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Abstract. We present an algorithm to compute the Hodge ideals [MP19a, MP19b] of
Q-divisors associated to any reduced effective divisor D. The computation of the Hodge
ideals is based on an algorithm to compute parts of the V -filtration of Kashiwara and
Malgrange on ι+OX(∗D) and the characterization [MP20b] of the Hodge ideals in terms
of this V -filtration. In particular, this gives a new algorithm to compute the multiplier
ideals and the jumping numbers of any effective divisor.

1. Introduction

Let X be a smooth complex variety of dimension n and let D be a reduced effective
divisor on X. Consider OX(∗D), the sheaf of meromorphic functions with poles along
the divisor D. This is a coherent left DX-module that underlies the mixed Hodge module
j∗QH

U [n], where U := X \D, j : U ↪→ X is the open inclusion, and QH
U [n] is the constant

pure Hodge module on U , see [Sai88, Sai90]. Any DX-module associated to a mixed Hodge
module carries a good filtration F•, the Hodge filtration of the mixed Hodge module.

It is shown in [Sai93] that the Hodge filtration on OX(∗D) is contained in the pole
order filtration, namely

FkOX(∗D) ⊆ OX((k + 1)D) for all k ≥ 0.

In order to study the Hodge filtration on OX(∗D), Mustaţǎ and Popa [MP19a] introduced
a set of ideal sheaves, the Hodge ideals Ik(D) of D, that are defined by

FkOX(∗D) = Ik(D)⊗OX OX((k + 1)D), for all k ≥ 0.

In a subsequent work, Mustaţǎ and Popa [MP19b] generalized the notion of Hodge ideals
to arbitrary Q-divisors. If f ∈ OX(X) is a global regular function, denote D := div(f)
and let Z be the support of D. Then, for α ∈ Q>0 one can associate to this data a twisted
version of the localization DX-module considered above, namely

M(f−α) := OX(∗Z)f−α,

that is, a rank one free OX(∗Z)-module with generator the formal symbol f−α and where
the action of a derivation ∂ of OX is

∂(gf−α) =

(
∂(g)− gα∂(f)

f

)
f−α.

This DX-module can be endowed with a filtration FkM(f−α), k ≥ 0, which makes it a
filtered direct summand of a D-module underlying a mixed Hodge module on X, see
[MP19b, §2]. Therefore, the Hodge ideals of the Q-divisor αD are defined by

FkM(f−α) = Ik(αD)⊗OX OX(kZ)f−α, for all k ≥ 0.
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For α = 1 one recovers the Hodge ideals Ik(D) of D. Determining the Hodge ideals
of a given divisor is a notoriously difficult problem. In the case that the divisor D has
quasi-homogeneous isolated singularities, the Hodge ideals Ik(αD) have been explicitly
described by Zhang [Zha18]. These results are extended to the semi-quasi-homogeneous
and Newton non-degenerated cases in [JKYS19].

For the case of a free divisor D, the Hodge ideals Ik(D) are determined by Castaño
Domı́nguez, Narváez Macarro and Sevenheck [DMS19] via an algorithm. For the case of
the determinant hypersurface, see the work of Perlman and Raicu [PR21]. The first Hodge
ideal of the Q-divisor αD coincides with the multiplier ideal J ((α − ε)D), 0 < ε � 1,
see [MP19b, Proposition 9.1]. Hence, the Hodge ideals can be seen as a generalization
of multiplier ideals. There are algorithms to compute multiplier ideals due to Berkesch
and Leykin [BL10] and Shibuta [Shi11] that rely on Gröbner basis techniques in the Weyl
algebra.

In this work, we will use the characterization given in [MP20b] of the Hodge ideals
Ik(αD) associated to a reduced effective divisorD in terms of the V -filtration of Kashiwara
and Malgrange [Kas83, Mal83]. Given the V -filtration V αι+OX , α ∈ Q ∩ (0, 1], on the
D-module theoretic direct image ι+OX of OX , where ι : X → X×C, x 7→ (x, f(x)), is the
graph embedding of f , Algorithm 1 will compute a set of generators for the OX-module

GpV
αι+OX = V αι+OX ∩

p⊕
j=0

OX∂
j
t =

{ p∑
j=0

vj ⊗ ∂jt ∈ V αι+OX

∣∣∣ vj ∈ OX

}
for a fixed p ∈ N using Gröbner basis techniques in the Weyl algebra. After [MP20b,
Theorem A′], this determines generators for the Hodge ideals Ik(αD), k = 0, . . . , p. More-
over, by a result of Budur and Saito [BS05], Algorithm 1 gives also a new procedure to
compute the multiplier ideals and the (global) jumping numbers of any effective divisor,
not necessarily reduced. Similarly to all general algorithms that depend on Gröbner ba-
sis computations the worst case complexity can be doubly exponential in the number of
variables.

This work is organized as follows. In Section 2 we review the results related to the
theory of V -filtrations of Kashiwara and Malgrange and the Bernstein-Sato polynomials
that will be needed for the main algorithm. In Section 3, we present Algorithm 1 and we
prove its correctness. Some non-trivial examples of Hodge ideals are included at the end.
The algorithms described in this work have been implemented in the computer algebra
system Singular [DGPS21].

2. The V -filtration of Kashiwara and Malgrange

Let X be a smooth complex variety of dimension n with structure sheaf OX . Let DX

denote the sheaf of differential operators on X. The V -filtration of Kashiwara [Kas83] and
Malgrange [Mal83] on a DX-module is defined with respect to a closed subvariety Z ⊂ X.
Through this work we will assume that Z is a codimension one subvariety globally defined
by a regular function f ∈ Γ(X,OX).

1. The smooth case. When Z is a smooth subvariety, the V -filtration on DX along Z
is defined by

V kDX = {P ∈ DX | P · (f)i ⊂ (f)i+k for all i ∈ Z}
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with k ∈ Z and (f)i = OX for i ≤ 0.

Since the pair (X,Z) is smooth, one can consider local algebraic coordinates of the
form x1, . . . , xn−1, t = f . Therefore, V kDX is locally generated over OX by∏

1≤i≤n−1

∂αixi t
ν∂µt , with ν − µ ≥ k.

From this, the V -filtration on DX along Z is then an exhaustive decreasing filtration
satisfying V iDX · V jDX ⊆ V i+jDX with equality for i, j ≥ 0. In the sequel, t will always
denote a local equation for Z and ∂t a local vector field such that [∂t, t] = 1.

In general, a V -filtration on a coherent left DX-module M along Z ⊂ X is a rational
filtration (V αM)α∈Q that is exhaustive, decreasing, discrete and left continuous, such that
the following conditions are satisfied:

i) Each V αM is a coherent module over V 0DX .
ii) For every α ∈ Q, there is an inclusion

t · V αM⊆ V α+1M
with equality for α > 0.

iii) For every α ∈ Q, one has

∂t · V αM⊆ V α−1M.

In particular, V iDX · V αM⊆ V α+iM.

iv) For every α ∈ Q, the action of ∂tt− α is nilpotent on

GrαV := V αM/V >αM
where V >αM :=

⋃
α′>α V

α′M.

All conditions are independent of the choice of the local coordinate t. In case such a
filtration exists then it is necessarily unique, see [Sai88, Lemme 3.1.2]. Under reasonable
assumptions for the DX-module M, V -filtrations do exist.

Theorem 1.1 ([Kas83, Mal83]). Let M be a regular holonomic DX-module with quasi-
unipotent monodromy around Z. Then, M admits a V -filtration along Z.

2. The graph embedding. In general, when Z is singular, one reduces to the smooth
case using the graph embedding of f . Namely, let

ι : X −→ X × C, x 7→ (x, f(x))

be the closed embedding defined by the graph of f . Define Y := X × C and let t be
the projection on the second factor of Y . This way, (t = 0) is the smooth hypersurface
X × {0} in Y . Given now M a DX-module, we can consider the D-module theoretic
direct image by the graph embedding

ι+M :=M⊗C C[∂t]

with the left DX×C-action given as follows. Let m be a section of M,

i) g · (m⊗ ∂jt ) = gm⊗ ∂jt , for g a section of OX .
ii) t · (m⊗ ∂jt ) = fm⊗ ∂jt − jm⊗ ∂

j−1
t .

iii) ∂t · (m⊗ ∂jt ) = m⊗ ∂j+1
t .

iv) D(m⊗ ∂jt ) = D(m)⊗ ∂jt −D(f)m⊗ ∂j+1
t , for D a section of Der(OX),
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see for instance [HTT08, Example 1.3.5].

In this situation one can consider the V -filtration on ι+M along X × {0} = Z. Then,
define V •M :=M∩ V •ι+M for the V -filtration on M along Z. Notice also that in this
case V 0DY is just DX〈t, t∂t〉.

For the case of the DX-module OX one has the following alternative description of
ι+OX . There is an isomorphism of DY -modules

ι+OX
∼= OX [t]f−t/OX [t].

Indeed, denoting by δ the class of 1
f−t in OX [t]f−t/OX [t], any section can be uniquely

written as ∑
j≥0

hj∂
j
t δ,

with hj being sections of OX and only finitely many terms being non-zero. Any such

section can be identified with
∑

j≥0 hj⊗∂
j
t and one can check that the DY -action coincide.

Notice that by definition one has fδ = tδ.

Given an arbitrary DX-module M, one recovers the original definition of ι+M via the
following isomorphism of DY -modules

ι+M∼=M⊗OX ι+OX =
⊕
j≥0

M⊗OX OX∂
j
t δ.

This description of ι+M leads to the following increasing and exhaustive filtration of
OX-modules on ι+M that will be useful in the sequel,

Gkι+M :=
k⊕
j=0

M⊗OX OX∂
j
t δ,

with Gkι+M/Gk−1ι+M∼=M as OX-modules.

3. Hodge ideals and the V -filtration. The Hodge ideals of a reduced divisor D =
div(f) can be described in terms of the V -filtration on ι+OX . Before presenting the main
result from [MP20b] that we will use, it is convenient to define the following polynomials,

Qi(X) = X(X + 1) · · · (X + i− 1) ∈ Z[X].

Theorem 3.1 ([MP20b, Theorem A′]). If D is a reduced divisor, then for every positive
rational number α, and every p ≥ 0, one has

Ip(αD) =

{
p∑
j=0

Qj(α)fp−jvj

∣∣∣∣ p∑
j=0

vj∂
j
t δ ∈ V αι+OX

}
.

If one defines GkV
αι+OX := Gkι+OX ∩ V αι+OX for all α ∈ Q, then in order to get

generators for the Hodge ideals Ik(αD), k = 0, . . . , p, it is enough to compute a set of
generators for the OX-module GpV

αι+OX since Ik(αD) only depends on the OX-module
structure of GpV

αι+OX when k = 0, . . . , p.

The Hodge ideals Ip(αD) are a generalization of the multiplier ideals J (αD), α ∈ Q>0

that usually appear in the context of birational geometry, see [Laz04, §III]. It is a result
of Budur and Saito [BS05] that multiplier ideals have an interpretation in terms of DX-
modules via the V -filtration on OX along D.
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Theorem 3.2 ([BS05, Thm 0.1]). Let D = div(f) an effective divisor on X, then

J (αD) = V α+εOX for 0 < ε� 1.

Indeed, I0(αD) = J ((α − ε)D) for 0 < ε � 1, see [MP19b, Proposition 9.1] and
Theorem 3.1 can be seen as a generalization of Theorem 3.2 for the case of reduced
divisors.

4. The Bernstein-Sato polynomial. In order to study the V -filtration on the DY -
module ι+OX it is convenient to work on a bigger DY -module where multiplication by f
is bijective, namely ι+OX(∗D), where D = div(f).

Under the hypothesis that f acts bijectively on a DX-module M, that is, M has
structure of OX(∗D)-module, one can show that multiplication by t is bijective in ι+M.
Hence, for the particular case of OX ,

(4.1) (ι+OX)t = ι+O(∗D).

Denote by Mf the cyclic DX [s]-submodule of OX [f−1, s]f s generated by f s, that is

Mf := DX [s]f s ⊆ OX [f−1, s]f s ∼= ι+OX(∗D),

where in the last isomorphism the symbolic power f s is naturally identified with δ and s
acts as −∂tt. Notice that, since (∂tt)

mδ is a section of ι+OX for all m ∈ N, we have the
inclusion Mf ⊆ ι+OX .

The action of t in OX [f−1, s]f s is given by the automorphism s 7→ s + 1. Since we
have the relation ts = (s+ 1)t, multiplication by t leaves invariant Mf , that is t · Mf

∼=
DX [s]f · f s ⊆ Mf . Therefore, Mf is in fact a DX〈t, s〉-module. In addition, since

ti∂jt δ =
∏j

k=1(∂tt− (i− k + 1))ti−j ∈ DX [∂tt]δ =Mf , one sees that

(4.2) (Mf )t = (ι+OX)t.

After Equations 4.1 and 4.2, it will be convenient to define the following increasing and
exhaustive filtration Tk of DX〈t, s〉-modules on ι+OX(∗D) by

Tk(OX [f−1, s]f s) := t−kMf = DX [s]f s−k.

For a general DX-module, one has the following relation that will be applied to M =
OX(∗D) later on.

Proposition 4.1 ([MP20b, Proposition 2.5]). If M is a DX-module on which f acts
bijectively, then we have an isomorphism of DX〈t, t−1, s〉-modules

Φ :M[s]f s
∼=−→ ι+M, usjf s 7→ u⊗ (−∂tt)jδ.

The inverse isomorphism Ψ is given by

u⊗ ∂jt δ 7→
u

f j
Qj(−s)f s.

This setting leads to one of the fundamental objects in the theory of D-modules.

Proposition 4.2 ([Ber72]). The action of s induces an endomorphism

s :Mf/tMf −→Mf/tMf ,

which has a minimal polynomial equal to the Bernstein-Sato polynomial bf (s) of f .
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It is a well-known result due to Kashiwara [Kas76] that the roots of the Bernstein-
Sato polynomial are negative rational numbers. The existence of the V -filtration on
ι+OX is originally due to Malgrange [Mal83] and Kashiwara [Kas83] using the rationality
of the roots of the Bernstein-Sato polynomial. In fact, Malgrange in [Mal83] proves
the existence of the V -filtration on ι+OX(∗D). Then, one simply has that V •ι+OX =
ι+OX ∩ V •ι+OX(∗D). Moreover, the following is true.

Lemma 4.3 ([Sai88, Lemme 3.1.7]). The canonical inclusion ι+OX ↪→ ι+OX(∗D) induces
an equality

V αι+OX = V αι+OX(∗D) for all α > 0.

3. The algorithm

In this section we shall assume that X = An
C. Therefore, R = Γ(X,OX) = C[x1, . . . , xn]

is the polynomial ring and D = Γ(X,DX) = C[x1, . . . , xn]〈∂x1 , . . . , ∂xn〉 is the Weyl alge-
bra. The algorithm presented in this section will make use of the following constructions
in computational D-module theory.

5. The s-parametric annihilator. Let f ∈ R be non-constant. The cyclic D[s]-module
D[s]f s is isomorphic to D[s]/AnnD[s]f

s, where AnnD[s]f
s is the s-parametric annihilator

of the formal symbol f s.

Consider the Malgrange ideal of f ,

If := D〈t, ∂t〉〈f − t, ∂x1 +
∂f

∂x1
∂t, . . . , ∂xn +

∂f

∂xn
∂t〉.

Then, the s-parametric annihilator of f equals If ∩D[∂tt]|∂tt=−s, see for instance [SST00,
Theorem 5.3.4]. Moreover, such elimination of variables can be computed using Gröbner
basis techniques in the Weyl algebra, see [SST00, Algorithm 5.3.6]. There are similar
ways to compute generators for AnnD[s]f

s due to Briançon and Maisonobe [BM02] that
usually perform better due to the need to eliminate fewer variables.

By Proposition 4.2, the Bernstein-Sato polynomial bf (s) of f can then be computed as
the minimal polynomial of s acting on

D[s]f s

D[s]〈f〉f s
∼=

D[s]

AnnD[s]f s +D[s]〈f〉
.

That is, 〈bf (s)〉 = (AnnD[s]f
s +D[s]〈f〉)∩C[s]. This intersection can either be computed

by standard Gröbner basis elimination techniques or taking advantage of the fact that
C[s] is a principal subalgebra of D[s], see [ALMM09].

6. Modulo operation. The following construction from [Lev05] provides an efficient
way of computing the kernel of morphisms of D-modules. Let N,M be left submodules
of the free submodules Dn =

∑n
i=0Dei and Dm, respectively. Consider,

φ : Dn/N −→ Dm/M, ei 7→ Φi,

a morphism of left D-modules given by the matrix Φ = (Φ1 | · · · | Φn) ∈ Dm×n. Define
the matrix

Y =

(
Φ M

Idn×n 0

)
∈ D(m+n)×(n+k),



AN ALGORITHM FOR HODGE IDEALS 7

where k ∈ N is the number of generators of M . Let Z = Dn+mY ∩
⊕n+m

i=m+1Dei, this
intersection can be computed with standard elimination of components. Then, one has

Kerφ ∼= (Z +N)/N,

see [Lev05, Lemma 9]. This method avoids the computation of unnecessary syzygies
and computes only those relevant to Φ. Keeping the same notation from [Lev05] and
Singular [DGPS21], we will denote the operation that computes a system of generators
for Z from generators of Φ and M as Modulo(Φ,M).

7. The algorithm. We present next the main contribution of this work. The following
algorithm computes a set of generators of the OX-modules GpV

αι+R for any α ∈ Q∩(0, 1].
This is of course feasible because, by the definition of V -filtration, there is only a finite
number of different such OX-modules when α ranges in Q ∩ (0, 1]. The algorithm is
inspired by the construction of the V -filtration on ι+OX(∗D) by Malgrange [Mal83].

The main ideas behind the algorithm are the following. For α ∈ Q ∩ (0, 1], we will
actually compute GpV

αι+R[f−1]. By (4.2), any element of ι+R[f−1] ∼= R[s, f−1]f s lies in
Tkι+R[f−1] = t−kMf = D[s]f s−k for some k ∈ N. Then, consider the endomorphism

s :
D[s]f s−p

tD[s]f s
−→ D[s]f s−p

tD[s]f s

with minimal polynomial b
(p)
f (s). Since the action of t is bijective, the roots of b

(p)
f (s) are

of the form α+k for α a root of bf (s) and k = 0, . . . , p. Hence, one has the decomposition

(7.1)
D[s]f s−p

tD[s]f s
=
⊕
λ

Pλ,

where the sum ranges over all the roots λ of b
(p)
f (−s) and Pλ is the submodule on which

s + λ acts nilpotently. Consider, for α ∈ Q ∩ (0, 1], the D[s]-submodule Wα satisfying
tD[s]f s ⊆ Wα ⊆ D[s]f s−p and

(7.2)
Wα

tD[s]f s
=
⊕
λ>α

Pλ.

Then, GpV
αι+R[f−1] can be computed from Wα∩R[s] by taking all the elements of degree

less than or equal to p in s. The full details of the correctness of the algorithm are delayed
until Theorem 7.1 below.

All the sets appearing in Algorithm 1 below are assumed to be ordered.

Algorithm 1. (Generators GpV
αι+R)

Input: A reduced f ∈ R and p ∈ N.
Output: A basis of the R-module GpV

αι+R for α ∈ Q ∩ (0, 1].

1: G← Gröbner basis of AnnD[s]f
s w.r.t. any monomial ordering

2: J ← Gröbner basis of D[s]〈G, f〉 w.r.t. an elimination order for x, ∂
3: bf (s)← generator of J ∩ C[s]
4: ρf ← {(αi, ni) ∈ Q× N | bf (s) = (s− α1)

n1 · · · (s− αr)nr , α1 < · · · < αr < 0}

5: J (p) ← D[s]〈G|s 7→s−p , fp+1〉
6: for (α, nα) ∈ {(αi + k, ni) | (αi, ni) ∈ ρf , αi + k < 0, k = 0, . . . , p} do
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7: Kα ←Modulo(s− α, J (p))
8: for i = 1, . . . , nα − 1 do
9: Kα ←Modulo(s− α,Kα)

10: end for
11: end for

12: α′ ← −∞
13: Gα′ ←

⋃
λ<−1Kλ

14: for α ∈ {αi + k | (αi, ni) ∈ ρf , αi + k ∈ [−1, 0), k = 0, . . . , p} do
15: Gα ← Gröbner basis of D[s]〈Gα′ , Kα〉 w.r.t. an elimination order for ∂
16: Hα ← Gröbner basis of Gα ∩R[s] w.r.t. an elimination order for s

17: H
(p)
α ←

{∑p
j=0 hj(−∂tt)j |

∑p
j=0 s

jhj ∈ Hα

}
18: B

(p)
α ←

{∑p
j=0 h

′
j∂

j
t f

j · f−p |
∑p

j=0 h
′
j∂

j
t t
j ∈ H(p)

α

}
19: α′ ← α
20: end for

21: return B
(p)
α

Theorem 7.1. Algorithm 1 is correct.

Proof. In Lines 1–4, the algorithm starts by computing a Gröbner basis G of the s-
parametric annihilator AnnD[s]f

s and the Bernstein-Sato polynomial bf (s) of f by using
the standard methods discussed at the beginning of this section.

In Line 5, J (p) is a basis of the submodule ofD[s] giving a presentation ofD[s]f s−p/tD[s]f s.
Indeed,

(7.3)
D[s]f s−p

tD[s]f s
=
t−pD[s]f s

tD[s]f s
=

t−pD[s]f s

tp+1 · t−pD[s]f s
∼=

D[s]

AnnD[s]f s−p +D[s]〈fp+1〉
.

Notice that, since we already have a basis G of AnnD[s]f
s, after the substitution s 7→ s−p

in G one gets a basis of AnnD[s]f
s−p. Since the action of t is bijective in R[s, f−1]f s, the

minimal polynomial b
(p)
f (s) of s acting on (7.3) can be determined from the Bernstein-Sato

polynomial bf (s) that has been already computed.

The loop that starts in Line 6 iterates over the roots of b
(p)
f (s) that are strictly negative.

For each such a root α having multiplicity nα the next steps, Lines 7–10, compute a basis
Kα of the kernel of the morphism

(s− α)nα :
D[s]

D[s]〈J (p)〉
−→ D[s]

D[s]〈J (p)〉
.

Then, the submodule P−α from (7.1) associated to s−α is isomorphic toD[s]〈Kα〉/D[s]〈J (p)〉.
The computation is done inductively by computing the kernel of (s−α)i+1 from the kernel
of (s− α)i. This strategy makes the computation much more efficient in practice.

The last part of the Algorithm works as follows. The sets Gα =
⋃
λ<αKλ form a

basis of the D[s]-submodules W−α from (7.2). Indeed, notice that by construction every
submodule D[s]〈Kα〉 contains D[s]〈J (p)〉 and hence it contains D[s]〈fp+1〉. Then, since
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tD[s]f s = tp+1D[s]f s−p, the submodules tD[s]f s ⊆ Wα ⊆ D[s]f s−p are isomorphic to

D[s]〈fp+1〉
AnnD[s]f s−p

⊆ D[s]〈Gα〉
AnnD[s]f s−p

⊆ D[s]

AnnD[s]f s−p
.

The set Gα ∩ R[s] in Line 16 forms a Gröbner basis of the R[s]-module W−α ∩ R[s]
since one has AnnD[s]f

s ∩ R[s] = 0. It remains to show how an R-basis of GpV
−αR[f−1]

is obtained from Wα ∩ R[s]. Given an elimination order <s for s in R[s], we have that
R[s]<s = R<′

s
[s] where <′s is the monomial order induced by <s in R. Therefore, for any

f ∈ R[s], if the leading monomial of f with respect to <s is in R ·si, then f ∈
⊕i

j=0R ·sj.
Consequently, a Gröbner basis Hα of Gα∩R[s] with respect to <s gives a basis of Gα∩R[s]

as R-submodule of
⊕i

j=0R · sj.
Taking the elements of degree at most p in s from Hα and making the substitution

s = −∂tt leaves us with elements of the form
∑p

j=0 h
′
j∂

j
t t
j. Line 17 denotes by H

(p)
α the

set of such elements. The isomorphism

D[s]

AnnD[s]f s−p
∼= D[s]f s−p ∼= t−pD[s]f s ∼= t−pD[∂tt]δ

is given by sending the class of 1 to t−pδ. Therefore, since tδ = fδ, the claimed R-basis

of GpV
−αι+R will be given by the set B

(p)
α obtained from H

(p)
α after substituting t = f

and multiplying by f−p. Notice that the elements of B
(p)
α are well-defined in ι+R[f−1].

However, for α < 0, B
(p)
α is actually in ι+R, that is, the division by fp in Line 18 give

rise to no rational functions. Indeed, this will follow from Lemma 4.3 once we show that

B
(p)
α ⊆ GpV

−αι+R[f−1].

Let α′ be a rational number from the set in Line 14 such that α′ < α. Then, we

have B
(p)
α′ ⊆ B

(p)
α . If α′ is the largest of such numbers, then ∂tt + α acts nilpotently on

R〈B(p)
α 〉/R〈B(p)

α′ 〉 by construction. It remains to show that t · R〈B(p)
α 〉 ⊆ R〈B(p)

α−1〉 and

∂t · R〈B(p)
α 〉 ⊆ R〈B(p+1)

α+1 〉. Let u ∈ P−α ∼= D[s]〈Kα〉/AnnD[s]f
s−p, then the first inclusion

follows from the equality

t · (s− α)nu = (s− α + 1)nt · u = 0.

For the second one, notice that sWα ⊆ Wα. Then, the second inclusion follows by the

identity ∂t = t−1(∂tt− 1). This proves that B
(p)
α ⊆ GpV

−αι+R.

In order to conclude the proof, the last thing remaining is to show the reverse inclusion

GpV
−αι+R ⊆ R〈B(p)

α 〉. But this follows from the fact that the isomorphism Ψ from
Proposition 4.1 sends the elements of Gpι+R to Tpι+R[f−1] = D[s]f s−p. �

A straightforward application of Theorem 3.1 gives the following corollary.

Corollary 7.2. For any p ∈ N and f ∈ R reduced, Algorithm 1 computes generators for
the Hodge ideals Ik(f

α), α ∈ Q ∩ (0, 1], k = 0, . . . , p.

In contrast with GpV
αι+R[f−1], assuming that p ∈ N is fixed, the set of ideals Ip(f

α)
for α ∈ Q ∩ (0, 1] is not finite since the Hodge ideals depend on α even if the V -filtration
does not, i.e. V αι+R = V α+ει+R for 0 < ε � 1. To remedy this and still have a finite
output, one can work on a transcendental extension R(α) = C(α)[x1, . . . , xn] of the base
field and compute with the polynomials Qi(α) from Theorem 3.1 symbolically.
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Remark 3.1. In practice, for a fixed α ∈ Q ∩ (0, 1], it is enough to compute the Hodge
ideals Ik(f

α) for k = 0, . . . , l, where l is the generating level of the Hodge filtration on
M(f−α). Recall that the generating level of any DX-module (M, F•) equipped with a
good filtration is the smallest integer l such that

FkDX · FlM = Fl+kM for all k ≥ 0.

Therefore, in our case, for k > l, Ik(f
α) is generated by f · Ik−1(fα) and

(7.4) {fD(h)− (α + k)hD(f) | h ∈ Ik−1(fα), D ∈ DerC(R)}.
see [MP19b, §10]. In addition, for a reduced f ∈ OX(X), the Hodge filtration onM(f−α)
is known to be generated at level n−dα̃f +αe, see [MP20a, Theorem E], where α̃f is the
minimal exponent of f , that is, the smallest root of bf (−s)/(1 − s). Conversely, notice
that from Corollary 7.2 and (7.4) one can compute the minimal generating level of the
Hodge filtration on M(f−α).

After Theorem 3.2, we also obtain a new algorithm to compute the multiplier ideals
and the (global) jumping numbers of any effective divisor, not necessarily reduced.

Corollary 7.3. For any f ∈ R, Algorithm 1 computes a set of generators of the multiplier
ideals J (fα), α ∈ Q ∩ (0, 1), and the jumping numbers of f .

8. Examples. Let us show some non-trivial examples of Hodge ideals computed with
Algorithm 1. Even though the algorithm can compute more complex examples, for the
sake of space the examples below have been chosen with a small degree and number of
variables.

Example 1. Let f = x5 + y5 + x2y2. This is perhaps the simplest plane curve which is
not quasi-homogeneous or a µ-constant deformation of a quasi-homogeneous singularity.

α I0(f
α) I1(f

α)

1
10

R (x3, x2y, xy2, y3)

3
10

R (x4, x2y, xy2, y4)

1
2
(2) R (5x4 + 2xy2, x3y, x2y2, xy3, 5y4 + 2x2y)

7
10

(x, y) ((5α− 2)x5 + (2α− 1)x2y2, x3y, xy3, (5α− 2)y5 + (2α− 1)x2y2)

9
10

(x2, xy, y2) (x6, x4y, x3y2, x2y3, xy4, y6)

1(2) (x3, xy, y3) (x6 − (2α− 1)x3y2, x5y, x4y2, x3y3, x2y4, xy5, y6 − (2α− 1)x2y3)

Table 1. Hodge ideals Ip(f
α), p = 0, 1, α ∈ Q ∩ (0, 1] for f = x5 + y5 + x2y2.

The subscripts in the first columns of Tables 1, 2 and 3 denote the nilpotency index of
∂tt− α on GrαV .

Example 2. Let fλ = (y2−x3)(y2+λx3), λ ∈ C∗. The parameter λ ∈ C∗ is an analytical
invariant of the singularity defined by fλ at the origin. That is, for different values of
λ ∈ C∗, the singularities fλ are not analytically equivalent. Set
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α I0(f
α
λ ) I1(f

α
λ )

1
12

R (y3, xy2, x3y, x4)

1
6

R (y3, x2y2, x3y, x5)

1
4

R (y4, xy3, x2y2, (λ− 1)x3y + 2y3, x5)

1
3

R (y4, xy3, (λ− 1)x3y + 2y3, 2λx5 − (λ− 1)x2y2)

5
12

R (y4, (λ− 1)x3y + 2y3, x2y3, 2λx5 − (λ− 1)x2y2)

7
12

(x, y) (y5, xy4, x2y3, (λ− 1)x3y2 + 2y4, (λ− 1)x4y + 2xy3, λx6 + y4)

2
3

(y, x2) (y5, x2y3, (λ− 1)x4y2 + 2xy4, x5y, h1)

3
4

(x2, xy, y2) (y5, x2y4, x3y3, (λ− 1)x4y2 + 2xy4, (λ− 1)x5y + 2x2y3, λx7 + xy4)

5
6

(y2, xy, x3) (y5, x2y4, x3y3, x5y2, x6y, xh1)

11
12

(y2, x2y, x3) (y6, xy5, x2y4, h2, x
5y2, h3, x

8)

1(2) (y3, xy2, x2y, x4) (y6, xy5, x3y4, x4y3, x6y2, h4)

Table 2. Hodge ideals Ip(f
α
λ ), p = 0, 1, α ∈ Q ∩ (0, 1] for f = (y2 − x3)(y2 − λx3).

h1 := λx6 + ((2α− 1)λ− 2α + 1)x3y2 + (4α− 1)y4

h2 := ((α− 1)λ2 − 2λα + α− 1)x3y3 + ((2α− 1)λ− 2α + 1)y5

h3 := ((α− 1)λ2 − 2λα + α− 1)x6y − (4α− 2)y5

h4 := x7y + λx8 + ((2α− 1)λ− 2α + 1)x5y2 + (4α− 1)x2y4

Example 3. Let f = x3 + y3 + z3 + xyz. Then, the pair (A3
C, div(f)) is log-canonical.

Therefore, the multiplier ideals are trivial. Hence, the Hodge ideals provide a first non-
trivial invariant of the singularity. Since this example is an isolated quasi-homogeneous
singularity the Hodge ideals were already determined in [Zha18].
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