
Exploring trade-offs in treatment planning for brain tumor1

cases with a probabilistic definition of the clinical target2

volume.3

Gregory Buti1,2, Nadya Shusharina2, Ali Ajdari2, Edmond Sterpin1,3,4

Thomas Bortfeld2
5

1UCLouvain, Institute of Experimental and Clinical Research, Center of Molecular Imaging,6

Radiotherapy and Oncology, Avenue Hippocrate 54 - box B1.54.07, 1200 Brussels, Belgium7
2Massachusetts General Hospital and Harvard Medical School, Department of Radiation8

Oncology, Division of Radiation Biophysics, 100 Blossom St, Boston, MA 02114, USA9
3KU Leuven, Department of Oncology, Laboratory of Experimental Radiotherapy, UZ Herestraat10

49 - box 7003, 3000 Leuven, Belgium11

Version typeset August 19, 202212

E-mail: gregory.buti@uclouvain.be13

14

Abstract15

Purpose: This study demonstrates how a novel probabilistic CTV concept—the clin-16

ical target distribution (CTD)—can be used to navigate the trade-off between target17

coverage and organ sparing with a semi-interactive treatment planning approach.18

Methods: Two probabilistic treatment planning methods are presented that use tu-19

mor probabilities to balance tumor control with organ-at-risk (OAR) sparing. The first20

method explores OAR dose reduction by systematically discarding x% of CTD voxels21

with an unfavorable dose-to-probability ratio from the minimum dose coverage objec-22

tive. The second method sequentially expands the target volume from the GTV edge,23

calculating the CTD coverage vs. OAR sparing trade-off after dosing each expansion.24

Each planning method leads to estimated levels of tumor control under specific statis-25

tical models of tumor infiltration: an independent tumor islets model and contiguous26

circumferential tumor growth model. The methods are illustrated by creating proton27

therapy treatment plans for two glioblastoma patients with the clinical goal of sparing28

the hippocampus and brainstem. For probabilistic plan evaluation, the concept of a29

dose-expected-volume histogram is introduced, which plots the dose to the expected30

tumor volume ⟨v⟩ considering tumor probabilities.31
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Results: Both probabilistic planning approaches generate a library of treatment plans32

to interactively navigate the planning trade-offs. In the first probabilistic approach, a33

significant reduction of hippocampus dose could be achieved by excluding merely 1%34

of CTD voxels without compromising expected tumor control probability (TCP) or35

CTD coverage: the hippocampus D2 dose reduces with 9.5 Gy and 5.3 Gy for Patient36

1 and 2, while the TCP loss remains below 1%. Moreover, discarding up to 10% of the37

CTD voxels does not significantly diminish the expected CTD dose, even though eval-38

uation with a binary volume suggests poor CTD coverage. In the second probabilistic39

approach, the expected CTD D⟨98⟩ and TCP depend more strongly on the extent of40

the high-dose region: the target volume margin can not be reduced by more than 241

mm if one aims at keeping the expected CTD D⟨98⟩ loss and TCP loss under 1 Gy and42

2%, respectively. Therefore, there is less potential for improved OAR sparing without43

compromising TCP or expected CTD coverage.44

Conclusions: This study proposes and implements treatment planning strategies to45

explore trade-offs using tumor probabilities.46

Keywords— CTV uncertainty, probabilistic planning, proton therapy, glioblastoma47

I. Introduction48

A probabilistic definition of the clinical target volume (CTV) is increasingly garnering attention in49

the medical physics community due to its ability to deal with the stochastic nature of microscopic50

disease.13,31 Compared to a binary CTV, a probabilistic CTV or clinical target distribution (CTD)51

represents the likelihood that a sub-volume or voxel is tumorous.24 The rationale underlying the52

CTD approach is that it can guide an optimization algorithm or treatment planner in making53

compromises between conflicting clinical goals such as tumor dosage and sparing healthy tissues.54

Moreover, the CTD may be advantageous in reducing the inter-user variability of target volume55

definition.4,32 The application of the CTD to the robust optimization of lung and prostate cases56

can be found in Buti et al. 9 and Ferjančič et al. 12 , respectively.57

In the studies mentioned above, the probabilistic target concept was implemented by varying58

the importance weights of the target objectives according to the tumor probabilities. By doing so,59

dosing the higher probability sub-volumes is prioritized over lower probabilities in the presence of60
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a dose-limiting structure. This CTD implementation is similar to the way Baum et al. 5 treated ge-61

ometric uncertainties in the optimization, i.e., the coverage probabilities for CTV and OAR voxels62

were estimated under geometric errors and incorporated explicitly in the planning objective func-63

tion. Alternatively, the study of Bortfeld et al. 7 uses the tumor probabilities to evaluate a tumor64

control probability (TCP) function. The TCP expression differed depending on whether the tumor65

volume was assumed to be composed of independent or dependent voxels. The voxel-dependency66

assumption relates to the choice of the microscopic tumor propagation model that underlies the67

CTD definition. Either the tumor is assumed to propagate via independent tumor islets (for inde-68

pendent voxels) or a process of contiguous circumferential growth (for dependent voxels). Under69

both assumptions, using the TCP as an objective function leads to a non-convex optimization70

problem. Interestingly, the non-linear dose response of the TCP gives rise to ‘sacrificing’ behavior;71

with a limitation on the integral dose, dosing the higher probability sub-volumes with a therapeutic72

dose level and not dosing the lower probability sub-volumes at all yields the highest expected tumor73

control.74

Unfortunately, the non-convexity renders direct optimization of the TCP function unfeasible75

for more complex cases. To address this issue, the problem can be reformulated in the limit of high76

dose levels where the tumor control is reasonable.2,7 However, such an approach does not translate77

well to the presence of low doses to potentially tumorous voxels, particularly when dose constraints78

in nearby critical organs must be respected. This study investigates the use of tumor probabilities79

in treatment planning, without making the restrictive high dose approximation of other studies.80

We present two novel planning methods that take advantage of the sacrificing behavior presented81

in Bortfeld et al. 7 to spare a nearby critical OAR. The goals of this study are twofold: (a) develop82

semi-interactive planning approaches to explore the treatment compromises, akin to multi-criteria83

optimization, and (b) show that each planning method leads to expected levels of tumor control84

under specific statistical assumptions of voxel-dependency. We demonstrate the potential of these85

methods by creating treatment plans for two glioblastoma multiforme (GBM) cases, exploring86

the trade-off between CTD dose and sparing of the hippocampus and brainstem with intensity-87

modulated proton therapy.88

II. METHODS
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II. Methods89

This study proposes two different probabilistic planning methods based on CTD tumor probabilities90

that can be used to balance target coverage with OAR sparing. Both methods explore the possibility91

of OAR dose reduction by delivering no or low dose to lower probability CTD voxels, but differ in92

the way the dose gets distributed across these lower probability voxels. The two assumptions that93

are investigated are a fully independent assumption and a dependent voxel assumption. Although94

both assumptions follow from inherently statistical principles, one can interpret them as describing95

a tumor propagation process occurring via independent tumor islets and contiguous circumferential96

growth, respectively.797

II.A. Clinical target distribution98

The CTD is defined by a discrete number of evenly-spaced iso-probability surfaces called « shells99

» to which a probability is assigned.24 The shell probability represents the likelihood that there is100

tumor presence outside that shell, in a patient population. The innermost shell coincides with the101

GTV contour, while the outermost shell is the surface beyond which we assume no tumor presence.102

We refer to the volume between two adjacent shells as a « layer ».103

For the studied GBM cases, the CTD shells were obtained with an automated 3D expan-104

sion algorithm, implemented in the research version of Raystation 10A (RaySearch Laboratories,105

Stockholm, Sweden).25 Starting from the GTV, isotropic expansions were generated at a 2 mm106

increment, taking into account barrier structures. The barrier structures included the ventricles,107

falx cerebri, tentorium cerebelli, brainstem, and the outer surface of the brain. The surfaces of the108

GTV expansions yielded the shells, while the voxels in between two expansion surfaces produced109

the layers. Fig. 1 shows the GBM cases with a set of expansion contours.110

After assigning the shell probabilities, the voxel-level probabilities follow directly from the111

voxel-dependency assumption underlying the CTD definition. Fig. 2 presents a schematic repre-112

sentation for a simplified CTD. The first probabilistic planning method considers the CTD voxels113

to be mutually independent, that is, the probability that there is tumor in one CTD voxel does114

not depend on any other voxel. Here, microscopic tumor propagation manifests itself through the115

occurrence of tumor islets at quasi random locations with a probability given by the CTD, but with-116

out any connection or correlation between the islets, , see Fig. 2 (a) Let p be the probability that117
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(a) Patient 1. (b) Patient 2.

Figure 1: CT images of two GBM patients with a probabilistic definition of the CTV.
Representative iso-probability contours are shown in orange. Other delineated contours
indicate the clinically-approved CTV (yellow), GTV (red), hippocampi (blue) and brainstem
(green).
there is tumor in a voxel and r the shell probability. Shusharina et al. 24 derived the relationship118

of p to r under voxel-independence as:119

ph = 1 −
( 1 − rh

1 − rh+1

) 1
Nh (1)

with Nh the number of voxels in layer h. Eq. 1 describes the increasing probability of being120

tumorous as a voxel is part of an inner layer vs. an outer layer. For GBM cases, with layers121

spaced 2 mm apart, p typically has a value ranging from 10−5 (inner layers) to 10−6 (outer layers),122

depending on the shell probability and the number of voxels in the layer.123

The second probabilistic planning method considers voxel-dependency of the tumor volume124

with two assumptions: (1) if a voxel is tumorous, all voxels along the shortest path between it and125

the GTV are also tumorous. In other words, tumor cells cannot tunnel through layers, and (2) if126

one voxel in a layer is tumorous, all voxels in the same layer are tumorous. In other words, the127

tumor cells propagate outward via a tumor front. The above two assumptions characterize tumor128

growth through a contiguous circumferential front process, see Fig. 2 (b). Appendix A presents129

the derivation of p as a function of r. We find that the voxel-level probabilities equal the shell130

probabilities:131

ph = rh. (2)

II. METHODS II.A. Clinical target distribution
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50%

0%

GTV

50% patients 50% patients

50% patients 50% patients

...

(a) Tumor islet model

(b) Contiguous circumferential model
tumor

no tumor

Figure 2: Schematic representations of the underlying tumor model assumptions. Consider
a simplified case of a two-layer CTD, defined by two iso-probability shells: an outer shell
of 0% and inner shell of 50% (= GTV contour). The probabilities are defined in such a
way that 0% of patients have tumor outside of the 0%-shell and 50% of patients have tumor
outside the 50%-shell. The possible tumor realizations depend on the assumed microscopic
tumor propagation model. Let’s consider a population of patients with the probability of
tumor described by the above CTD. (a) in the tumor islet model, 50% of patients have tumor
realized solely in the GTV, and 50% of patients have tumor in the GTV + tumor in any
combination of independent islets from 1 islet to all islets that make up the outer layer. The
tumor islets can be voxels or larger tumor sub-volumes, (b) in the contiguous circumferential
growth model, only two tumor realizations are possible. 50% of patients have tumor realized
in the GTV, while 50% of patients have tumor in the GTV + outer layer.
II.B. Probabilistic treatment planning method assuming an inde-132

pendent tumor islet model133

134

Bortfeld et al. 7 shows that when the dose to an idealized target is limited, not dosing the lowest135

probability voxels yields the highest expected tumor control. Here, we take advantage of this ‘all-136

or-nothing’ dose property to design a method that balances CTD dose with OAR dose using tumor137

probabilities. For instance, one could decide not to treat 1% of potentially tumorous voxels near a138

critical OAR if the expected loss of tumor control remains limited.139

Last edited August 19, 2022II.B. Probabilistic treatment planning method assuming an independent tumor islet model
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Deciding the optimal set of CTD voxels to discard, to strike the best balance between CTD140

coverage and OAR sparing, requires formulating the problem as an instance of mixed-integer pro-141

gramming. However, this method could be computationally prohibitive, given the large size of142

the underlying problem for typical clinical cases. The optimization problem can be approximated143

by following a procedure similar to the typical methods for handling (integer) dose-volume his-144

togram (DVH) constraints in treatment planning. DVH constraints are typically implemented by145

projecting the dose distribution onto the nearest dose distribution that fulfills the constraint at146

each iteration step.6,8,11 This concept can be applied to our optimization problem as follows: let K147

be the number of voxels that cannot be covered with the prescribed dose (dpresc) and M the total148

number of CTD voxels. Based on the ‘nearest dose distribution’ idea, we select the M − K voxels149

with the smallest positive ratio of (dpresc − d)/p. The idea is that CTD voxels are preferred where150

(1) the dose is close to the prescription, and (2) the tumor probability is high, given that dosing151

higher-probability voxels leads to greater tumor control.152

The main difficulty lies in the fact that the appropriate number of voxels to sacrifice is not153

known a priori. This planning challenge is investigated by following a multi-criteria optimization154

approach. The balance between CTD coverage and OAR sparing will be explored interactively by155

generating a library of treatment plans that aim at dosing different fractions of CTD voxels, e.g.,156

from 100% down to 90% in steps of 1% (as shown in Fig. 3a). For each treatment plan, the ideal157

dose projection approach is followed by excluding the 100% − x% CTD voxels with an undesirable158

dose-to-probability ratio to satisfy a maximum dose objective for an OAR.159

II.B.1. Justification using a simplified tumor control probability function160

161

In this section, we show that optimizing the dose to a discrete number of CTD voxels is equivalent162

to aiming for a pre-determined TCP level, under an independent tumor islet model. The voxel-wise163

TCP in volume vi after irradiation with the dose di, is typically expressed with a double exponential164

function:165

TCPi = e−ρvie
−αdi , (3)

where we have omitted the quadratic dose effects. ρ is the tumor cell density, vi is the volume, and166

α the radio-sensitivity parameter. We consider here a simplified TCP expression by approximating167

II. METHODSII.B. Probabilistic treatment planning method assuming an independent tumor islet model
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Eq. 3 with a step function:168

TCPi ≃
{

0, di < dref

1, di ≥ dref,
(4)

with dref the dose at 50% tumor control. According to this approximation, the dose has either a169

curative (di ≥ dref) or non-curative (di < dref) effect. For the commonly used values α ≈ 0.4 Gy−1170

and ρ ≈ 107/cm3, a reasonable estimate of dref is 20–30 Gy. dref equal to 24.1 Gy was chosen to171

match 50% tumor control for a 0.65 × 0.65 × 2.5 mm3 (CT resolution) voxel. The step function172

approximation should be reasonably valid if the shape of the voxel control probability curve is173

sufficiently steep.174

As derived in Alber and Thorwarth 2 , Shusharina et al. 24 and Bortfeld et al. 7 , the TCP175

expression for a target volume composed of mutually independent voxels with probabilities pi is:176

TCP =
∏

i

(1 − pi + piTCPi) . (5)

Applying the step function approximation gives:177

TCP ≈
∏

i,di<dref

(1 − pi) , (6)

where the product applies to all voxels outside of the GTV with a dose below dref. Given that178

the probabilities are very small (10−5–10−6), this expression can be linearized by ignoring the179

higher-order terms in p:180

TCP ≈ 1 −
∑

i,di<dref

pi. (7)

Eq. 7 implies that for the TCP to not fall below a pre-defined level, the sum of the probabilities181

(
∑

pi) over the foregone voxels—where the dref dose level is not reached—must not exceed a max-182

imum threshold. Hence, we can aim for a pre-defined TCP level by optimizing a discrete set of183

potentially tumorous voxels that should receive a dose larger than dref. Or inversely, scaling the184

number of CTD voxels that should receive the prescribed dose varies the expected TCP.185

II.C. Probabilistic treatment planning method assuming a contigu-186

ous circumferential growth model187

188

The second probabilistic planning method balances CTD coverage with OAR sparing by dosing only189

the voxels within a certain expansion volume of the GTV. In other words, the voxels outside of the190

Last edited August 19, 2022II.C. Probabilistic treatment planning method assuming a contiguous circumferential
growth model
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GTV expansion are potentially not treated to spare a critical OAR. The design of this probabilistic191

dosing approach follows from the idea that delivering dose to inner layers is more preferential than192

outer layers, given that their tumor probabilities are higher. Similar to the method presented in193

Section II.B., interactive plan navigation is possible by varying the extent of CTD coverage. Here, a194

library of treatment plans is optimized, where each treatment plan aims at delivering the prescribed195

dose to an increasing number of CTD layers, from the GTV to the volume encompassed by the196

outermost shell. Therefore, a growing expansion of the GTV gets dosed from one treatment plan197

to the next. Fig. 3b shows an example of a set of pre-computed dose distributions generated for198

this probabilistic planning approach.199

II.C.1. Justification using a simplified tumor control probability function200

201

We show that dosing the voxels within an expansion volume of the GTV is equivalent to aiming for a202

pre-determined TCP level assuming a contiguous circumferential growth model. Under contiguous203

circumferential growth, the probability that a layer is tumorous is equal to the probability that204

a single voxel in that layer is tumorous (Eq. 15). Taking this into consideration, an equivalent205

derivation can be followed as presented in Bortfeld et al. 7 but for a 3D CTD composed of a series206

of layers.1 The TCP can be expressed as the sum of H product terms (rather than H single voxels207

as in the 1D case):208

TCP = (1 − p1)
∏

i∈GTV
TCPi + (p1 − p2)

∏
i∈GTV

TCPi

∏
i∈L1

TCPi

+ · · · + pH−1
∏

i∈GTV
TCPi

∏
i∈L1

TCPi

∏
i∈L2

TCPi · · ·
∏

i∈LH−1

TCPi,
(8)

where Lh denotes CTD layer h. After applying the step function approximation, Eq. 8 simplifies209

if the dose in at least one voxel is limited, di < dref. In the particular case that a foregone voxel is210

part of layer h, the H −h product terms which evaluate this voxel are zero. The general expression211

then simplifies to:212

TCP ≈ (1 − p1) + (p1 − p2) + (p2 − p3) + · · · + (ph−1 − ph).

≈ 1 − ph.
(9)

Eq. 9 implies that for the TCP to not fall below a pre-defined level, the probability of the inner-213

most layer which contains at least one foregone voxel must not exceed a maximum threshold. In214

1 7, pp. 3, section 2.2 with the chain of voxels replaced by a series of layers.

II. METHODSII.C. Probabilistic treatment planning method assuming a contiguous circumferential
growth model
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other words, the treatment planning method presented in Section II.C. aims at generating a set of215

treatment plans with different TCP values, depending on the extent of the GTV expansion volume216

that is dosed.217

(a) Strategy 1. (b) Strategy 2.

Figure 3: Multi-criteria style navigation of dosimetric trade-offs. Libraries of treatment plans
are pre-computed through which the trade-off between CTD coverage and sparing of nearby
OARs can be explored. An example is shown for a GBM patient. The dose distributions
overlay the CT anatomy with the GTV and OAR depicted in black and white, respectively.
Left: treatment plans vary the % of CTD voxels that we aim at dosing with the prescription
dose (from 90% to 100%). Right: treatment plans vary the GTV expansion we aim at dosing
uniformly (from 0 mm to 12 mm for the example patient).

II.D. Evaluation218

The treatment plans are evaluated with both conventional and probabilistic metrics. The conven-219

tional metrics do not take into account tumor probabilities and rely solely on evaluating binary220

volumes with dose-volume histograms (DVH). The probabilistic metrics include information on the221

tumor probabilities through the TCP and the expected dose coverage to the CTD. The TCPs are222

computed with Eqs. 5 and 8 for each respective tumor propagation model. To avoid any biases,223

the double-exponential TCP model (Eq. 3) will be compared to the step function approximation.224

For the expected dose coverage, the concept of a conventional DVH is extended to a dose-expected-225

volume histogram (DEVH). The DEVH was first suggested in Shusharina et al. 24 as a way to226

evaluate the dose coverage of probabilistic volumes.2 A formal definition of the DEVH is presented227

in Appendix B. The DEVH plots the expected volume ⟨v⟩ as a function of the dose for all voxels228

within the CTD, i.e., the volume of voxels with non-zero tumor probability. The intuition behind229

2Shusharina et al. 24 , pp. 11, section 4.

Last edited August 19, 2022 II.D. Evaluation
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the DEVH can be explained with the following example: if the probability of tumor in a voxel is230

twice as large as in another voxel, then it must be valued twice as much in the differential dose-231

volume histogram (given that the voxel will be tumorous in twice as many patients, in a patient232

population). Naturally, if the probability of tumor is 0%, then this voxel will not be counted at all.233

The dose coverage to the expected target volume, e.g., ⟨v⟩ = 98%, can be read directly from the234

graph as D⟨98⟩. Note that for binary volumes, the DEVH reduces to the conventional DVH.235

II.E. Treatment planning system236

Proton therapy treatment plans were created with an in-house treatment planning system called237

OpenTPS, coded in Python. OpenTPS is coupled to the Monte Carlo dose engine MCsquare for238

the dose calculation.26,27 Beamlets were computed on a 2×2×2.5 mm3 dose grid with 5E4 protons.239

The final dose calculations were performed with the number of protons necessary to reach a sub-2%240

statistical noise level in CT resolution. All optimizations were performed with the limited-memory241

Broyden–Fletcher–Goldfarb–Shann (L-BFGS) solver, provided by the Scipy package.19,22242

The optimization problems are formulated as minimizing the weighted sum of quadratic plan-243

ning objectives of the form:244 
f(x) = 1

Ns

∑
i∈s

max{0, dmin − di(x)}2 or,

f(x) = 1
Ns

∑
i∈s

max{0, di(x) − dmax}2,
(10)

with Ns the number voxels within the structure.245

The dose projection idea from Section II.B. was implemented in the optimization as follows:246

at each iteration step, the CTD voxels are ranked from low to high, based on their (dpresc − d)/p247

value. The structure composed of the (100% − x%) lowest valued voxels is then included as the248

target volume in the next iteration step of the optimization.249

II.F. Patient cases250

The probabilistic planning methods are illustrated by creating treatment plans for two GBM pa-251

tients previously treated at Massachusetts General Hospital, as shown in Fig 1. GBM tumors are252

characterized by their fast-growing and highly infiltrative nature in the surrounding brain tissue,253

with a GTV-to-CTV margin of 2 cm typically used in clinical practice.21 As a consequence, it can254

II. METHODS II.E. Treatment planning system



Probabilistic treatment planning: Printed August 19, 2022 page 11

be challenging to create a treatment plan that both delivers the prescribed dose to the CTV and255

avoids critical structures, without compromising the CTV. These planning challenges are inves-256

tigated using the example of hippocampal avoidance of the GBM treatments.17,23,33 Both GBM257

cases were selected to have the brainstem and at least one hippocampus near the GTV (see Fig.258

1). The clinical goals were to spare the brainstem and both hippocampi for Patient 1, while for259

Patient 2, the goal was to spare the brainstem and contralateral hippocampus. The maximum dose260

levels for the OARs were set as 12 Gy and 54 Gy for the hippocampus and brainstem respectively.261

The OAR maximum dose levels were included with a lower weight compared to the weight of the262

minimum dose objective of the target. For all plans, a ring structure was added around the target263

volume to encourage dose conformity and control the dose fall-off. The planning objectives are264

summarized in Table 1265

Table 1: Planning objectives included in the optimization.

ROI type ref. dose weight

CTD/CTV min 60 5
CTD/CTV max 63 5
Hippocampus max 12 0.1
Brainstem max 54 0.1
Ring max 0 0.01

The clinically-approved manually drawn CTVs closely matched the 10.5 mm and 16 mm266

expansions for Patients 1 and 2, respectively. Following the ICRU 83 report,1 the surfaces of267

the 10.5 mm and 16 mm GTV expansions were assigned the 10%-probability iso-surface for each268

respective patient. The probabilities of other GTV expansions were chosen to linearly decrease from269

100% inside the GTV to 10% at the CTV edge. The 0-probability iso-surface, i.e., the outermost270

shell, corresponds to the 12 mm and 18 mm expansion contours for Patient 1 and 2, respectively.271

The proton beam angles were selected by a certified medical physicist and prescription dose272

was set to 60 Gy.273

Last edited August 19, 2022
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III. Results274

The goal is to highlight the trade-offs present using the concept of sacrificing voxels, i.e. removing275

CTD voxels from the minimum dose coverage objectives in order to achieve a notable dose reduction276

to the hippocampus and brainstem.277

III.A. Probabilistic treatment planning method assuming an inde-278

pendent tumor islet model279

280

For both patients, a library of treatment plans was generated where each plan aimed at dosing a281

fraction of the CTD, from 100% to 90% in steps of 1%. The CTD plans were compared with a282

reference plan that aims at dosing the CTV with the same dose constraints.283

Fig. 4 and 5 compare the dose distributions and DVHs for two representative treatment plans284

where the goal was to dose 100% and 99% of the CTD, to the CTV plan. The main trade-offs285

are depicted in Fig. 6. Both conventional DVH metrics (CTD D98 and hippocampus D2) and286

probabilistic metrics (TCP and expected D⟨98⟩) were calculated for the entire set of treatment287

plans.288

In the CTD plans, the dose to the hippocampus can be significantly reduced by discarding 1%289

of the voxels from the dose coverage objectives (D2 of 49.9 Gy to 40.4 Gy for ipsilateral hippocampus290

for Patient 1 and D2 of 44.0 Gy to 30.5 Gy for the contralateral hippocampus for Patient 2).291

Discarding up to 5% of voxels voxels has the effect of reducing the hippocampus dose further, to292

34.8 Gy and 26.5 Gy for Patient 1 and 2, respectively. In the CTV plan, the hippocampus D2 dose293

is similar to dosing 100% of the CTD, i.e., 48.4 Gy and 45.3 Gy for Patient 1 and 2, respectively.294

For CTD coverage, the CTD D98 decreases from 56.7 Gy to 56.3 Gy for Patient 1 and from295

57.1 Gy to 56.5 Gy for Patient 2, after underdosing 1% of CTD voxels. In terms of the expected296

CTD coverage, the D⟨98⟩ is approximately 60 Gy if we aim at dosing 100% of the CTD and remains297

nearly equal to 60 Gy, even as 10% of CTD voxels are discarded during optimization. Therefore,298

no significant loss of expected CTD coverage is observed when a fraction of the CTD is underdosed299

to spare the hippocampus and brainstem. Similarly, the TCP has a maximum value of 97.0% for300

both patients when we aim at dosing 100% of the CTD. By discarding 1% of CTD voxels, the301

TCP reduces to only 96.5% and 96.2% for Patient 1 and 2; and down to 96.2% and 95.9% after302

III. RESULTS
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discarding 5% of CTD voxels. In general, the approximate TCP follows the same behavior as the303

exact TCP but systematically overestimates its value.304

The CTV plan shows slightly lower CTD dose coverage with a D98 dose level of 54.8 Gy and305

53.4 Gy for Patient 1 and 2, respectively. The CTD D⟨98⟩ is almost identical with 58.4 Gy and306

59.7 Gy for Patient 1 and 2, respectively. Similarly, the CTV plan has an expected TCP that is307

comparable to the maximum value obtained with the CTD plans, i.e., 97.1% and 96.8% for Patient308

1 and 2, respectively.309

Fig. 7 shows the DVHs in three outer layers with the goal to investigate in which layers the310

optimizer prefers to discard voxels. Two treatment plans are compared for each patient: (a) aiming311

at dosing 100% of the CTD, and (b) aiming at dosing 5% of the CTD, that is, 5% of the CTD312

voxels are discarded. The selected layers are spaced 2 mm apart and have a thickness of 2 mm. As313

shown, the difference between the DVHs are much larger for inner layers compared to outer layers,314

indicating that the optimizer underdoses mostly the layers with lower probability voxels.315

Last edited August 19, 2022III.A. Probabilistic treatment planning method assuming an independent tumor islet model
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(b) Patient 2.

Figure 4: Dose distributions for treatment plans optimized under the independent voxel
assumption: (a) Patient 1, with the clinical goal to spare the ipsilateral hippocampus and
brainstem; (b) Patient 2, with the clinical goal to spare the contralateral hippocampus and
brainstem. For each patient, three plans are shown where the goal was to dose 100% of the
CTD (left), 99% of the CTD (middle), and the CTV (right). The CTD volume is shown
in orange. The GTV and OARs are displayed in red and white, respectively. The most
significant dose differences are indicated by the black arrows.

III. RESULTSIII.A. Probabilistic treatment planning method assuming an independent tumor islet model
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(b) Patient 2.

Figure 5: Dose-volume histograms of the CTD, hippocampus (HC), and brainstem (BS)
for three treatment plans as indicated in the parenthesis: dosing 100% of the CTD (solid),
dosing 99% of the CTD (dashed), and dosing the CTV (dotted). The DVH of the CTD is
computed for the binary volume within the 0-probability iso-surface.
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(a) Patient 1.
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(b) Patient 2.

Figure 6: Conventional and probabilistic evaluation metrics calculated for a set of treatment
plans that aim at dosing a fraction of the CTD, from 100% to 90%. Left axis (black): CTD,
expected CTD and hippocampus (HC) dose. Right axis (green): exact and approximate TCP
in solid and dotted lines, respectively. CTD D98 is evaluated with a binary volume while
CTD D⟨98⟩ represents the expected CTD dose by taking into account tumor probabilities.
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Figure 7: Dose-volume histograms of three layers of voxels. The treatment plan that aims
at dosing 100% of the CTD (solid) is compared to dosing 95% of the CTD (dashed); plans
indicated in parenthesis. Left: Layers 6, 4 and 2 correspond to layers in between GTV
expansions 12 mm - 10 mm, 8 mm - 6 mm, and 4 mm - 2 mm, respectively. Right: Layers
9, 7, and 5 correspond to layers in between GTV expansions 18 mm - 16 mm, 14 mm - 12
mm, and 8 mm - 6 mm.

III.B. Probabilistic treatment planning method assuming a con-316

tiguous circumferential growth model317

318

As before, a library of treatment plans is presented for each patient. Here, the trade-off between319

CTD coverage and OAR dose is investigated by dosing the voxels within a GTV expansion volume,320

from no expansion to the maximum GTV expansion bounded by the outermost shell of the CTD,321

in steps of 2 mm. As a reference, the CTV plan is equal to the treatment plans that aim at dosing322

10 mm and 16 mm, for Patient 1 and 2, respectively.323

Figs. 8 and 9 show dose distributions and DVHs for two representative treatment plans: a324

8 mm GTV expansion and 12 mm GTV expansion for Patient 1 and a 14 mm GTV expansion325

and 18 mm GTV expansion for Patient 2. Fig. 10 presents conventional DVH metrics (CTD D98326

and hippocampus D2) and probabilistic metrics (CTD D⟨98⟩ and TCP) as a function of the GTV327

expansion that should receive the prescribed dose.328

The ipsilateral hippocampus dose reduces from its maximum D2 value of 49.0 Gy to consec-329

utively 48.4, 47.0 and 41.9 when the GTV expansion reduces with 2 mm, 4 mm and 6 mm for330

III. RESULTSIII.B. Probabilistic treatment planning method assuming a contiguous circumferential
growth model
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Patient 1. For Patient 2, no D2 dose reduction is observed for the contralateral hippocampus after331

reducing the GTV expansion with the first 4 mm. Reducing the GTV expansion with more that 6332

mm reduces the hippocampus D2 dose with only 3.3 Gy. In the CTV plan, the hippocampus D2333

dose is 48.4 Gy and 45.3 Gy for Patient 1 and 2, respectively.334

For the same set of treatment plans, the CTD D98 reduces from 56.7 Gy to 54.8 Gy for Patient335

1 and from 57.0 Gy to 53.4 Gy for Patient 2, after contracting the target volume with 2 mm from336

the maximum (= CTV plan). Dosing an 8 mm GTV expansion yields a CTD D98 of 47.4 Gy337

for Patient 1 while dosing a 14 mm GTV expansion yields a CTD D98 of 47.3 Gy for Patient 2.338

The expected dose coverage follows the same trend but its decline is less steep: starting from the339

maximum GTV expansion, the CTD D⟨98⟩ is 57.8 Gy and reduces to 57.5 Gy and 54.7 Gy by dosing340

a 10 mm (= CTV plan) and 8 mm GTV expansion for Patient 1. For Patient 2, the maximum341

CTD D⟨98⟩ is 58.7 Gy and reduces to 57.9 Gy and 54.7 Gy by dosing a 16 mm (= CTV plan) and342

14 mm GTV expansion. For the expected TCP, a maximum TCP of 71.4% and 56.9% is achieved343

for Patient 1 and 2, respectively. Discarding a 2 mm outer layer has the effect of reducing the TCP344

to 69.6% and 55.4% for each respective patient. Again, the approximate TCP follows the same345

trend as the exact TCP but systematically overestimates its value.346
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(b) Patient 2.

Figure 8: Dose distributions for treatment plans optimized under the dependent voxel as-
sumption: (a) Patient 1, with the clinical goal to spare the ipsilateral hippocampus; (b)
Patient 2, with the clinical goal to spare the contralateral hippocampus. For each patient,
two plans are shown, with a 6 mm GTV expansion and 10.5 mm GTV expansion (Patient
1) and a 6 mm GTV expansion and 16 mm GTV expansion (Patient 2). The CTD volume
is shown in orange. The GTV and OARs are displayed in red and white, respectively. The
dose differences are indicated by the black arrows.

III. RESULTSIII.B. Probabilistic treatment planning method assuming a contiguous circumferential
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Figure 9: Dose-volume histograms of the CTD, hippocampus (HC), and brainstem (BS) for
three treatment plans as indicated in the parenthesis, a 12 mm GTV expansion (solid) and
8 mm GTV expansion (dashed) for Patient 1 and an 18 mm GTV expansion (solid) and 14
mm GTV expansion (dashed) for Patient 2, compared to CTV plan (dotted) The DVH of
the CTD is computed for the binary volume within the 0-probability iso-surface.
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(a) Patient 1.
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(b) Patient 2.

Figure 10: Conventional and probabilistic evaluation metrics calculated for a set of treatment
plans that aim at dosing an increasing expansion of the GTV, in steps of 2 mm. Left axis
(black): CTD, expected CTD and hippocampus (HC) dose. Right axis (green): exact
and approximate TCP in solid and dotted lines, respectively. CTD D⟨98⟩ is evaluated with
a binary volume while CTD D⟨98⟩ represents the expected CTD dose taking into account
tumor probabilities.
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IV. Discussion347

This study extends the application of the clinical target distribution (CTD) to clinical cases with348

dose-limiting OARs. We propose two probabilistic planning methods that apply the concept of349

sacrificing voxels, where CTD voxels are either dosed with the prescription or not dosed at all, to350

explore the possibility of sparing a nearby OAR.351

Our probabilistic planning methods differ from clinical practice where conflicts between dose352

constraints and CTV coverage are often solved by manually editing the CTV, to mitigate the overlap353

with a nearby critical OAR. As a result, the treatment plan may suggest acceptable target coverage354

even though tumor control is limited, given that the CTV was compromised. Yet, manual edits355

are often necessary as binary target volumes do not discriminate between the relative importance356

of the voxels, potentially resulting in inadequate trade-offs. In this study, a framework is proposed357

through which a treatment planner or physician can visualize dose compromises in near real-time.358

Specifically, a quantitative assessment of the risk involved with underdosing the target to spare a359

nearby OAR is provided. One can find similar dose compromises in clinical practice, but without360

reporting of the expected loss of tumor control.361

The expected dose coverage was reported with dose-expected-volume histograms (DEVH). The362

DEVH attempts to address the limitations of shell-based metrics in order to evaluate treatment363

plans. Limitations include (a) shell DVHs neglect any dose information outside of the shell, even364

though the probability of tumor may be finite, and (b) the shells do not discriminate between the365

relative importance of the evaluated voxels. The DEVH, in contrast, takes into account tumor366

probabilities within the entire volume and summarizes the dose information into a single curve.367

DEVH takes into account that the target volume is a stochastic quantity, with the probability of the368

volume realization defined by the CTD. However, the tumor volume realizations do not need to be369

sampled explicitly and can be incorporated directly in the differential DVH. This DVH formulation370

stands in contrast to other probabilistic DVHs (see for example dose-coverage histogram in Gordon371

et al. 14) that need explicit scenario simulations, evaluated with a fixed region-of-interest.372

Based on the probabilistic metrics (TCP and DEVH), a significant difference in behavior is373

observed between evaluating a treatment plan under the independent tumor islet model or the374

contiguous circumferential growth model. For the independent tumor islet model, the studied375

patient cases indicate that the expected CTD dose does not deteriorate from underdosing a small376
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number of CTD voxels, even though evaluation with a binary volume suggests poor CTD coverage.377

This effect can be attributed to the fact that for clinical cases (with a large number of voxels), the378

CTD voxel probabilities are low under voxel independence, 10−5–10−6. Similarly, the estimated379

TCP loss does not fall below 1% from the maximum, owing to the voxels’ low probabilities and the380

small number of voxels necessary to spare the hippocampus. It must be noticed that the reported381

TCP values depend on the set of chosen TCP parameters (α, β, and ρ). The planning method,382

as presented in this study, was calibrated to have a voxel TCP near 100% at the prescription dose383

level. The results would become more sensitive to dose differences if the model parameters were384

chosen to have a starting point near the steep region of the TCP curve. However, the general385

behaviour of the models are not expected to be different with a change of TCP parameters if the386

TCP dose-response curve remains sufficiently steep.387

For the contiguous circumferential growth model, the expected CTD dose and TCP depend388

more strongly on the number of CTD layers that are dosed. This means that there is less potential389

for improved OAR sparing (by reducing the extent of the high-dose region), without compromising390

significantly on tumor control. The TCP could be improved by escalating the dose within the391

CTD or setting a higher priority to the minimum CTD dose objectives. However, the main aim392

of this study was to show by which principle we allow voxels of the CTD to be underdosed to393

achieve a notable dose reduction to an OAR. Notice that this approach fundamentally differs from394

dose painting studies. In dose painting, the prescription is typically differentiated based on a395

varying tumor cell density or tumor response.15,16,29 The underlying assumption is that one knows396

with absolute certainty which voxels are tumorous, including the ones in the microscopic tumor397

extension. Introducing a variation in the tumor cell density can lead to fundamentally different398

dose distributions than when the probability of tumor presence is considered.399

We have not addressed the question of which modeling assumption (independent tumor islet400

or contiguous circumferential growth) should be pursued in practice. Bortfeld et al. 7 demonstrates401

that the difference between dependent and independent solutions becomes negligible for high dose402

levels. In contrast, we observe big differences in behavior between both models of tumor propa-403

gation, as the high dose limit is no longer valid in the presence of low dose to CTD voxels. The404

dependence of the underlying assumptions on the optimal probabilistic planning method empha-405

sizes the importance of choosing a realistic assumption. Such a decision primarily depends on the406

growth pattern of microscopic disease in the surrounding tissues. Tumor growth characteristics can407

be obtained from histopathological measurements and recurrence analyses after treatment. The408
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data published on this topic suggests that solid tumor types preferentially spread through micro-409

scopic tumor islets3,10,20 while reaction-diffusion based tumor growth models predict tumor fronts410

for diffuse tumors such as GBM.18,28,30 Unfortunately, the availability of data necessary to validate411

these models remains limited. A practical alternative could be to have a physician or computer al-412

gorithm (e.g. trained by diagnostic images) inform the CTD definition and estimate the probability413

of tumor being present.414

The studied GBM cases illustrate that the optimal clinical compromise depends on patient-415

specific factors such as the proximity of the OAR to the target. Therefore, the results should416

not be viewed as recommendations, given that they are not generalizable to the broader patient417

population, nor is this the study’s intention. Instead, the GBM cases were selected to exemplify418

how planning trade-offs can be explored with tumor probability information. Nevertheless, the419

principle of identifying the sub-volume of the CTD to treat, motivated by non-linear dose-effect420

relation of TCP models, can be applied to other tumor types and is not limited to GBMs.421

V. Conclusion422

To the best of our knowledge, this is the first study that proposes and implements probabilistic423

treatment planning strategies to navigate the trade-off between tumor control and organ sparing424

using a clinical target distribution (CTD). The potential for OAR sparing is explored interactively425

by varying the extent to which the CTD is dosed. We show how proposed planning method can be426

justified under specific statistical models of tumor propagation—an independent tumor islet model427

or a contiguous circumferential growth model—and evaluate its impact on the estimated level of428

tumor control.429

Acknowledgements430

The authors thank Lena Nenoff (Massachusetts General Hospital, Harvard Medical School) for431

the beam angle selection of the treatment plans. Gregory Buti is supported by the Télévie Grant432
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A Tumor probabilities under the assumption of con-440

tiguous circumferential tumor growth441

Let sh = 1 − rh denote the probability that there is no tumor outside shell h and qh the probability442

that a voxel in layer h is not tumorous, qh = 1−ph. The probability that there is no tumor outside443

shell h must be equal to the probability of no tumor in layer h AND no tumor outside shell h + 1:444

sh = P ((no tumor in Lh) AND (no tumor outside shell h + 1)). (11)

In the contiguous circumferential growth model, these events are dependent, therefore,445

sh = P (no tumor in Lh) · P (no tumor outside shell h + 1 | no tumor in Lh). (12)

Under contiguous growth, the process of tunneling of tumor cells along the layers is not allowed446

therefore:447

P (no tumor outside shell h + 1 | no tumor in Lh) = 1. (13)

And for each voxel i ∈ Lh, the following relationship must hold:448

P (no tumor in Lh) = P ((no tumor in voxel i) AND (no tumor in Lh \ voxel i))

= P (no tumor in voxel i)

·P (no tumor in Lh \ voxel i | no tumor in voxel i).

(14)

By definition, P (no tumor in voxel i) = qh. Moreover, under the circumferential growth449

assumption, all voxels in the same layer are correlated, i.e., P (no tumor in Lh \450

voxel i | no tumor in voxel i) = 1. Therefore, Eq. 14 reduces to:451

P (no tumor in Lh) = qh. (15)

Inserting this in Eq. 12, we find that:452

sh = qh, (16)

or,453

ph = rh. (17)
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B Dose-Expected-Volume Histogram, DEVH454

Let κ be a binning of the dose axis, such that κ : R+
0 → N0, D → κ(D) maps the dose value D to455

the bin number k. We assume the binning is such that κ(0) = 0 and κ(Dmax) = K.456

The normal way to define the dose-volume histogram in a volume (such as the tumor target457

volume) with N voxels is through458

hk =
N∑

i=1
viδk,κ(di), (18)

where vi is the volume of voxel i, and δk,k′ is the Kronecker delta symbol. The typical integral form459

of the dose-volume histogram, DVH, is then obtained by summing the bins from k to K:460

DVHk =
K∑

j=k

hj . (19)

For probabilistic volumes, we assume that there are M possible realizations of tumor (combi-461

nations of voxels that are tumorous) with distinct probabilities. Here, we refer to the realizations of462

tumor as ‘scenarios’, where a voxel i can be tumorous in some scenarios and not tumorous in other463

scenarios. The overall expected-volume histogram is obtained by summing over all M scenarios as464

follows:465

⟨hk⟩ = 1
M

M∑
m=1

N∑
i=1

vm
i δk,κ(di). (20)

The index m stands for the scenario and M is the total number of scenarios. The volume vm
i equals466

vi if and only if voxel i is tumorous in scenario m, otherwise vm
i = 0.467

A more compact way of writing the expected-volume histogram is as follows:468

⟨hk⟩ =
N∑

i=1
piviδk,κ(di). (21)

The integral form of the expected-volume histogram is again obtained by integrating bins from469

k to K, as above, i.e.:470

DEVHk =
K∑

j=k

⟨hj⟩. (22)

For the CTD definition presented in this study, the CTD probabilities (pi) are assigned a priori.471

Therefore, Eq. 22 can be evaluated directly without the need to perform explicit scenario simula-472

tions. Moreover, the DEVH expression remains invariant under the dependent/independent voxel473

assumption (which gets realized solely by the difference in pi).474

B DOSE-EXPECTED-VOLUME HISTOGRAM, DEVH
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12 Peter Ferjančič, Uulke A van der Heide, Cynthia Ménard, and Robert Jeraj. Probabilistic target521

definition and planning in patients with prostate cancer. Physics in Medicine & Biology, 66522

(21):215011, October 2021. doi: 10.1088/1361-6560/ac2f8a. URL https://doi.org/10.1088/523

1361-6560/ac2f8a.524

13 Claudio Fiorino, Robert Jeraj, Catharine H. Clark, Cristina Garibaldi, Dietmar Georg, Ludvig525

Muren, Wouter van Elmpt, Thomas Bortfeld, and Nuria Jornet. Grand challenges for medical526

physics in radiation oncology. Radiotherapy and Oncology, 153:7–14, December 2020. doi:527

10.1016/j.radonc.2020.10.001. URL https://doi.org/10.1016/j.radonc.2020.10.001.528

14 J. J. Gordon, N. Sayah, E. Weiss, and J. V. Siebers. Coverage optimized planning: Probabilistic529

treatment planning based on dose coverage histogram criteria. Medical Physics, 37(2):550–563,530

January 2010. doi: 10.1118/1.3273063. URL https://doi.org/10.1118/1.3273063.531

https://doi.org/10.1016/b978-0-444-53632-7.00914-x
https://doi.org/10.1088/1361-6560/ac1265
https://doi.org/10.1016/j.ijrobp.2010.09.038
https://doi.org/10.1088/0031-9155/51/10/001
https://doi.org/10.1088/0031-9155/51/10/001
https://doi.org/10.1088/0031-9155/51/10/001
https://doi.org/10.1088/1361-6560/ac2f8a
https://doi.org/10.1088/1361-6560/ac2f8a
https://doi.org/10.1088/1361-6560/ac2f8a
https://doi.org/10.1016/j.radonc.2020.10.001
https://doi.org/10.1118/1.3273063


Probabilistic treatment planning: Printed August 19, 2022 page 27
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