response
84	of a small watershed representative of the Belgian loess belt. We used a
85	physically-based distributed rainfall-runoff model implemented in the
86	Landlab modelling framework (Barnhart et al., 2020; Hobley et al., 2017)
87	to quantify the effect of various configurations and characteristics of
88	vLEs using a design storm (Willems, 2013). Our findings are meant to aid
89	in the conservation and promotion of vLEs in an agricultural landscape
90	in the future. This is important as shown by the declining trend in the
91	presence of vLEs demonstrated by the disappearance of more than half

92 of the hedgerows between 1900 and 2002 in Flanders (Deckers et al.,

93 2005).

94 The specific objectives of this research were:

95	1. To assess the sensitivity of the hydrological modelling
96	framework Landlab (Barnhart et al., 2020; Hobley et al., 2017)
97	to changes in the hydrological properties of vLEs (i.e. Manning's
98	roughness coefficient (n) and saturated hydraulic conductivity
99	of the underlying soil (K_s));
100	2. To compare the magnitude and timing of the flood peak
101	discharge rate and the total runoff volume produced by a design
102	storm between various configurations of vLEs;
103	3. To assess the impact of contrasting initial soil moisture
104	contents on the hydrological functioning of vLEs.

105

106 2. Methodology

107 108	2.1. Rainfall-runoff model The open-source Python-coded Landlab modelling framework (Barnhart
109	et al., 2020; Hobley et al., 2017) was used to simulate overland flow and
110	infiltration in a real watershed with assumed vLEs. This modelling
111	framework has previously been used and validated to model catchment
112	runoff (Adams et al., 2017; Reitman et al., 2019; Zhang et al., 2020).
113	Overland flow in the Landlab modelling framework is based on the two-
114	dimensional shallow water equations (SWE) as is the case for many
115	physically-based hydrological models (e.g. Cea and Bladé, 2015; Defina,

- 116 2000; Warnock et al., 2014). The SWE are a simplification of the Navier-
- 117 Stokes equations in the vertical direction and consist of two parts, the
- 118 conservation of mass (Eq. 1) and the conservation of momentum (Eq. 2
- 119 and Eq. 3):

$$\frac{\partial h}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = 0$$
(1)
$$\frac{\partial q_x}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} = 0$$
(2)
$$\frac{\partial q_x}{\partial t} + \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} (vq_x) + \frac{\partial q_y}{\partial y} (vq_x) + \frac{\partial q_y}{\partial t} = 0$$

$$\frac{\partial q_y}{\partial t} + \frac{\partial q_y}{\partial t} (uq_y) + \frac{\partial q_x}{\partial t} (vq_y) + \frac{\partial q_y}{\partial t} (vq_y) +$$

120 where x [m] and y [m] are the planimetric Cartesian directions, t [s] is 121 time, h [m] is water depth, q_x and q_y [m² s⁻¹] are the x and y components 122 of the discharge per unit width vector \mathbf{q} , (u, v) [m s⁻¹] are the velocities 123 at x, y-direction, z [m] is the bed elevation, g [m s⁻²] is the gravity 124 acceleration, and *n* [s $m^{-1/3}$] is the Manning's n. Since full Shallow Water 125 models are computationally expensive, some studies suggest 126 approximating or omitting specific terms in the SWE (e.g. Bates et al., 127 2010; Singh, 1997). We used LISFLOOD-FP, a simplified approximation of 128 the SWE that omits the convective acceleration term in Eq. 2 and Eq. 3 129 (Bates et al., 2010; Bates and De Roo, 2000; de Almeida et al., 2012; de 130 Almeida and Bates, 2013). The original python code from the Landlab

131 library modelling framework was adapted to allow defining a unique 132 Manning's n for each cell in the gridded watershed. This roughness 133 coefficient was used to drive overland flow. The flow direction is 134 determined by defining for each cell the steepest path in the four 135 cardinal directions. The outlet was selected to be the only location in 136 the watershed where water can exit the watershed. Therefore, all other 137 boundary cells were set as 'no flux' cells. 138 For each time step, water losses due to infiltration were calculated after 139 flow was routed by using the Green-Ampt Mein-Larson infiltration 140 model (GAML) (Mein and Larson, 1971). GAML describes the infiltration

$$f = K_e \left(1 + \frac{\psi \Delta \theta}{F} \right) \tag{4}$$

142 where f [m s⁻¹] is the potential infiltration rate, F [m] is the cumulative 143 infiltration, ψ [m] is the capillary pressure head at the wetting front, $\Delta \vartheta$ 144 [m³ m⁻³] is the difference between saturated and initial volumetric 145 moisture content, and K_e [m s⁻¹] is the effective hydraulic conductivity. 146 K_e is a lumped parameter that adjusts K_s to account for spatial variation 147 in rainfall intensity and soil properties (e.g., soil crusting, surface 148 microtopography and soil pore structure) (Langhans et al., 2010b; Van 149 den Putte et al., 2013). The GAML describes a situation where runoff 150 occurs only after some time, i.e. the ponding time. A minimum water 151 depth on the surface of 1.0E-8 m that can not infiltrate was assumed. 152 This was done to avoid numerical instability of the solutions of the

- 153 overland flow modelling resulting from the calculation of negative water
- depths, as suggested by Costabile et al. (2012).
- 155 2.2. Model construction
- 156 *2.2.1. Study area*
- 157 A 26 ha agricultural watershed situated in the Belgian loess belt was
- selected (50.72° N, 5.12°E). This area has been repeatedly affected by
- 159 floods as happens frequently in undulating agricultural areas on loamy
- soils in Flanders (Bielders et al., 2003; Evrard et al., 2007b). The
- 161 elevation in the watershed was characterized by a 2 m resolution digital
- 162 elevation model (DEM). Altitudes range between 106 m and 120 m
- above sea level. The majority of the land cover (94 %) in the study area
- 164 is agricultural land (i.e. arable land and agricultural grassland) (ALV,
- 165 2021).
- 166 [Figure 1]
- 167 2.2.2. Vegetation cover
- 168 Existing field boundary patterns were used to generate different
- 169 configurations of vLEs. The first three patterns (Figure 2, a-c) occur
- 170 elsewhere in Belgium and were chosen to be representative of a typical
- agricultural field pattern (FP) in the region. These three patterns were
- selected by assessing the parcel configuration around a selection of
- 173 1000 randomly chosen agricultural fields in the region and selecting a
- 174 field pattern with a small, medium and large average plot size. FP1
- 175 (Figure 2, a) is characterized by smaller plots with an average field size
- 176 of 1.42 ha. FP2 (Figure 2, b) is characterized by medium-sized fields with

an average size of 1.89 ha. FP3 (Figure 2, c) is characterized by larger
fields with an average field size of 2.33 ha. The fourth pattern (FP4,
Figure 2, d) was generated to have field boundaries perpendicular and
parallel to the flow directions in the watershed.

181 [Figure 2]

182 In total, 42 configurations of vLEs were created based on the field 183 boundaries of FP1, FP2, FP3 and FP4. These configurations differ in the 184 density of vLEs, connectivity, and upslope area. Three different values of 185 vLE density were used: 87 m ha⁻¹, 40 m ha⁻¹ and 10 m ha⁻¹. The highest 186 vLE density represents the mean density of vLEs in Flanders in the year 187 1900, while a density of 40 m ha⁻¹ represents the average situation in 188 2002 (Deckers et al., 2005). A watershed with a vLE density of 10 m ha⁻¹ 189 represents a situation in which the density of vLEs in the landscape is 190 further reduced, e.g. due to further intensification and heavy machinery 191 use. For FP1, FP2 and FP3, four configurations per density level, with a 192 range in connectivity, were generated. To do this, 10000 random 193 combinations of field borders were selected and the beta connectivity 194 index (β) was calculated as:

$$\beta = \frac{e}{v} \tag{5}$$

with e the number of vLE segments and v the number of vLE nodes. A
segment was defined as a side of an agricultural field boundary with the
start and end point of the segment being defined as nodes. In case a
start or end node of another segment was positioned along the

199	segment, the segment was split in two at the location of that node. The
200	two configurations of field borders with the highest $m{ heta}$ per density level
201	were then selected. Disconnections in these two configurations were
202	created by rotating per vLE section of 60 m, the middle 20 m with an
203	angle of 90 degrees. This was done to assess the impact of the
204	connectivity of vLEs without changing the density or geographical
205	position of the vLEs. For FP4, two configurations per density level were
206	created, one where the vLEs were mainly positioned along the flow
207	direction in the watershed and one where they were located
208	perpendicular to the modelled flow direction. While in FP1, FP2 and FP3
209	we aimed to assess the impact of vLE connectivity on runoff, we focused
210	on vLE configurations positioned along with or perpendicular to the
211	main slope in FP4. The vLE configurations were rasterized by assigning
212	the land use class 'vLE' to all pixels intersected by a vLE field border. All
213	other pixels in the watershed were considered to be 'landscape' pixels.
214	The average number of 'vLE' pixels in the watershed was 166, 659 and
215	1400 for a density level of 10 m ha ⁻¹ , 40 m ha ⁻¹ and 87 m ha ⁻¹
216	respectively. This corresponds to 0.29 %, 1.14 % and 2.34 % of the total
217	number of pixels in the watershed. For all 42 vLE configurations, the $ heta$ -
218	index (Eq. 5) and the upslope area per meter vLE were calculated. The
219	average upslope area per meter vLE was calculated by assessing for
220	each vLE pixel the size of the area that directly contributes water to that
221	pixel. The sum of that area for all vLE pixels was then divided by the
222	total length of the vLE objects in the watershed to obtain the average

223	upslope area per meter 'vLE'. This gives an estimation of the runoff
224	going through the vLEs in the watershed, with larger values indicating a
225	larger proportion of the runoff that flows through the vLE.
226	GAML parameters, Manning's n and other soil parameters were
227	selected based on values found in literature and are summarized in
228	Table 1. We assumed that our watershed had a uniform loamy soil. The
229	K_s , initial volumetric moisture content ($artheta_i$) and capillary pressure head at
230	wetting front were based on values derived by Van den Putte et al.
231	(2013) from a dataset consisting of 350 rainfall experiments carried out
232	on 21 arable fields in the Belgian loess belt. The K_s was equal to 19.2
233	mm hr ⁻¹ , which was the average effective hydraulic conductivity derived
234	for rainfall experiments carried out in the summer period. The $artheta_i$ was set
235	to a value between 0.02 cm 3 cm $^{-3}$ and 0.29 cm 3 cm $^{-3}$, which are the
236	minimum and maximum $artheta_i$ values measured for experiments carried out
237	in the summer period. Further, a $artheta_i$ of 0.155 cm ³ cm ⁻³ was used as a
237 238	in the summer period. Further, a ϑ_i of 0.155 cm ³ cm ⁻³ was used as a medium value of ϑ_i . The capillary pressure head at wetting front used in
238	medium value of $artheta_i$. The capillary pressure head at wetting front used in
238 239	medium value of ϑ_i . The capillary pressure head at wetting front used in our model equals 172.7 mm, which was the average value derived for
238 239 240	medium value of ϑ_i . The capillary pressure head at wetting front used in our model equals 172.7 mm, which was the average value derived for rainfall experiments carried out in the summer period. The Manning's n
238 239 240 241	medium value of ϑ_i . The capillary pressure head at wetting front used in our model equals 172.7 mm, which was the average value derived for rainfall experiments carried out in the summer period. The Manning's n was set to 0.08 s m ^{-1/3} . This value was based on the value measured by
238 239 240 241 242	medium value of ϑ_i . The capillary pressure head at wetting front used in our model equals 172.7 mm, which was the average value derived for rainfall experiments carried out in the summer period. The Manning's n was set to 0.08 s m ^{-1/3} . This value was based on the value measured by Takken et al. (1999) for land with the maize crop. Maize was selected as
238 239 240 241 242 243	medium value of ϑ_i . The capillary pressure head at wetting front used in our model equals 172.7 mm, which was the average value derived for rainfall experiments carried out in the summer period. The Manning's n was set to 0.08 s m ^{-1/3} . This value was based on the value measured by Takken et al. (1999) for land with the maize crop. Maize was selected as the only land cover type. Maize is the crop type with the largest spatial

247	values for K_s for the soil under the vLEs were selected. The first value
248	was equal to 102.4 mm hr ⁻¹ which is representative of loamy soils under
249	hedges (Holden et al., 2019). The second value was equal to 20 mm hr ⁻¹
250	which is representative of loamy soils under grass buffers (Baartman et
251	al., 2020; Evrard et al., 2009). As a third value, an intermediate value
252	was chosen, i.e. 51.2 mm hr ⁻¹ . Further, also three values of the
253	Manning's n linked with vLEs were selected. We used 0.43 s $m^{\text{-}1/3}$ and
254	0.55 s m ^{-1/3} , which are the minimum and maximum values of Manning's
255	n for hedgerows calculated by Richet et al. (2017). Further, we also used
256	a Manning's n of 0.30 s m ^{-1/3} which is the roughness coefficient
257	associated with grass buffers (Baartman et al., 2020).
258	
259	2.2.3. Precipitation data
259 260	<i>2.2.3. Precipitation data</i> This study uses a design storm, i.e. a hypothetical rainfall event
	•
260	This study uses a design storm, i.e. a hypothetical rainfall event
260 261	This study uses a design storm, i.e. a hypothetical rainfall event associated with a specific duration and return period, as precipitation
260 261 262	This study uses a design storm, i.e. a hypothetical rainfall event associated with a specific duration and return period, as precipitation input in the model. Such design storms are often used for flood risk
260 261 262 263	This study uses a design storm, i.e. a hypothetical rainfall event associated with a specific duration and return period, as precipitation input in the model. Such design storms are often used for flood risk assessments (Jiang et al., 2019). The 2-hour spatially uniform design
260 261 262 263 264	This study uses a design storm, i.e. a hypothetical rainfall event associated with a specific duration and return period, as precipitation input in the model. Such design storms are often used for flood risk assessments (Jiang et al., 2019). The 2-hour spatially uniform design storm with a 50-year return period used in this study was calculated
260 261 262 263 264 265	This study uses a design storm, i.e. a hypothetical rainfall event associated with a specific duration and return period, as precipitation input in the model. Such design storms are often used for flood risk assessments (Jiang et al., 2019). The 2-hour spatially uniform design storm with a 50-year return period used in this study was calculated based on the intensity-duration-frequency (IDF) relationship derived
260 261 262 263 264 265 266	This study uses a design storm, i.e. a hypothetical rainfall event associated with a specific duration and return period, as precipitation input in the model. Such design storms are often used for flood risk assessments (Jiang et al., 2019). The 2-hour spatially uniform design storm with a 50-year return period used in this study was calculated based on the intensity-duration-frequency (IDF) relationship derived from the Uccle 10 min rainfall time series (Demarée, 2003) for the
260 261 262 263 264 265 266 267	This study uses a design storm, i.e. a hypothetical rainfall event associated with a specific duration and return period, as precipitation input in the model. Such design storms are often used for flood risk assessments (Jiang et al., 2019). The 2-hour spatially uniform design storm with a 50-year return period used in this study was calculated based on the intensity-duration-frequency (IDF) relationship derived from the Uccle 10 min rainfall time series (Demarée, 2003) for the period 1898-2007 (Willems, 2013). The calculation was done by using a
260 261 262 263 264 265 266 267 268	This study uses a design storm, i.e. a hypothetical rainfall event associated with a specific duration and return period, as precipitation input in the model. Such design storms are often used for flood risk assessments (Jiang et al., 2019). The 2-hour spatially uniform design storm with a 50-year return period used in this study was calculated based on the intensity-duration-frequency (IDF) relationship derived from the Uccle 10 min rainfall time series (Demarée, 2003) for the period 1898-2007 (Willems, 2013). The calculation was done by using a frequency-based method that constructs the hyetograph from the

271	2013). The peak intensity of the rainfall event was equal to 127.87 mm
272	hr ⁻¹ while the total rainfall volume over the catchment in the considered
273	2-hour period was around 11000 m ³ .
274 275	2.3. Model application The rainfall-runoff model described in section 2.1 was applied for 378
276	vLE scenarios using Python (Version: 3.9.7). These scenarios were
277	derived by combining varying landscape patterns, different levels of vLE
278	density, connectivity, and values of K_s and Manning's n associated with
279	the vLE objects (Appendix A). The 378 scenarios were run for $artheta_i$ equal to
280	0.02 m ³ m ⁻³ 0.155 m ³ m ⁻³ and 0.29 m ³ m ⁻³ , hereafter referred to dry,
281	intermediate wet, and wet soils. While the 50-year return period design
282	storm had a length of 2 hours, the total model run time was set for an
283	additional 2 hours after rainfall ceased to allow all runoff water to either
284	reach the outlet of the watershed or infiltrate. After each model run,
285	the total discharge volume (in m ³), the peak discharge rate at the outlet
286	(in m ³ per second) and the lag time between the rainfall and discharge
287	peaks (in seconds) were derived from the discharge time series.
288 289	2.4. vLE feature impact on runoff The impact of the vLE features on the total discharge volume, the peak
290	discharge rate and the lag time was assessed by comparing the
291	differences in the output variables between different values of the vLE
292	features in a multidimensional analysis on the one hand and in a one-
293	dimensional analysis on the other hand. All statistical analyses were
294	done using R software (Version: 4.1.2).

295 296	<i>2.4.1. Multidimensional analysis</i> To take into account feature interactions and rank the importance of
297	the impact of each considered vLE feature (density, connectivity,
298	upslope area, Manning's n and K_s) on the output variables, 9 random
299	forest analyses were conducted, one for each combination of output
300	variable (3) and soil wetness level (3) using the "randomForest" package
301	(Version: 4.7-1). A randomly selected bootstrapped sample of 70 % of
302	the 378 scenarios was used as a training set to fit 500 classification
303	trees. The remaining 30 % of the observations were used as a testing set
304	to evaluate the predictive performance of the models. The relative
305	importance of the features within the model was determined to show
306	the impact of each input feature on the total discharge volume, the
307	peak discharge rate and the lag time. This was done by constructing the
308	global variable importance curves using the package "vivo" (Version:
309	0.2.1) and "DALEX" (Version: 2.4.1) and comparing the variable
310	importance of each feature with the maximal variable importance in the
311	model. Regression trees have previously proven to be successful to
312	assess the relative impact of features (e.g., Poncelet et al., 2017).
242	242 One dimensional analysis
313 314	2.4.2. One-dimensional analysis For each unique combination of density, Manning's n and K _s , 14 vLE
315	configurations were created (Appendix A). For these 14 configurations,
316	the upslope area and connectivity were derived. For each of the vLE
317	features (density, Manning's n and K_s , connectivity, upslope area), a
318	Kruskal-Wallis nonparametric test (Kruskal and Wallis, 1952) was used
319	to evaluate whether at least one level of these features performed

to evaluate whether at least one level of these features performed

- 320 significantly different from the others using the package "stats"
- 321 (Version: 4.2.1). The impact of a feature on an output variable was
- 322 considered significant if the P-value returned by the test was lower than
- 323 0.05. If the impact of the feature was considered significant, a
- 324 subsequent post-hoc Dunn's test with a Bonferroni correction was
- 325 performed using the package "dunn.test" (Version: 1.3.5) to determine
- 326 which levels of the features differ from each other. These differences
- 327 were considered significant if the P-value returned by the test was
- 328 lower than 0.05.

329 **3. Results**

330	Runoff simulations for the 378 scenarios at three different wetness
331	levels resulted in 1134 hydrographs from which the discharge volume,
332	peak discharge rate and lag time were derived. Initial soil moisture
333	content was shown to have a large impact on the discharge volume,
334	peak discharge rate and lag time. The average modelled discharge
335	volume for all 378 scenarios was 3.08 m ³ , 17.01 m ³ and 110.66 m ³ for
336	dry, intermediate wet, and wet soil respectively. The average modelled
337	peak discharge rate was 0.01 m³ s $^{-1}$, 0.02 m³ s $^{-1}$ and 0.08 m³ s $^{-1}$
338	respectively, and the average modelled lag time was 360.32 s, 593.62 s
339	and 593.17 s respectively. For dry soils, discharge in the watershed is
340	dominated by runoff from a relatively small area close to the outlet as a
341	large portion of the runoff from areas further away from the outlet can
342	infiltrate and will not reach the outlet. This results in a discharge peak
343	that closely follows the peak in rainfall. For wet soils, however, a smaller

344	proportion of the precipitation will infiltrate and more runoff will reach
345	the outlet of the watershed. Runoff from areas further away from the
346	outlet has longer travel times and therefore the peak in discharge will
347	arrive later in time for wet soils. An illustration of the hydrograph of
348	four distinct scenarios for wet soils with the associated hyetograph is
349	given in Figure 3. The bimodal shape of the hydrographs is the result of
350	different flow paths arriving at the outlet. The flow path conveying
351	water from an area close to the outlet of the watershed results in a
352	peak in discharge close to the peak in the rainfall. The flow path
353	conveying water from an area at a larger distance from the outlet
354	results in a peak of discharge later in time. The vLE characteristics of the
355	four scenarios and their corresponding discharge volume, peak
356	discharge rate and lag time values are given in Table 2.

357 [Figure 3]

358 359	3.1. Multidimensional analysis We used random forest regression models to take into account feature
360	interactions and rank the importance of the impact of each considered
361	feature on the output variables. The regression models explained 98 %
362	of the variation of the output variable 'discharge volume' for all three
363	wetness levels, between 96 % and 98 % of the variation of the output
364	variable 'peak discharge rate' and between 33 % and 84 % of the
365	variation of the output variable 'lag time' (Table 3). The relatively low R^2
366	value for wet soils suggests there could be other variables influencing
367	the lag time after a storm than the variables here considered. Our

368	analysis revealed that the vLE features with the highest impact on the
369	output variables differ per output variable and soil wetness level (Figure
370	4). The vLE density in the watershed and the upslope area of the vLE
371	objects were the two most important features in 7 out of 9 random
372	forest models. For explaining the total discharge volume and peak
373	discharge rate in wet soil conditions, the two most important variables
374	were the K_s value associated with the vLE object and the upslope area of
375	the vLE objects. The impact of connectivity of the vLE network on the
376	total discharge volume and peak discharge rate was limited, but an
377	increase of relative impact could be observed with increasing values of
378	$artheta_i$. A higher impact of connectivity of the vLE network on the lag time
379	was observed, where the impact of the connectivity on the lag time
380	decreased with increasing values of $artheta_i$. Increasing soil wetness resulted
381	in a higher relative impact of the K_s value associated with the vLE object
382	on the total discharge volume and the peak discharge rate. This was not
383	the case when the lag time was evaluated whereby the impact of the K_s
384	value was limited for wet and dry soils. The Manning's n associated with
385	the vLE objects had little impact on all three output variables.

386 [Figure 4]

387	3.2. One-dimensional analysis
388	A Kruskal-Wallis test was performed to identify whether at least one
389	level of the considered vLE feature performed significantly different
390	from the others. This was done for the output variable discharge
391	volume, peak discharge rate and lag time. The considered vLE features

392	were vLE density, the connectivity of the vLE configuration expressed as
393	$\boldsymbol{\beta}$, the upslope area of the vLEs, the K_s associated with the soil
394	underneath the vLEs, and the Manning's n associated with the vLEs. The
395	results are presented in Table 4.
396 397	<i>3.2.1. Effect of density of vLE objects</i> The vLE density had a generally negative impact on the total discharge
398	volume and peak discharge rate and a positive impact on the lag time:
399	the larger the vLE density in the watershed, the lower the total
400	discharge volume and peak discharge rate and the larger the lag time
401	(Figure 5). These effects could also be seen when the storm
402	hydrographs for scenarios with different density levels were compared
403	(Figure 3 and Table 2, scenarios 1, 2, 3). An exception to this trend was
404	observed when the median lag times between a vLE density of 10 m ha $^{\mbox{-}1}$
405	and of 40 m ha ⁻¹ for wet soils were compared. In this case, the lag time
406	decreases with increasing vLE density. For all soil wetness levels, the
407	Kruskal-Wallis test demonstrates that these differences were
408	statistically significant when the discharge volume and peak discharge
409	rate were evaluated (P-value < 0.05). These differences were more
410	prominent with increasing levels of initial soil moisture. For the output
411	variable 'lag time', no statistically significant differences were found
412	between different levels of vLE density for intermediate wet soils.
413	However, for dry and wet soils, statistically significant differences were
414	found (P-value < 0.05) between different levels of vLE density.

415 [Figure 5]

- 416 *3.2.2. Effect of connectivity*
- 417 The connectivity of the vLE network had little impact on the total
- 418 discharge volume, peak discharge rate and lag time (Figure 6). A
- 419 Kruskal-Wallis test showed only a statistically significant difference
- 420 between different levels of connectivity for the total discharge volume
- 421 and peak discharge rate for dry soils (Table 4). Contrary to our
- 422 expectations, we found that increasing values of the θ -index (i.e. higher
- 423 connectivity in the vLE network) result in a higher total discharge
- 424 volume and higher peak discharge rates. No statistically significant
- 425 differences were found between the different levels of connectivity and
- 426 the lag time for dry soils, nor for any of the output variables for dry or
- 427 intermediate wet soils.

428 [Figure 6]

- 429 3.2.3. Effect of upslope area
- The upslope area had a statistically significant negative impact on the 430 431 total discharge volume and peak discharge rate for dry and wet soils 432 and a significant positive impact on the lag time for dry soils (Figure 7 & 433 Table 4). Different levels of upslope area in wet soils were shown to also 434 have significant differences in lag time values but no uniform trend 435 could be distinguished. The post-hoc Dunn's test demonstrated that for 436 the lower levels of upslope area, lag time decreased with increasing 437 values of upslope area, while the highest level of upslope area was 438 associated with significantly higher values of the lag time. The effects 439 can also be observed when the storm hydrographs for scenarios with

440	different density levels are compared (Figure 3 and Table 2, scenarios 1
441	& 2). While the Kruskal-Wallis test identified significant differences in
442	the total discharge volume and peak discharge rate between different
443	levels of upslope area in intermediate wet soils, no clear trend could be
444	observed. Intermediate wet soils did not show any significant
445	differences in lag time between different levels of upslope area.
446	[Figure 7]
447 448	<i>3.2.4. Effect of saturated hydraulic conductivity</i> A higher K _s associated with the soil underneath the vLE objects had a

- 449 generally negative impact on the total discharge volume and peak
- 450 discharge rate: the larger the K_s value, the lower the total discharge
- 451 volume and peak discharge rate (Figure 8). These effects could also be
- 452 seen when the storm hydrographs for scenarios with different levels of
- 453 *K*_s values are compared (Figure 3 and Table 2, scenarios 3 & 4). The
- 454 differences in total discharge volume and peak discharge rate between
- 455 the different K_s levels were statistically not significant for dry soils (Table
- 456 4). The K_s value associated with the vLE objects was proven to have a
- 457 limited impact on the lag time. Only for intermediate wet soils,
- 458 statistically significant differences could be identified for the lag time
- 459 when different levels of K_s were considered, with increasing levels of K_s
- 460 resulting in a modest decrease in lag time. The modelled difference
- 461 between the median lag time of the lowest and highest level of K_s was
- 462 only 0.04 seconds (Figure 8 & Table 4).
- 463 [Figure 8]

- 464 3.2.5. Effect of Manning's roughness coefficient
- 465 The Kruskal-Wallis tests revealed no statistically significant differences
- 466 between the different levels of the Manning's n and the three output
- 467 variables (Figure 9 & Table 4).
- 468 [Figure 9]

469 **4.** Discussion

- 470 4.1. Model construction
- 471 We used the distributed rainfall-runoff model, implemented in the
- 472 Landlab modelling framework, to quantify the impact of vLEs and their
- 473 geometric and hydrological characteristics on runoff in a small
- 474 watershed. Obviously, reality was simplified in multiple ways in the
- 475 model setup. A spatially uniform rainfall event was assumed while in
- 476 reality, rainfall is heterogeneously distributed over the catchment.
- 477 Interception of rainfall by vegetation was not taken into account,
- 478 neglecting the interception of rainfall that lowers the amount that
- 479 reaches the soil surface. These interception losses occur both at the
- 480 location of the agricultural land and vLE objects. It was quantified that
- 481 hedgerows for example can intercept up to 2.6 mm of a precipitation
- 482 event (Herbst et al., 2006). By not taking these interception losses into
- 483 account, the rainfall amount that reaches the soil surface was
- 484 overestimated. We also assumed that the soil parameters (i.e., ϑ_i ,
- 485 capillary pressure head at wetting front, K_s and Manning's n) were
- 486 spatially uniform in our watershed. These values were, if available,
- 487 based on values found in literature reports about experimental studies

488	done in the same region as our study area. For hedgerows, we did not
489	find K_s values measured in the Belgian loam belt in the literature.
490	Therefore we used a value measured in a loamy soil in northern
491	England. Field studies usually show a large heterogeneity in soil
492	wetness, both in the horizontal and vertical dimensions (Merz and Plate,
493	1997). This spatial heterogeneity can be attributed to a variety of
494	factors including variations in soil characteristics, topography, and water
495	routing processes (Merz and Plate, 1997). The presence of vLEs also has
496	an impact on soil moisture, not only directly underneath the object but
497	also up to 10 m beyond their peripheries (Wallace et al., 2021). The
498	overland flow routing and therefore the infiltration was calculated
499	based on a 2 m resolution DEM. At this spatial resolution, non-random
500	microtopography-related variations of K_s (Langhans et al., 2010a) cannot
501	be accounted for and the model assumes water is uniformly spread over
502	the pixel. This results in an overestimation of the effective hydraulic
503	conductivity that is dependent on the inundated fraction of the pixel,
504	and therefore also in an overestimation of the fraction of the
505	precipitation that can infiltrate. We calculated an average runoff
506	coefficient (i.e., the total runoff volume divided by the total
507	precipitation volume) of 0.0003 m ³ m ⁻³ for ϑ_i = 0.02 m ³ m ⁻³ , 0.0015
508	m ³ m ⁻³ for ϑ_i = 0.155 m ³ m ⁻³ and 0.0101 m ³ m ⁻³ for ϑ_i = 0.29 m ³ m ⁻³ .
509	These values are slightly lower but in the same range as the findings of
510	Evrard et al. (2007b) and Evrard et al. (2008) who conducted a
511	hydrological study near our study area. The slightly lower values of the

512	runoff coefficients we calculated could be explained by an
513	overestimation of the K_s values used in this study. Hydraulic conductivity
514	has been proven to be dependent on water depth and rainfall intensity
515	due to non-random microtopography (Langhans et al., 2013). The K_s
516	value used for the 'landscape' pixels, which covers the vast majority of
517	the study area, was derived from rainfall experiments with an intensity
518	of ca. 45 mm h^{-1} (Van den Putte et al., 2013). The design storm used in
519	this study had an intensity lower than 45 mm h ⁻¹ for 92 % of the
520	duration of the storm. Earlier research carried out on loam soils in
521	Belgium has demonstrated a positive correlation between rainfall
522	intensity and hydraulic conductivity (Langhans et al., 2010b). This
523	implies an overestimation of the K_s value was made during the majority
524	of the time covered by the modelled storm over our watershed and
525	could have resulted in underestimated values of the runoff coefficient.
526	Further, K _s has proven to be highly variable in the study region. Van den
527	Putte et al. (2013) calculated a standard deviation of obtained hydraulic
528	conductivity values of 13.4 mm h ⁻¹ for rainfall experiments carried out in
529	the summer period. This high variability could have potentially led to an
530	overestimation of K_s in our study area. Lastly, the observed runoff
531	coefficients were derived for a catchment in which the average slope
532	was 24 % higher compared to the study area used here. Catchments
533	with higher slopes typically show higher values of the runoff coefficient
534	(De Niel and Willems, 2019).

535 4.2. Impact of vLEs on runoff

536	The impact of the vLE density, connectivity, upslope area, K_s and
537	Manning's n on the modelled total discharge volume, peak discharge
538	rate and lag time was evaluated (Figure 4). A negative correlation was
539	found between vLE density and discharge volume and peak discharge
540	rate and a positive correlation between vLE density and lag time (Figure
541	5). These findings are in line with previous research based on field
542	experiments where higher vLE densities could be associated with
543	increased infiltration, lower discharge volumes and peak discharge rates
544	(Mérot, 1999; Viaud et al., 2005). Due to longer travel times and
545	increased infiltration, the storm hydrograph is smoothed out (i.e., the
546	lag time is longer and the peak discharge rate is reduced) in catchments
547	with higher densities of vLEs (Mérot, 1999). This is also visualized in
548	Figure 3 (scenarios 1, 2, 3): while K_s , Manning's n and θ remain
549	completely, or nearly constant across the 3 scenarios, an increase in vLE
550	density $ ho$ results in a lower discharge volume and peak discharge rate
551	and a larger lag time, regardless of changes in upslope area. Therefore,
552	it is recommended that the number of vLEs in the agricultural landscape
553	does not further decrease, and better even, increases.
554	Besides testing the impact of vLE density, we also looked at the effect of
555	the connectivity of vLEs in the landscape by creating disconnections in
556	the vLE objects. In reality, the connectivity of the vLE network in a
557	landscape context is interrelated with the density of that vLE network:
558	denser vLE networks also demonstrate a higher level of connectivity

559	(Burel and Baudry, 2012; Deckers et al., 2005). By keeping the density
560	constant, we aimed at studying the effect of the connectivity
561	independently of the vLE density. No strong impact of vLE connectivity
562	on catchment runoff was found (Figure 4). The correlations between the
563	level of connectivity and the discharge volume on the one hand and
564	peak discharge rate, on the other hand, were both weakly negative and
565	only present when the initial soil moisture content is low (Figure 6).
566	The upslope area of the vLE objects showed to have a strong impact on
567	the total discharge volume, the peak discharge rate and the lag time
568	(Figure 4). In both dry and wet soils, we identified a negative
569	relationship between the upslope area of the vLE objects and the
570	discharge volume and peak discharge rate. This is in line with our
571	expectations and indicates that vLE objects positioned on preferential
572	flow paths downstream in the watershed can make a greater difference.
573	When vLEs are associated with large values of the upslope area, a large
574	proportion of the runoff will flow to the footprint of the vLE object. Due
575	to the higher K_s values associated with vLE objects compared to the
576	landscape pixels, more water can infiltrate. This is the concept behind
577	the installation of grassed waterways where an increase of infiltration is
578	achieved by decreasing runoff velocities through increasing the
579	roughness and K_s (Evrard et al., 2008). The negative relationship
580	between upslope area and peak discharge rate and the positive
581	relationship with lag time can also be observed when the storm
582	hydrographs were compared (Figure 3, scenarios 1 & 2): while all other

583	vLE characteristics remain constant, an increase in the upslope area
584	results in a decrease of the discharge volume and peak discharge rate
585	and an increase in the lag time.

586	vLE objects are associated with values of K_s that are up to 30 times
587	higher compared to the surrounding agricultural land (Holden et al.,
588	2019), which enhances infiltration. We could observe this effect in our
589	modelling results where higher values of K_s associated with the vLEs
590	result in a decrease of the discharge volume (Figure 8). We found an
591	increase of the impact of the K_s value associated with the vLE object on
592	discharge volume and peak discharge rate with increasing levels of soil
593	wetness. This is contradictory to the findings of Hu et al. (2015) who
594	concluded that the impact of K_s variability on runoff increased for lower
595	ϑ_i values. Besides their higher K_s values, vLE objects are also
596	characterized by higher values of Manning's n compared to surrounding
597	agricultural land (Baartman et al., 2020; Richet et al., 2017). This
598	increase in roughness is expected to reduce the velocity of the overland
599	flow and thereby promoting infiltration and reducing the total runoff
600	volume (Ferguson and Fenner, 2020). We did however not see this
601	effect in our modelling results.
602	We applied the rainfall-runoff model to a relatively small watershed
603	(26 ha) to quantify the impact of vLEs and their characteristics on runoff
604	by using a design storm. In larger catchments, the river network
605	configuration determines which areas of the catchment have the largest
606	impact on the discharge peak while in small catchments this peak is

- 607 dominated by run-off from hillslopes in response to the storm (Dadson
- 608 et al., 2017; Mérot, 1999). Therefore, it cannot be assumed that the
- 609 effect of small-scale interventions can simply be extrapolated to
- 610 estimate the combined effect at a larger scale (Dadson et al., 2017).

611 **5.** Conclusions

612	Using a distributed rainfall-runoff model, we demonstrated that total
613	discharge volume, peak discharge rate and lag time to peak discharge
614	are impacted more by the density of the vLE objects (positioned along
615	the parcel boundaries) in the watershed and their upslope area in
616	comparison to the vLE-connectivity, the saturated hydraulic conductivity
617	of the soil underneath the vLE and the Manning's n coefficient
618	associated with the vLE. The initial soil wetness level does not alter this
619	relationship fundamentally.
620	Both for upslope area and vLE density, a negative correlation with the
621	total discharge volume and peak discharge rate and a positive
622	correlation with the lag time was demonstrated. The relationship is not
623	linear though: e.g., a factor 8.7 increase in linear density leads to a
624	reduction of some 20 % in discharge volume. The modelled impact of
625	the K_s value associated with the soil underneath the vLE objects on the
626	discharge volume and peak discharge rate was rather weak but
627	increased with increasing wetness. K_s was shown to be negatively
628	correlated with the discharge volume and peak discharge rate.
629	Connectivity and the Manning's n value associated with the vLE objects
630	had a limited impact on the modelled discharge volume, peak discharge

- rate and lag time. The connectivity of the vLE network had little impact
- on the total discharge volume, peak discharge rate and lag time
- 633 We conclude that the more abundant the vLE along the agricultural
- 634 parcel boundaries, the more rainfall is retained in the watershed.
- 635 Hence, our modelling study confirms that vLEs contribute to a non-
- 636 negligible extent to lowering the downstream flood risk and increasing
- 637 the time lag to peak discharge, providing more opportunities for
- 638 implementing punctual security measures.
- 639 **Funding:** This research was funded by Fonds Wetenschappelijk
- 640 Onderzoek (FWO), grant number 1SB6821N

641 6. References

- 642 Adams, J.M., Gasparini, N.M., Hobley, D.E.J., Tucker, G.E., Hutton,
- 643 E.W.H., Nudurupati, S.S., Istanbulluoglu, E., 2017. The Landlab
- 644 v1.0 OverlandFlow component: a Python tool for computing
- 645 shallow-water flow across watersheds. Geosci. Model Dev. 10,
- 646 1645–1663. https://doi.org/10.5194/gmd-10-1645-2017
- 647 ALV, 2021. Dataserie Landbouwgebruikspercelen 2021. [WWW
- 648 Document]. URL
- 649 https://www.geopunt.be/catalogus/datasetfolder/7cc9babc-
- 650 e021-46bc-abb6-1b74d44b14ea (accessed 4.14.22).
- 651 Baartman, J.E.M., Nunes, J.P., Masselink, R., Darboux, F., Bielders, C.,
- 652 Degré, A., Cantreul, V., Cerdan, O., Grangeon, T., Fiener, P.,
- 653 Wilken, F., Schindewolf, M., Wainwright, J., 2020. What do

654	models tell us about water and sediment connectivity?
655	Geomorphology 367, 107300.
656	https://doi.org/10.1016/j.geomorph.2020.107300
657	Barnhart, K.R., Hutton, E.W.H., Tucker, G.E., Gasparini, N.M.,
658	Istanbulluoglu, E., Hobley, D.E.J., Lyons, N.J., Mouchene, M.,
659	Nudurupati, S.S., Adams, J.M., 2020. Short communication:
660	Landlab v2. 0: a software package for Earth surface dynamics.
661	Earth Surf. Dynam. 8, 379–397.
662	https://doi.org/doi.org/10.5194/esurf-8-379-2020
663	Bates, P.D., De Roo, A.P.J., 2000. A simple raster-based model for flood
664	inundation simulation. J. Hydrol. 236, 54–77.
665	https://doi.org/10.1016/S0022-1694(00)00278-X
666	Bates, P.D., Horritt, M.S., Fewtrell, T.J., 2010. A simple inertial
667	formulation of the shallow water equations for efficient two-
668	dimensional flood inundation modelling. J. Hydrol. 387, 33–45.
669	https://doi.org/10.1016/j.jhydrol.2010.03.027
670	Bielders, C.L., Ramelot, C., Persoons, E., 2003. Farmer perception of
671	runoff and erosion and extent of flooding in the silt-loam belt of
672	the Belgian Walloon Region. Environ. Sci. Policy 6, 85–93.
673	https://doi.org/10.1016/S1462-9011(02)00117-X
674	Burel, F., Baudry, J., 2012. Hedgerow connectivity. Hedgelink.
675	Université, Staffordshire, GBR., Staffordshire, United Kingdom.
676	Burgess-Gamble, L., Ngai, R., Wilkinson, M., Nisbet, T., Pontee, N.,
677	Harvey, R., Kipling, K., Addy, S., Rose, S., Maslen, S., 2017.

678 Working with natural processes–evidence directory (No.

679 SC150005). Environment Agency, Bristol, UK.

- 680 Cea, L., Bladé, E., 2015. A simple and efficient unstructured finite
- 681 volume scheme for solving the shallow water equations in
- overland flow applications. Water Resour. Res. 51, 5464–5486.

683 https://doi.org/10.1002/2014WR016547

684 Costabile, P., Costanzo, C., Macchione, F., Mercogliano, P., 2012. Two-

685 dimensional model for overland flow simulations: A case study.

686 Eur. Water 38, 13–23.

687 Dadson, S.J., Hall, J.W., Murgatroyd, A., Acreman, M., Bates, P., Beven,

- 688 K., Heathwaite, L., Holden, J., Holman, I.P., Lane, S.N., O'Connell,
- 689 E., Penning-Rowsell, E., Reynard, N., Sear, D., Thorne, C., Wilby,
- 690 R., 2017. A restatement of the natural science evidence
- 691 concerning catchment-based 'natural' flood management in the
- 692 UK. Proceedings of the Royal Society A: Mathematical, Physical
- and Engineering Sciences 473, 20160706.
- 694 https://doi.org/10.1098/rspa.2016.0706
- de Almeida, G.A.M., Bates, P., 2013. Applicability of the local inertial
- 696 approximation of the shallow water equations to flood
- 697 modeling. Water Resour. Res. 49, 4833–4844.
- 698 https://doi.org/10.1002/wrcr.20366
- de Almeida, G.A.M., Bates, P., Freer, J.E., Souvignet, M., 2012.
- 700 Improving the stability of a simple formulation of the shallow

701	water equations for 2-D flood modeling. Water Resour. Res. 48,
702	14. https://doi.org/10.1029/2011WR011570
703	De Niel, J., Willems, P., 2019. Climate or land cover variations: what is
704	driving observed changes in river peak flows? A data-based
705	attribution study. Hydrol. Earth Syst. Sci. 23, 871–882.
706	https://doi.org/10.5194/hess-23-871-2019
707	Deckers, B., Kerselaers, E., Gulinck, H., Muys, B., Hermy, M., 2005. Long-
708	term spatio-temporal dynamics of a hedgerow network
709	landscape in Flanders, Belgium. Environ. Conserv. 32, 20–29.
710	https://doi.org/doi:10.1017/S0376892905001840
711	Defina, A., 2000. Two-dimensional shallow flow equations for partially
712	dry areas. Water Resour. Res. 36, 3251–3264.
713	https://doi.org/10.1029/2000WR900167
714	Demarée, G.R., 2003. The centennial recording Raingauge of the Uccle
715	Plateau its History, its Data and its Applications. Prog. Phys.
716	Geogr. 89, 95–102. https://doi.org/10.1051/lhb/2003082
717	EEA, 2017. Climate change, impacts and vulnerability in Europe 2016:
718	An indicator-based report (No. 1). European Environment
719	Agency, Copenhagen, Denmark.
720	Ellis, N., Anderson, K., Brazier, R., 2021. Mainstreaming natural flood
721	management: A proposed research framework derived from a
722	critical evaluation of current knowledge. Progress in Physical
723	Geography: Earth and Environment 45, 819–841.
724	https://doi.org/10.1177/0309133321997299

725	Evrard, O., Bielders, C.L., Vandaele, K., van Wesemael, B., 2007a. Spatial
726	and temporal variation of muddy floods in central Belgium, off-
727	site impacts and potential control measures. CATENA 70, 443–
728	454. https://doi.org/10.1016/j.catena.2006.11.011
729	Evrard, O., Cerdan, O., van Wesemael, B., Chauvet, M., Le Bissonnais, Y.,
730	Raclot, D., Vandaele, K., Andrieux, P., Bielders, C., 2009.
731	Reliability of an expert-based runoff and erosion model:
732	Application of STREAM to different environments. CATENA 78,
733	129–141. https://doi.org/10.1016/j.catena.2009.03.009
734	Evrard, O., Persoons, E., Vandaele, K., Van Wesemael, B., 2007b.
735	Effectiveness of erosion mitigation measures to prevent muddy
736	floods: a case study in the Belgian loam belt. Agric. Ecosyst.
737	Environ. 118, 149–158.
738	Evrard, O., Vandaele, K., van Wesemael, B., Bielders, C.L., 2008. A
739	grassed waterway and earthen dams to control muddy floods
740	from a cultivated catchment of the Belgian loess belt.
741	Geomorphology 100, 419–428.
742	https://doi.org/10.1016/j.geomorph.2008.01.010
743	Ferguson, C., Fenner, R., 2020. The impact of Natural Flood
744	Management on the performance of surface drainage systems:
745	A case study in the Calder Valley. J. Hydrol. 590, 125354.
746	https://doi.org/10.1016/j.jhydrol.2020.125354
747	Fowler, H.J., Lenderink, G., Prein, A.F., Westra, S., Allan, R.P., Ban, N.,
748	Barbero, R., Berg, P., Blenkinsop, S., Do, H.X., Guerreiro, S.,

749	Haerter, J.O., Kendon, E.J., Lewis, E., Schaer, C., Sharma, A.,
750	Villarini, G., Wasko, C., Zhang, X., 2021. Anthropogenic
751	intensification of short-duration rainfall extremes. Nat. Rev.
752	Earth Environ. 2, 107–122. https://doi.org/10.1038/s43017-020-
753	00128-6
754	Gabriels, K., Willems, P., Van Orshoven, J., 2022. An iterative runoff
755	propagation approach to identify priority locations for land
756	cover change minimizing downstream river flood hazard.
757	Landsc. Urban Plan. 218, 104262.
758	https://doi.org/10.1016/j.landurbplan.2021.104262
759	Herbst, M., Roberts, J.M., Rosier, P.T.W., Gowing, D.J., 2006. Measuring
760	and modelling the rainfall interception loss by hedgerows in
761	southern England. Agric. For. Meteorol 141, 244–256.
762	https://doi.org/10.1016/j.agrformet.2006.10.012
763	Hobley, D.E.J., Adams, J.M., Nudurupati, S.S., Hutton, E.W.H., Gasparini,
764	N.M., Istanbulluoglu, E., Tucker, G.E., 2017. Creative computing
765	with Landlab: an open-source toolkit for building, coupling, and
766	exploring two-dimensional numerical models of Earth-surface
767	dynamics. Earth Surf. Dynam. 5, 21–46.
768	https://doi.org/10.5194/esurf-5-21-2017
769	Holden, J., Grayson, R.P., Berdeni, D., Bird, S., Chapman, P.J.,
770	Edmondson, J.L., Firbank, L.G., Helgason, T., Hodson, M.E., Hunt,
771	S.F.P., Jones, D.T., Lappage, M.G., Marshall-Harries, E., Nelson,
772	M., Prendergast-Miller, M., Shaw, H., Wade, R.N., Leake, J.R.,

773	2019. The role of hedgerows in soil functioning within
774	agricultural landscapes. Agric. Ecosyst. Environ. 273, 1–12.
775	https://doi.org/10.1016/j.agee.2018.11.027
776	Horn, R., Vossbrink, J., Peth, S., Becker, S., 2007. Impact of modern
777	forest vehicles on soil physical properties. For. Ecol. Manage.
778	248, 56–63. https://doi.org/10.1016/j.foreco.2007.02.037
779	Hu, W., She, D., Shao, M., Chun, K.P., Si, B., 2015. Effects of initial soil
780	water content and saturated hydraulic conductivity variability
781	on small watershed runoff simulation using LISEM. Hydrol. Sci. J
782	60, 1137–1154.
783	https://doi.org/10.1080/02626667.2014.903332
784	Jiang, X., Yang, L., Tatano, H., 2019. Assessing Spatial Flood Risk from
785	Multiple Flood Sources in a Small River Basin: A Method Based
786	on Multivariate Design Rainfall. Water 11, 1031.
787	https://doi.org/10.3390/w11051031
788	Klaassen, G.J., Zwaard, J.J.V.D., 1974. Roughness Coefficients Of
789	Vegetated Flood Plains. J. Hydraul. Res. 12, 43–63.
790	https://doi.org/10.1080/00221687409499757
791	Kreienkamp, F., Philip, S.Y., Tradowsky, J.S., Kew, S.F., Lorenz, P., Arrighi,
792	J., Belleflamme, A., Bettmann, T., Caluwaerts, S., Chan, S.C.,
793	Ciavarella, A., De Cruz, L., de Vries, H., Demuth, N., Ferrone, A.,
794	Fischer, rich M., Fowler, H.J., Goergen, K., Heinrich, D., Henrichs,
795	Y., Lenderink, G., Kaspar, F., Nilson, E., Otto, F.E.L., Ragone, F.,
796	Seneviratne, S.I., Singh, R.K., Skålevåg, A., Termonia, P.,

797	Thalheimer, L., van Aalst, M., Van den Bergh, J., Van de Vyver,
798	H., Vannitsem, S., van Oldenborgh, G.J., Van Schaeybroeck, B.,
799	Vautard, R., Vonk, D., Wanders, N., 2021. Rapid attribution of
800	heavy rainfall events leading to the severe flooding in Western
801	Europe during July 2021. World weather attribution.
802	Kruskal, W.H., Wallis, W.A., 1952. Use of Ranks in One-Criterion
803	Variance Analysis. J. Am. Stat. Assoc. 47, 583–621.
804	https://doi.org/10.1080/01621459.1952.10483441
805	Krvavica, N., Rubinić, J., 2020. Evaluation of Design Storms and Critical
806	Rainfall Durations for Flood Prediction in Partially Urbanized
807	Catchments. Water 12, 2044.
808	https://doi.org/10.3390/w12072044
809	Langhans, C., Govers, G., Diels, J., 2013. Development and
810	parameterization of an infiltration model accounting for water
811	depth and rainfall intensity. Hydrol. Processes 27, 3777–3790.
812	https://doi.org/10.1002/hyp.9491
813	Langhans, C., Govers, G., Diels, J., 2010a. Effective Hydraulic
814	Conductivity of Partially Inundated Surfaces: Loamy Agricultural
815	Soils, in: AGU Fall Meeting Abstracts. Presented at the AGU Fall
816	Meeting, San Francisco, California, pp. H11C-0816.
817	Langhans, C., Govers, G., Diels, J., Clymans, W., Van den Putte, A.,
818	2010b. Dependence of effective hydraulic conductivity on
819	rainfall intensity: loamy agricultural soils. Hydrol. Processes 24,
820	2257–2268. https://doi.org/10.1002/hyp.7800

821	Mein, R.G., Larson, C.L., 1971. Modeling the Infiltration Component of
822	the Rainfall-Runoff Process (No. 43). Water Resources Research
823	Center (WRRC), University of Minnesota, Minneapolis,
824	Minnesota, USA.
825	Mérot, P., 1999. The influence of hedgerow systems on the hydrology of
826	agricultural catchments in a temperate climate. Agronomie 19,
827	655–669.
828	Merz, B., Plate, E.J., 1997. An analysis of the effects of spatial variability
829	of soil and soil moisture on runoff. Water Resour. Res. 33,
830	2909–2922. https://doi.org/10.1029/97WR02204
831	Minang, P.A., van Noordwijk, M., Freeman, O.E., Mbow, C., de Leeuw, J.,
832	Catacutan, D., 2015. Climate-Smart Landscapes:
833	Multifunctionality in Practice. World Agroforestry Center
834	(ICRAF), Nairobi, Kenya.
835	Poncelet, C., Merz, R., Merz, B., Parajka, J., Oudin, L., Andréassian, V.,
836	Perrin, C., 2017. Process-based interpretation of conceptual
837	hydrological model performance using a multinational
838	catchment set. Water Resour. Res. 53, 7247–7268.
839	https://doi.org/10.1002/2016WR019991
840	Reitman, N.G., Mueller, K.J., Tucker, G.E., Gold, R.D., Briggs, R.W.,
841	Barnhart, K.R., 2019. Offset Channels May Not Accurately
842	Record Strike-Slip Fault Displacement: Evidence From Landscape
843	Evolution Models. J. Geophys. Res. Solid Earth 124, 13427–
844	13451. https://doi.org/10.1029/2019JB018596

845	Richet, JB., Ouvry, JF., Saunier, M., 2017. The role of vegetative
846	barriers such as fascines and dense shrub hedges in catchment
847	management to reduce runoff and erosion effects:
848	Experimental evidence of efficiency, and conditions of use. Ecol.
849	Eng. 103, 455–469.
850	https://doi.org/10.1016/j.ecoleng.2016.08.008
851	Singh, V.P., 1997. Kinematic Wave Modeling in Water Resources:
852	Environmental Hydrology. John Wiley & Sons.
853	Takken, I., Beuselinck, L., Nachtergaele, J., Govers, G., Poesen, J.,
854	Degraer, G., 1999. Spatial evaluation of a physically-based
855	distributed erosion model (LISEM). CATENA 37, 431–447.
856	https://doi.org/10.1016/S0341-8162(99)00031-4
857	Van den Putte, A., Govers, G., Leys, A., Langhans, C., Clymans, W., Diels,
858	J., 2013. Estimating the parameters of the Green–Ampt
859	infiltration equation from rainfall simulation data: Why simpler
860	is better. J. Hydrol. 476, 332–344.
861	https://doi.org/10.1016/j.jhydrol.2012.10.051
862	Viaud, V., Durand, P., Mérot, P., Sauboua, E., Saadi, Z., 2005. Modeling
863	the impact of the spatial structure of a hedge network on the
864	hydrology of a small catchment in a temperate climate. Agric.
865	Water Manag. 74, 135–163.
866	https://doi.org/10.1016/j.agwat.2004.11.010
867	Wallace, E.E., McShane, G., Tych, W., Kretzschmar, A., McCann, T.,
868	Chappell, N.A., 2021. The effect of hedgerow wild-margins on

869	topsoil hydraulic properties, and overland-flow incidence,
870	magnitude and water-quality. Hydrol. Processes 35, e14098.
871	https://doi.org/10.1002/hyp.14098
872	Warnock, A., Kim, J., Ivanov, V., Katopodes, N.D., 2014. Self-Adaptive
873	Kinematic-Dynamic Model for Overland Flow. J. Hydraul. Eng.
874	140, 169–181. https://doi.org/10.1061/(ASCE)HY.1943-
875	7900.0000815
876	Wells, J., Labadz, J.C., Smith, A., Islam, Md.M., 2020. Barriers to the
877	uptake and implementation of natural flood management: A
878	social-ecological analysis. J. Flood Risk Manag. 13, e12561.
879	https://doi.org/10.1111/jfr3.12561
880	Willems, P., 2013. Adjustment of extreme rainfall statistics accounting
881	for multidecadal climate oscillations. J. Hydrol. 490, 126–133.
882	https://doi.org/10.1016/j.jhydrol.2013.03.034
883	Zhang, R., Zen, R., Xing, J., Arsa, D.M.S., Saha, A., Bressan, S., 2020.
884	Hydrological Process Surrogate Modelling and Simulation with
885	Neural Networks, in: Lauw, H.W., Wong, R.CW., Ntoulas, A.,
886	Lim, EP., Ng, SK., Pan, S.J. (Eds.), Advances in Knowledge
887	Discovery and Data Mining. Presented at the PAKDD 2020,
888	Springer, Cham, pp. 449–461.
889	https://doi.org/doi.org/10.1007/978-3-030-47436-2_34
890	

892 Appendix

- 893 Overview of the 378 scenarios combining varying landscape patterns,
- 894 different levels of vLE density, connectivity, and values of K_s and
- 895 Manning's n associated with the vLE objects. For each configuration, 9
- 896 unique combinations of K_s and Manning's n were modelled (indicated by
- the dotted lines).
- 898 [Figure A.1]

899 Table 1. Hydro-physical parameters used in the distributed rainfall-

900 runoff model.

Parameter	Unit	Value(s)
ϑ_i	cm³ cm⁻³	0.02 - 0.155 - 0.29
Capillary pressure head at wetting front	mm	172.7
Landscape pixels		
Ks	mm hr ⁻¹	19.2
Manning's n	s m ^{-1/3}	0.08
vLE pixels		
Ks	mm hr ⁻¹	20 - 51.2 - 102.4
Manning's n	s m ^{-1/3}	0.30 - 0.43 - 0.55

901

902 Table 2. Description of four distinct model scenarios and their associated

903 output for $\vartheta_i = 0.29 \text{ m}^3 \text{ m}^{-3}$.

	vLE chara	cteristics		Output variables					
scenario	density (m ha ⁻¹)	<i>K</i> ₅ (mm h⁻¹)	Manning's n (s m ^{-1/3})	в (-)	Upslope area (ha m ⁻¹ vLE)	Discharge volume (m ³)	Peak discharge rate (m³ s ⁻¹)	Lag time (s)	
1	10	102.4	0.43	0.55	8.0	94	0.067	623	
2	10	102.4	0.43	0.55	1.3	126	0.086	590	
3	87	102.4	0.43	0.58	4.0	66	0.047	706	
4	87	20	0.43	0.58	4.0	109	0.071	693	

904

905 Table 3. Accuracy of the random forest regression models applied on the

906 testing set of vLE-scenarios predicting discharge volume, peak discharge rate

907 and lag time for $\vartheta_i = 0.02 \text{ m}^3 \text{ m}^{-3}$, $\vartheta_i = 0.155 \text{ m}^3 \text{ m}^{-3}$ and $\vartheta_i = 0.29 \text{ m}^3 \text{ m}^{-3}$.

	Discharge volume (m ³)		Peak discharge rate (m ³ s ⁻¹)		Lag time (s)	
	RMSE	R²	RMSE	R²	RMSE	R²
$\vartheta_i = 0.02 \text{ m}^3/\text{m}^{-3}$	8.11E-02	0.98	2.79E-04	0.97	9.55E+00	0.84
ϑ _i = 0.155 m³/m⁻³	5.36E-01	0.98	6.70E-04	0.96	2.91E+01	0.84
$\vartheta_i = 0.29 \text{ m}^3/\text{m}^{-3}$	2.24E+00	0.98	1.35E-03	0.98	5.45E+01	0.33

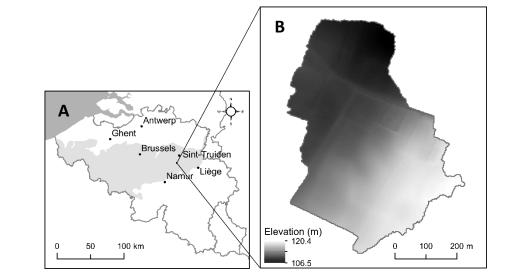
Table 4. Summary of the Kruskal-Wallis test results for different levels of initial

Feature	Output variable	χ² (P-value)				
reature	Output variable	$\vartheta_i = 0.02 \text{ m}^3 \text{ m}^{-3}$	$\vartheta_i = 0.155 \text{ m}^3 \text{ m}^{-3}$	ϑ _i = 0.29 m³ m⁻³		
	Discharge volume	65.179 (7.024E-15)**	140.580 (< 2.2E-16)**	171.530 (< 2.2E-16)**		
vLE density	Peak discharge rate	45.411 (1.378E-10)**	147.760 (< 2.2E-16)**	136.070 (< 2.2E-16)*		
	Lag time	38.516 (4.330E-09)**	5.551 (0.062)	32.745 (7.754E-08)**		
	Discharge volume	4.097 (0.043)*	1.324 (0.250)	2.231 (0.135)		
Connectivity	Peak discharge rate	5.751 (0.016)*	0.418 (0.518)	3.359 (0.067)		
	Lag time	0.224 (0.636)	1.546 (0.214)	1.514 (0.219)		
	Discharge volume	71.307 (2.24E-15)**	32.970 (3.267E-07)**	136.04 (< 2.2E-16)**		
Upslope area	Peak discharge rate	72.101 (1.514E-15)**	32.419 (4.27E-07)**	137.97 (< 2.2E-16)* [*]		
	Lag time	41.263 (5.751E-09)**	5.379 (0.146)	199.52 (< 2.2E-16)**		
	Discharge volume	1.231 (0.540)	14.951 (5.668E-04)**	69.388 (8.561E-16)*		
Ks	Peak discharge rate	0.178 (0.915)	10.444 (5.395E-03)**	18.104 (1.172E-04)*		
	Lag time	0.902 (0.637)	46.442 (8.229E-11)**	0.610 (0.737)		
	Discharge volume	2.026 (0.363)	0.828 (0.661)	1.878 (0.391)		
Manning's n	Peak discharge rate	0.011 (0.995)	1.101 (0.577)	0.211 (0.900)		
	Lag time	1.509 (0.470)	0.327 (0.849)	2.028 (0.363)		

910 soil moisture content (ϑ_i).

911 Statistical significance of the relationship is noted as: * significant at ≤0.05, and ** at

912 ≤0.01.



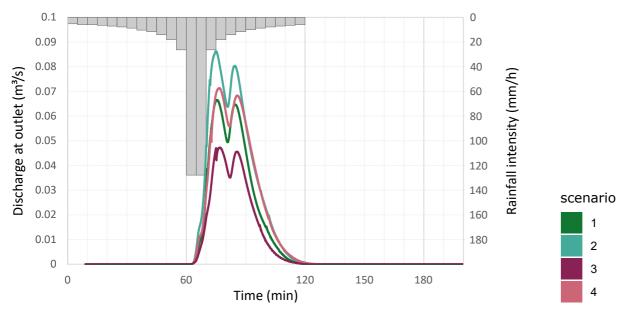
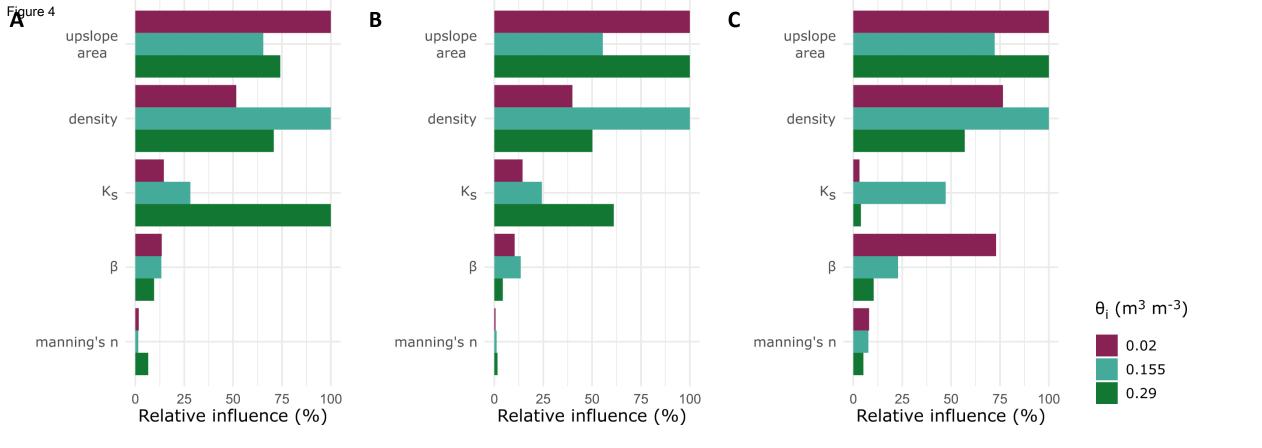
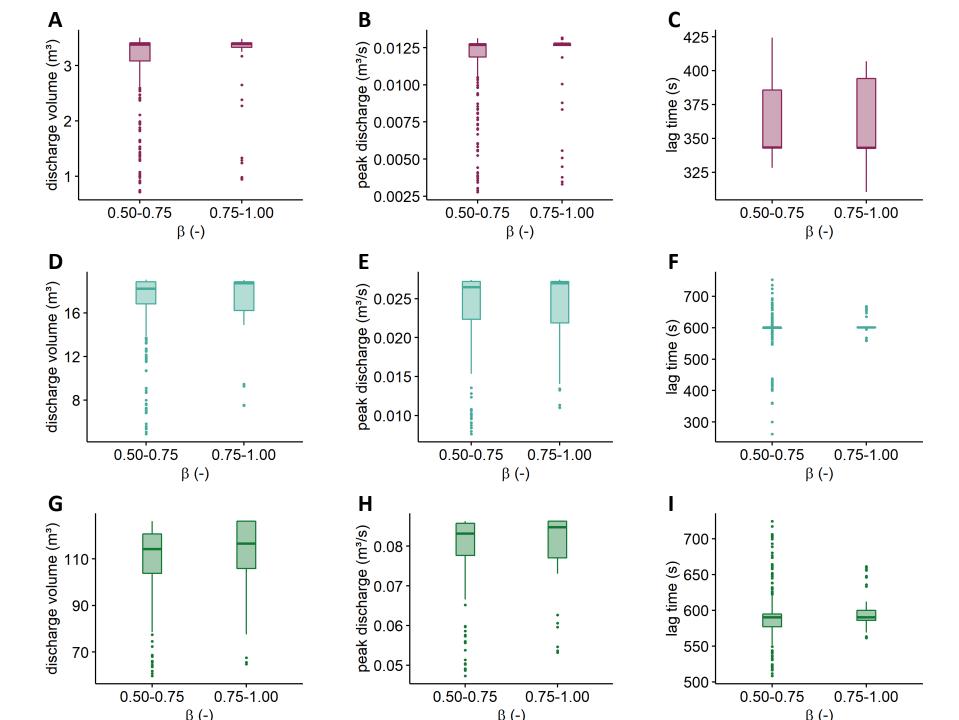
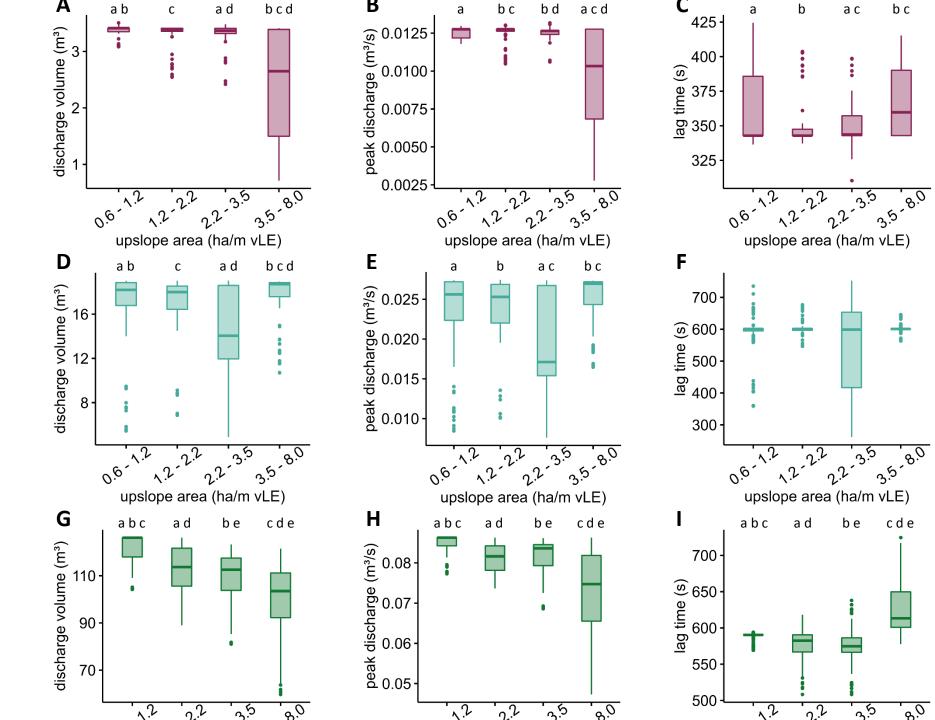
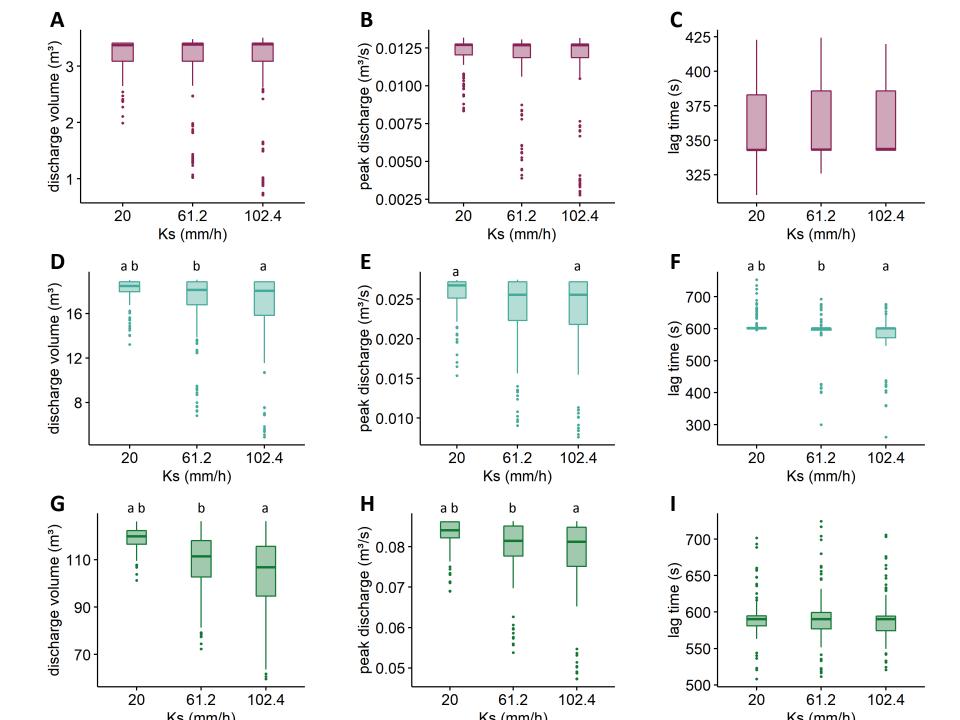
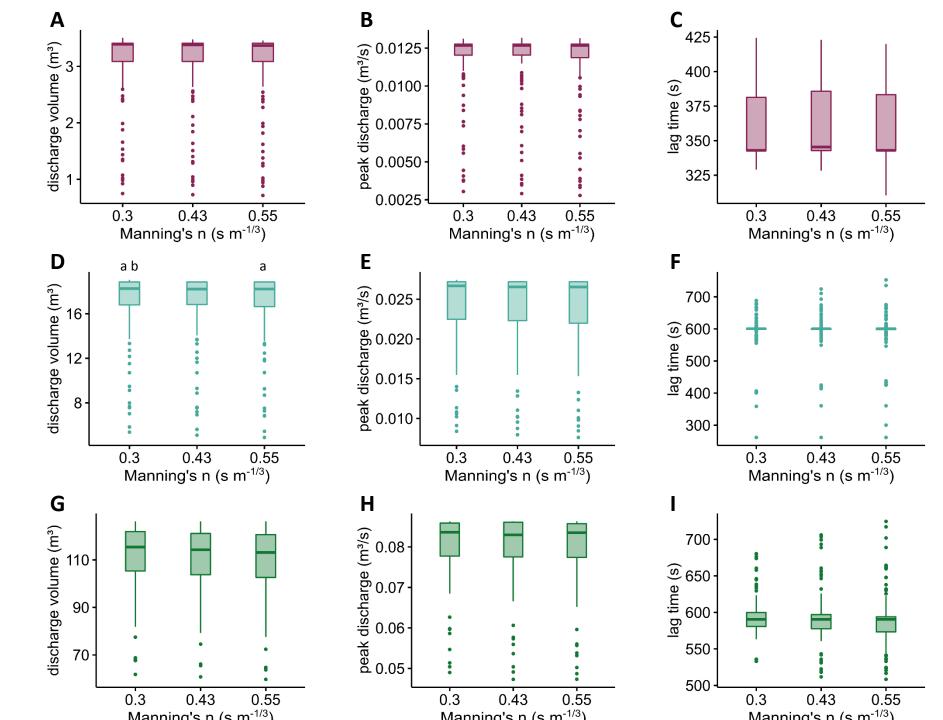



Figure 1









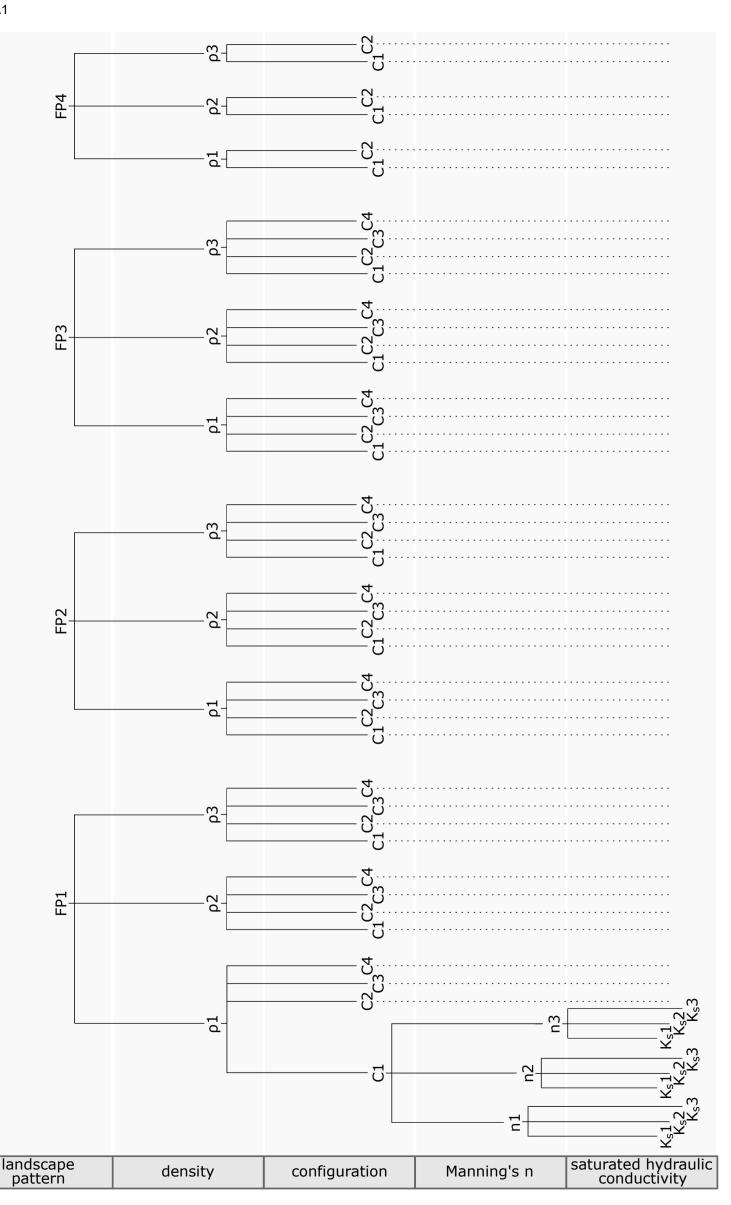


Figure 1. (A) Location of the watershed in the Belgian loess belt (grey) based on Evrard et al. (2007b). (B) Watershed elevation model.

Figure 2. Landscape patterns in (A) FP1, (B) FP2, (C) FP3, and (D) FP4 considered in the watershed.

Figure 3. Discharge at the watershed outlet for four different scenarios detailed in Table 2 and the associated hyetograph for $\vartheta_i = 0.29 \text{ m}^3 \text{ m}^{-3}$.

Figure 4. Global variable importance plots for the prediction of (A) the total discharge volume, (B) the peak discharge rate and (C) the lag time for $\vartheta_i = 0.02 \text{ m}^3 \text{ m}^{-3}$ (dry soils, purple), $\vartheta_i = 0.155 \text{ m}^3 \text{ m}^{-3}$ (intermediate wet soils, light green) and $\vartheta_i = 0.29 \text{ m}^3 \text{ m}^{-3}$ (wet soils, dark green). The five considered variables are 'upslope area': the upslope area of the vLE objects, 'density': the density of the vLE objects in the watershed, ' K_s ': the saturated hydraulic conductivity associated with the soil underneath the vLE objects; ' ϑ' : the beta-connectivity index of the vLE objects in the watershed, and 'Manning's n': the Manning's roughness coefficient associated with the vLE objects. The different shadings indicate different levels of initial soil moisture content.

Figure 5. Impact of vLE density on total discharge volume, peak discharge rate and lag time for $\vartheta_i = 0.02$ m³ m⁻³ (A, B & C), $\vartheta_i = 0.155$ m³ m⁻³ (D, E & F) and $\vartheta_i = 0.29$ m³ m⁻³ (G, H & I). Lowercase letters above the boxplots show the results of the Dunn's test, with statistically similar (P-value < 0.05) levels grouped by the same letter.

Figure 6. Impact of connectivity expressed as beta connectivity index (β) on total discharge volume, peak discharge rate and lag time for $\vartheta_i = 0.02 \text{ m}^3 \text{ m}^{-3}$ (A, B & C), $\vartheta_i = 0.155 \text{ m}^3 \text{ m}^{-3}$ (D, E & F) and $\vartheta_i = 0.29 \text{ m}^3 \text{ m}^{-3}$ (G, H & I).

Figure 7. Impact of upslope area of the vLEs on total discharge volume, peak discharge rate and lag time for $\vartheta_i = 0.02 \text{ m}^3 \text{ m}^{-3}$ (A, B & C), $\vartheta_i = 0.155 \text{ m}^3 \text{ m}^{-3}$ (D, E & F) and $\vartheta_i = 0.29 \text{ m}^3 \text{ m}^{-3}$ (G, H & I).

Figure 8. Impact of the saturated hydraulic conductivity (K_s) associated with the vLE segments on total discharge volume, peak discharge rate and lag time for $\vartheta_i = 0.02 \text{ m}^3 \text{ m}^{-3}$ (A, B & C), $\vartheta_i = 0.155 \text{ m}^3 \text{ m}^{-3}$ (D, E & F) and $\vartheta_i = 0.29 \text{ m}^3 \text{ m}^{-3}$ (G, H & I). Lowercase letters above the boxplots show the results of the Dunn's test, with statistically similar (P-value < 0.05) levels grouped by the same letter.

Figure 9. Impact of the Manning's roughness coefficient (*n*) associated with the vLE segments on total discharge volume, peak discharge rate and lag time for $\vartheta_i = 0.02 \text{ m}^3 \text{ m}^{-3}$ (A, B & C), $\vartheta_i = 0.155 \text{ m}^3 \text{ m}^{-3}$ (D, E & F) and $\vartheta_i = 0.29 \text{ m}^3 \text{ m}^{-3}$ (G, H & I).

Figure A.1 Overview of the 378 scenarios used in this study.