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Abstract

Copulas provide a versatile tool in the modelling of multivariate distributions. With an
increased awareness for possible asymmetry in data, skewed copulas in combination with
classical margins have been employed to appropriately model these data. The reverse,
skewed margins with a (classical) copula has also been considered, but mainly with clas-
sical skew-symmetrical margins. An alternative approacch is to rely on a large family
of asymmetric two-piece distributions for the univariate marginal distributions. Together
with any copula this family of asymmetric univariate distributions provides a powerful tool
for skewed multivariate distributions. Maximum likelihood estimation of all parameters
involved is discussed. A key step in achieving statistical inference results is an extension
of the theory available for generalized method of moments, under non-standard conditions.
This together with the inference results for the family of univariate distributions, allows
to establish consistency and asymptotic normality of the estimators obtained through the
method of ‘inference functions for margins’. The theoretical results are complemented
by a simulation study and the practical use of the method is demonstrated on real data
examples.

Keywords: asymptotic normality, consistency, Fisher information, generalized method of
moments, skewed distributions.

1. Introduction

Copulas are an interesting tool for modelling multidimensional data. With an ever

increasing popularity by practitioners in fields such as finance, insurance, biology, . . . , they

have become a cornerstone in the field of multivariate modelling. Classical examples include

the family of Archimedean copulas, which are favored because of their relative simplicity,
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and the elliptical copulas. Of the latter class, the most well known examples are the

Gaussian and Student’s t-copulas. As for the univariate margins, these are usually chosen

based on the application at hand, and one often falls back on well known distributions such

as the normal, Weibull, etc., or in many instances the empirical margins as this reduces

the risk of misspecification. Skewness can be introduced in a multivariate copula-based

distribution in three ways: by using a skewed copula (see [43] and [44], among others), by

using skewed margins (see [20], [39], among others), or as a consequence, by combining

both. Skewed copulas are mostly based on some multivariate skewed distribution, much

like elliptical copulas are constructed. The main advantage in this is that asymmetric

dependencies can be incorporated in the distribution ([38], [42]). This can be combined

with skewed margins to provide the most flexible approach, but can also be considered

overkill because it drastically increases the complexity of the model.

More precisely, consider a d-dimensional random vector Z = (Z1, . . . , Zd)
⊤ ∈ Rd with

joint and marginal cumulative distribution functions respectively FZ and FZj
(for j =

1, . . . , d). By Sklar’s theorem (see [36]), there exists a d-dimensional function C : [0, 1]d 7→

[0, 1], called a copula, such that

FZ(z) = C (FZ1(z1), . . . , FZd
(zd)) ∀ z = (z1, . . . , zd)

⊤ ∈ Rd.

The copula function C ‘couples’ the univariate marginal cumulative distribution functions

FZ1 , . . . , FZd
to the joint cumulative distribution function FZ. The function C is unique in

case all FZj
are continuous, and then fully characterizes the dependence structure within

(Z1, . . . , Zd)
⊤. A copula is a d-variate distribution function with uniform margins. For

extensive introductions to copulas and their properties, the reader is referred to [29] or

[18].

Suppose now that, for j = 1, . . . , d, the marginal distribution FZj
(short the margin)

depends on a parameter ηj, with ηj ∈ Hj ⊂ Rqj , and that the copula function C depends

on a parameter θC ∈ ΘC ⊂ Rp. We thus write the copula function as C (·;θC ). Denoting

η = (η⊤
1 , . . . ,η

⊤
d )⊤ and θ = (η⊤,θ⊤

C )⊤, we then have

FZ(z;θ) = C (FZ1(z1;η1), . . . , FZd
(zd;ηd);θC ). (1)
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Throughout the paper the copula function C is assumed to be absolutely continuous, i.e.

the copula density

c(u1, . . . , ud;θC ) =
∂dC (u1, . . . , ud;θC )

∂u1 . . . ∂ud

,

with u1, . . . , ud ∈ [0, 1], exists. By differentiating (1) with respect to all zj, we obtain the

expression of the multivariate density of Z in terms of the copula density and the marginal

densities fZj
(·;ηj) (where fZj

= F ′
Zj

):

fZ(z;θ) = c
(
FZ1(z1;η1), . . . , FZd

(zd;ηd);θC

) d∏
j=1

fZj
(zj;ηj). (2)

Parameter estimation for copulas exists, like for most distributions, in many forms. In

a fully parametric setting, one can distinguish two major approaches. See [24] and [5] for

some discussions. A first parametric estimation approach is classical maximum likelihood

estimation (MLE) over all parameters (the parameters of the margins and these of the

copula), simultaneously. This is convenient when multiple margins share common parame-

ters and provides the most efficient estimator in case the margins and copula are specified

correctly. However, this yields a potentially large optimization problem, which can be com-

putationally impractical and time consuming. The second parametric estimation approach

is a two-step MLE also known as Inference Functions for Margins (IFM, see [22] and [21]).

In the first step only the marginal parameters ηj (for j = 1, . . . , d), are estimated. In the

second step, the copula parameters are estimated using the estimated marginal parame-

ters ηj obtained in the first step. The advantage over the first approach, the full MLE, is

that one does not have a single large problem, but multiple smaller optimization problems

which are easier and faster to solve. It has been shown in [21] that full MLE is in theory

the most efficient procedure, but IFM mostly performs very similar except in some excep-

tional situations. In [22] asymptotic normality of both the MLE and the IFM estimator is

proven, under certain mild regularity conditions. Due to a similar performance but a more

tractable and easier formulation, IFM is widely preferred over full MLE. Often also, the

empirical distribution of the margins is used instead of parametric margins, this results in

the Maximum Pseudo Likelihood. We will however consider parametric marginal distribu-
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tions throughout the paper. For additional information on parametric and nonparametric

margins, the reader is referred to, among others, [18].

Most results on parametric statistical inference for copulas are derived under certain

smoothness assumptions. These assumptions surely do not hold for all distributions, espe-

cially for certain classes of margins. A broad class of interesting skew univariate distribu-

tions are the two-piece distributions, but these are not always, or everywhere, differentiable.

Dating back as early as [9], the class of two-piece distributions contains well known examples

such as the split-normal distribution (see [11]) or the Fernandez-Steel distribution (see [10]).

An extensive review on two-piece distributions is given in [40]. We focus on a more recent

family of two-piece distributions, namely the quantile-based asymmetric (QBA) family of

distributions studied in [12]. A univariate skew density fZj
within this family is defined as

follows. Consider fj a unimodal symmetric around 0 density (called (symmetric) reference

density hereafter), and define the density function of the j-th margin of FZ as

fZj
(zj;ηj) =

2αj(1 − αj)

ϕj

 fj

(
(1 − αj)

µj−zj
ϕj

;κj

)
if zj ≤ µj

fj

(
αj

zj−µj

ϕj
;κj

)
if zj > µj.

(3)

Herein µj ∈ R and ϕj ∈ (0,∞) denote respectively a location and scale parameter. The

parameter αj ∈ (0, 1) denotes the skewness parameter: for α = 0.5 the density fZj
is sym-

metric around the mode µj; whereas for αj > 0.5 (respectively αj < 0.5) the density is

left-skewed (respectively right-skewed). In expression (3), ηj = (αj, µj, ϕj,κ
⊤
j )⊤, where κj

contains all other parameters from the unimodal symmetric reference density fj. An exam-

ple where an extra parameter is present is when fj is a Student’s t-distribution with degrees

of freedom νj. [12] established an asymptotic normality result for parameter estimators of

fZj
, under certain conditions on the reference density fj.

Combining a given copula with marginal distributions that are member of a very broad

family of skew distributions, allows for a broad class of skew multivariate distributions. The

family of distributions in (3) is very versatile, englobing for each given reference density

fj, symmetric and skewed univariate distributions (depending on whether αj equals 0.5

or not). The advantage of working with the specific two-pieces distributions in (3) is
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twofold: (i) in the various dimensions, different behaviours in skewness can be considered

by allowing for different densities fj, j = 1, . . . , d; and (ii) statistical inference for each of

the parameters in the margins is feasible. To validate this advantage however one needs

to find a way to combine techniques for estimating parameters in the copula functions,

with techniques for parameter estimation of the margins. A crucial point is that two-pieces

distributions can violate classical regularity conditions. Hence, we prefer IFM over MLE as

for these non-regular margins, derivative free optimization is required, which comes at an

increased computational cost. Under this setting, consistency of the IFM estimator as well

as asymptotic normality are shown to hold. Using marginal distributions that might violate

classical regularity conditions (because the fj in (3) violates them) poses no real problems

from a practical point of view. However showing the necessary theoretical inference results

demands a careful study and new techniques. It is precisely this gap in inference results

that we bridge in this paper. To achieve such results in the overarching setting of copulas

and margins, the innovation is to use a generalized method of moments methodology under

non-standard regularity conditions. This provides the necessary framework for a broader

class of models where we will focus specifically on IFM.

The outline of the paper is as follows. In Section 2 we discuss the statistical infer-

ence methodology for both the margins and the copula parameters obtained through IFM.

Section 3 contains the main theoretical results: consistency and asymptotic normality of

the IFM estimators. In Section 4 two simulation studies are conducted. Section 5 shows

practical applicability on two data examples and Section 6 finishes with a short discussion.

2. Statistical inference for IFM

Papers dealing with statistical inference for IFM include [35], [22], [28] and [26]. The

latter paper shows that asymptotic normality results hold even when the model (both mar-

gins and copula) is misspecified. In [26] it is also mentioned that IFM can be seen as a

special case of a two-step maximum likelihood estimator. Two-step maximum likelihood

estimators are in turn a special case of a generalized method of moments (GMM) estimator

where the moments are the first order conditions of the likelihood. In this light, results
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obtained for GMM can also be applied to IFM if the necessary conditions are satisfied. As

mentioned in [15], the most important part of two-step estimation is that uncertainty on

parameter estimates introduced in the first step should be taken into account in the uncer-

tainty of parameter estimates in the second step. So just viewing the first step parameter

estimates as being fixed might lead to underestimated uncertainty. Many results have been

published on GMM estimators, yet most of these only consider the case where standard

regularity conditions are satisfied. When this is not the case, the main result to fall back

on is [30] and therein mentioned related works.

The intuition for statistical inference results to hold in the global picture of both steps,

as also mentioned in [15], is that the results should hold in both steps separately. Asymp-

totically, first step inference results can then be incorporated in the second step. So as a

starting point, regularity conditions should hold for both steps, in addition to some further

conditions depending on the exact result one is after. However, in our context the classical

regularity conditions are violated in the first step. Yet, even then, albeit under a slightly

different set of conditions, consistency and asymptotic normality results equivalent to the

classical results can be obtained for the margins. Intuitively, it is thus expected that under

these surrogate conditions and the classical regularity conditions for the second step, global

statistical inference results equivalent to those under standard regularity conditions can be

obtained.

In the sequel c
(
FZ1(Z1;η1), . . . , FZd

(Zd;ηd);θC

)
is sometimes denoted shortly as c

(
U;θC

)
or as c

(
FZ(Z;η);θC

)
, where U = (U1, . . . , Ud) =

(
FZ1(Z1;η1), . . . , FZd

(Zd;ηd)
)

=FZ(Z;η).

Further, we use the Euclidean norm, ∥z∥ =
√∑d

j=1 z
2
j , unless specified differently.

It is implicitly assumed that the model is correctly specified (both the margins and the

copula) and that standard regularity conditions (Assumptions (R1)−(R3) listed below) hold

for c(U;θC ). Assumption (R4) needs to be added here. We also require that the likelihood

with respect to the copula parameters under given margins is uniquely maximized.

(R1) θ0
C ∈ N (θC ) ⊂ ΘC , with N (θC ) an open set, ΘC compact and θ0

C is the true copula

parameter.
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(R2) ∂
∂θC

ln
(
c
(
u;θC

))
, ∂2

∂θ2
C

ln
(
c
(
u;θC

))
exist for almost all u ∈ [0, 1]d and for each θC in

a neighborhood of θ0
C .

(R3) 0 < E

[(
∂

∂θC
ln
(
c
(
U;θC

)))2]
< ∞, ∀θC ∈ ΘC , i.e. the Fisher information matrix

is positive definite and bounded.

(R4) There exists a function H(u) such that
∥∥∥ ∂
∂θC

ln
(
c
(
u;θC

))∥∥∥ ≤ H(u) for almost all

θC ∈ ΘC and for all u ∈ [0, 1]d and E[H(U)] < ∞.

These are mild assumptions. Assumption (R1) is a standard assumption. Note that As-

sumption (R2) should hold for almost all u ∈ [0, 1], not for all u which is important as

many copulas derivatives do not exist on the boundaries. Assumption (R3) is needed to

assure existence and finiteness of the variance of the estimator. Finally, (R4) is, due to the

requirement of the expectation being finite, a rather weak condition necessary for uniform

convergence. In Section 3.3 we give some illustrative examples, to show these assumptions

are reasonable.

Statistical inference relies on (two-step) maximum likelihood estimation. By (2), a

contribution, for an observation Z, in the log-likelihood of a copula C (u;θC ), u ∈ [0, 1]d

with marginal cumulative distribution functions FZj
, j = 1, . . . , d is

ℓ(η1, . . . ,ηd,θC ;Z) = ln
(
c
(
FZ1(Z1;η1), . . . , FZd

(Zd;ηd);θC

))
+

d∑
j=1

ln
(
fZj

(Zj;ηj)
)
.

2.1. Statistical inference for the margins

We assume that the margins, originating from the QBA-distributions, share no common

parameters. This reduces the problem of fitting the d-dimensional problem to d univariate

problems. For statistical inference, the results obtained in [12] can be used. For these

results to hold, the following assumptions need to be met for each margin density function

fZj
(zj;ηj).

(M1) Let HR,j be a compact subset of Hj and assume that the true parameter η0
j ∈

◦
HR,j

(with
◦
HR,j the interior of HR,j).
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(M2)

∫ ∞

0

|ln (fj(s))| fj(s)ds < ∞, where fj(s) is the underlying reference density.

(M3) γj,r =

∫ ∞

0

sr−1

(
f ′
j(s)

)2
fj(s)

ds < ∞, for r = 1, 2, 3.

(M4) lim
s→∞

sfj(s) = 0 or

∫ ∞

0

sf ′
j(s)ds = −1

2
.

In case other parameters are present (such as degrees of freedom in case of an asymmetric

Student’s t component Zj), two other assumptions are also required.

(M5) The MLE η̂MLE
j,n is a weakly consistent estimator of η0

j .

(M6) The following holds

E

[
1

2

(
∂−

∂ηj

ln
(
fZj

(Zj;ηj)
)

+
∂+

∂ηj

ln
(
fZj

(Zj;ηj)
))]

ηj=η0
j

:= E

[
∂

∂ηj

ln
(
fZj

(Zj;ηj)
)]

ηj=η0
j

= 0.

In this, ∂−

∂ηj
and ∂+

∂ηj
denote the left- respectively right-hand derivative and ∂

∂ηj
the average

of both. This notation is necessary because fZj
is not necessarily differentiable with respect

to µj. It then holds that (see [12])

� When (M1) and (M2) hold (or (M5)), the MLE η̂MLE
j,n is (weakly) consistent, i.e.

η̂MLE
j,n

P→ η0
j for n → ∞.

� When (M4) holds (or (M6))

E

[
∂

∂ηj

ln
(
fZj

(Zj;ηj)
)]

ηj=η0
j

= 0. (4)

� When (M1)−(M4) hold (or (M1), (M5) and (M6))

√
n(η̂MLE

j,n − η0
j )

D→ N
(
0, Ij(η

0
j )−1

)
, for n → ∞, (5)

with Ij(η
0
j ) =


2((α0

j )
3+(1−α0

j )
3)γj,3−(1−2α0

j )
2

(α0
j )

2(1−α0
j )

2 −2γj,2
ϕ0
j

− (1−2α0
j )(2γj,3−1)

α0
j (1−α0

j )ϕ
0
j

−2γj,2
ϕ0
j

2α0
j (1−α0

j )γj,1

(ϕ0
j )

2 0

− (1−2α0
j )(2γj,3−1)

α0
j (1−α0

j )ϕ
0
j

0
2γj,3−1

(ϕ0
j )

2 ,

 ,
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for the setting when there is no extra parameter vector κj. For more general results

see [12].

If the above assumptions hold for all margins, using the previously mentioned remark that

no parameters are shared between margins, the full vector of marginal parameters η is

consistent in the sense that η̂MLE
n

P→ η0, as n → ∞ and

√
n(η̂MLE

n − η0)
D→ N

(
0, I(η0)−1

)
, asn → ∞,

where I(η0) = diag
(
Ij(η

0
j )
)

is a block-diagonal matrix of dimension q×q, with q =
d∑

j=1

qj,

with Ij(η
0
j ) as the j-th element (j = 1, . . . , d).

Remark 1. When the domain of one or more margins, say Zj, is not R, but say Mj, a

link function hj :Mj → R can be used to transform the QBA-margin of a real-valued ran-

dom variable Yj to Zj = h−1
j (Yj) on the appropriate domain. Under the above assumptions

together with the added assumption that the link function hj is a differentiable function

with h′
j(.) > 0, similar asymptotic results can be obtained. For a detailed exposition on

this link function transformations issue, see [13].

2.2. Generalised method of moments

Treating IFM as a GMM estimator instead of an MLE has the key advantage that it

provides a framework in which we can work without the cumbersome burden of already

having estimated the margin parameter. Yet, it also has its downside as the conditions

under which general results are valid, are stronger than those required for specific cases.

Fortunately there are also different results, albeit few, which weaken the general require-

ments needed for statistical inference for GMM sufficiently such that the moment functions

even need not be continuous. In particular we use results of [31] and [30] (Chapter 7) when

establishing consistency and asymptotic normality of the IFM estimator in Section 3.

GMM is an example of a minimal distance estimator. Let Z
˜

= (Z(1), . . . ,Z(n)) be n

i.i.d. realizations from the random variable Z and let g(Z;θ) ∈ Rm (with m ≥ 1) represent

the vector of (m) moment functions, consisting of the elements gηj
(Zj;ηj), j = 1, . . . , d,
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followed by gθC (Z;η,θC ), defined in respectively (9) and (10). Further recall we denote

θ = (η⊤
1 , . . . ,η

⊤
d ,θ

⊤
C )⊤. Suppose we want to find θ0 for which E[g(Z;θ0)] = 0. GMM

approaches this problem by replacing the expectation with the empirical mean. So by

finding θ̂n for which

ĝn(Z
˜

; θ̂n) =
1

n

n∑
i=1

g(Z(i); θ̂n) = 0, (6)

or at least as close to zero as possible. This corresponds to minimizing the norm of ĝn(Z
˜

;θ)

with respect to θ. The choice of norm is important, so the GMM estimator considers a set

of norms ∥∥∥∥ĝn(Z
˜

;θ)

∥∥∥∥2
W

= ĝn(Z
˜

;θ)⊤Wĝn(Z
˜

;θ).

In this, the positive (semi-)definite weighting matrix W ∈ Rm×m depends on model param-

eters. In practice it is replaced with its empirical estimate Ŵ. The choice of Ŵ is generally

user dependent, but certain choices might be beneficial as is made clear below. The reason

of the viability of GMM is that, by the law of large number ([7]), ĝn(Z
˜

;θ)
P→ E[g(Z;θ)]

for n → ∞, so the solution of (6) is expected to solve the original problem.

Using the above, in its general form (see [30]), a GMM estimator is the solution to the

maximization problem

max
θ∈Θ

Q̂n(Z
˜

;θ), (7)

with Q̂n(Z
˜

;θ) = −

[
1

n

n∑
i=1

g(Z(i);θ)

]⊤
Ŵ

[
1

n

n∑
i=1

g(Z(i);θ)

]
. (8)

Using the notation of (6), the GMM estimator (7) can be rewritten as the solution to the

optimization problem

max
θ∈Θ

{
−ĝn(Z

˜
;θ)⊤Ŵĝn(Z

˜
;θ)

}
.

As a consequence of Ŵ being positive (semi-)definite, for n large enough, Q̂n is bounded

from above by zero. In essence a GMM estimator is nothing more than the solution to an

optimization problem that provides us with the optimal set of parameters maximizing a

given criterion function.

Other estimators such as least squares estimators or extremum estimators such as the

MLE can also be expressed in the GMM framework. A MLE, for example, is defined as
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the parameter set which solves the score functions for zero. By taking g(Z;θ) in (8) to

be the score functions, the MLE becomes the GMM estimator as it yields Q̂n = 0 hence

providing a maximizer for (7).

Contrary to maximum likelihood estimators, very few results are available for IFM when

classical regularity conditions are not met. This void is filled by the GMM estimator as

there exist asymptotic results which hold under a less restrictive set of regularity conditions

which are easier met by our non-regular (in the classical sense) IFM problem. The main

advantage of treating IFM as a GMM estimator thus lies in the availability of asymptotic

theory under less restrictive conditions.

We now introduce the GMM estimator specifically for a two-step MLE such as IFM. In

the first step, the margins are estimated by MLE. As already explained in the previous

paragraph, this can be solved by taking as moment functions the score functions. So for

the first step, we have d sets of moment functions given by

gηj
(Zj;ηj) =

∂

∂ηj

ln
(
fZj

(Zj;ηj)
)
. (9)

For the second step, η is replaced by its MLE η̂MLE
n from the first step. So the only param-

eters left to estimate are the copula parameters θC . This is again done using maximum

likelihood, but by using the scores of the log-copula density with respect to the copula

parameters as moment functions. In doing so, it provides a second GMM estimator with

gθC (Z; η̂MLE
n ,θC ) =

∂

∂θC

ln
(
c(FZ(Z; η̂MLE

n );θC )
)
. (10)

The key property is that for two-step estimation, the different sets of moment functions

can be stacked as explained in [30]. This bundles the two steps into a single optimization

problem where the (combined) set of moment functions is given by

g(Z;θ) =


gη1(Z1;η1)

...

gηd
(Zd;ηd)

gθC (Z;η,θC )

 =


∂

∂η1
ln (fZ1(Z1;η1))

...

∂
∂ηd

ln (fZd
(Zd;ηd))

∂
∂θC

ln (c(FZ(Z;η);θC ))

 , (11)
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of dimension m := q + p. Note that the MLE of η in gθC (Z;η,θC ) was dropped in (11) as

they are treated as constants in those moment functions.

2.3. General asymptotic normality result of GMM estimator

In showing asymptotic normality of the IFM estimator with QBA-distributed margins,

the most important result is Theorem 7.2 of [30]. The theorem states that asymptotic

normality of GMM estimators for which the classical regularity conditions are not satisfied

can still be obtained under a milder set of conditions. In this, the moment functions (11)

are used. The theorem goes as follows.

Theorem 1 ([30], Theorem 7.2 p2186). Suppose that

(I) ĝn

(
Z
˜

; θ̂n

)⊤

Ŵĝn

(
Z
˜

; θ̂n

)
≤ inf

θ∈Θ
ĝn(Z

˜
;θ)⊤Ŵĝn(Z

˜
;θ) + op(n

−1) ,

(II) θ̂n
P→ θ0 as n → ∞ ,

(III) Ŵ
P→ W as n → ∞ with W positive (semi-)definite.

Suppose further that

ĝn(Z
˜

;θ)
P→ E[g(Z;θ)] = g0(θ) ∀θ ∈ Θ, (12)

such that (i) g0(θ
0) = 0,

(ii) g0(θ) is differentiable in θ0 with derivative G ∈ Rm×m such that G⊤WG is

non-singular,

(iii) θ0 ∈
◦
Θ,

(iv)
√
nĝn(Z

˜
;θ0)

D→ N (0,Σ), for n → ∞,

(v) for any δn > 0 such that δn → 0 for n → ∞ it holds that

sup
∥θ−θ0∥≤δn

√
n

∥∥∥∥ĝn(Z
˜

;θ) − ĝn(Z
˜

;θ0) − g0(θ)

∥∥∥∥
1 +

√
n ∥θ − θ0∥

P→ 0, for n → ∞.

Then
√
n(θ̂n − θ0)

D→ N
(
0,
(
G⊤WG

)−1
G⊤WΣWG

(
G⊤WG

)−1
)
for n → ∞.

This is where the choice of W is of importance as it can heavily influence the variance

of the estimator. Certain choices simplify the expression for the asymptotic variance of the
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estimator. Two notable candidates are W = Im, the identity matrix, and W = Wθ0 =

Σ−1. Both yield
(
G⊤ΣG

)−1
as asymptotic variance matrix. Here the impact of using a

two-step procedure can be observed as the matrix G incorporates the added uncertainty.

Though the two options for W mentioned above are asymptotically equivalent, in finite

samples the choice might impact the parameter estimates as different moment equations

have a different impact on the criterion function of the GMM estimator. In Section S.4 of

the Supplementary Material we provide a small simulation study to illustrate the impact

of the choice of matrix W on finite sample level.

Most conditions of Theorem 1 are easily verified with the exception of condition (v).

This states that ĝn as in (6), obeys some form of stochastic equicontinuity. Stochastic

equicontinuity is defined as follows ([2]). ∀ε > 0, ∃δ > 0 it holds that

lim
n→∞

P

sup
θ∈Θ

sup
∥θ−θ̃∥<δ

∥∥∥∥ĝn(Z
˜

;θ) − ĝn(Z
˜

; θ̃)

∥∥∥∥ > ε

 < ε.

Primitive conditions for stochastic equicontinuity are given in [32], [31], [2] or [30]. However,

what we need to show is a slightly stronger form with the added square-root-n behavior.

This can for example be proven by imposing a Lipschitz condition on ĝn(;θ) with respect

to the parameter vector. A second way to fulfill the assumption is by a remark made in [30]

p2186-2187 which states that (v) holds in case ĝn(θ)
unif.P→ g0(θ), i.e. uniform in probability

convergence holds for ĝn. Lemma S.1 allows us to meet this stochastic equicontinuity

condition of ĝn(Z
˜

;θ) by achieving a uniform convergence result. The proof that our model

satisfies the conditions of Lemma S.1 is provided in Section S.2 of the Supplementary

Material. This result on uniform convergence in turn allows us to establish asymptotic

normality of the IFM estimator in Section 3.2.

3. Asymptotics for the IFM parameter estimators

3.1. Consistency

Since we consider the IFM estimator as a special case of a GMM estimator, conditions

under which consistency of GMM estimators hold can also be used to show consistency of

13



the IFM estimator. Theorem 2.6 of [30] gives sufficient conditions under which a GMM

estimator is consistent. For convenience of the reader, we recall this result in Theorem S.1

of Section S.1 in the Supplementary Material. Theorem 2 states the consistency result for

our estimators θ̂IFM
n .

Theorem 2. Suppose an estimated matrix Ŵ is such that Ŵ
P→ W, where W is positive

semi-definite and invertible. Under Assumptions (M1), (M3), [(M4) or (M6)], (M7) and

(M8), and supposing that for the copula Assumptions (R1) to (R3) hold, the IFM estimator

for the copula with quantile-based asymmetric margins is consistent, i.e. θ̂IFM
n

P→ θ0 for

n → ∞.

Proof. The proof is based on Theorem S.1, which gives sufficient conditions under which a

GMM estimator is consistent. We thus need to check whether the conditions of Theorem

S.1 are satisfied with g(Z;θ) as in (11).

Checking Condition (C1). Weak consistency of Ŵ holds by assumption.

Checking Condition (C2). Per assumption W is an invertible positive (semi-)definite ma-

trix. Since we have the same number of moment equations as there are parameters, the

linear system of equations Wg0(θ) = 0 has single solution, which is g0(θ) = 0. For

E[gηj
(Z;ηj)] ,under Assumption (M4) (or (M6)), this is the case if and only if ηj = η0

j (see

[12]). By Assumption (R2), gθC (Z;η0,θC ) is continuous and hence, by the Leibniz rule,

derivative and integral can be switched. A classical likelihood argument combined with

the assumed identifiability then states that E[gθC (Z;η0,θC )] = 0 if and only if θC = θ0
C .

Hence Wg0(θ) = 0 if and only if θ = θ0.

Checking Condition (C3). This holds by Assumptions (M1) and (R1).

Checking Condition (C4). For gθC (Z;η,θC ) this condition is satisfied since it is continu-

ously differentiable with respect to θ. The problem lies in the gηj
(Z;ηj) as ln

(
fZj

(Zj,ηj)
)

is may not be differentiable with respect to µj in the point zj = µj. Hence, for the d hyper-

planes formed by zj = µj, j = 1, . . . , d, gηj
(Z;ηj) may not be continuous. The condition

however states that gηj
(Z;ηj) must be continuous almost everywhere. This is satisfied as a
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hyperplane has measure 0 and the finite union of objects with measure 0 also has measure

0. Thus gηj
(Z;ηj) satisfies the condition.

Checking Condition (C5). This condition is shown to hold for the L1-norm. This is allowed

as we are working in Rm, and it holds that for any x ∈ Rm, that ∥x∥ ≤ ∥x∥1. Furthermore,

it suffices to show the condition holds for each component of g(Z;θ), since sup
θ∈Θ

∥g(Z;θ)∥1 ≤∥∥∥∥sup
θ∈Θ

g(Z;θ)

∥∥∥∥
1

. It can be shown component-wise that each element of g(Z;θ) can be

dominated by a function with finite expectation. Some examples are given in Section S.2

in the Supplementary material. Thus condition (C5) is satisfied.

In conclusion, consistency of θ̂IFM
n thus follows from Theorem S.1.

Remark 2. Note that considering Ŵ a consistent estimator for the variance-covariance

matrix W = Σ−1, or Ŵ = Im, would satisfy the assumptions imposed on Ŵ in Theorems

1 and 2. Since the variance-covariance matrix depends on θ we in fact have Ŵθ in this

case (see also Theorem S.1). The above choices would lead to the same vastly simplified

variance-covariance matrix of the asymptotic normality result in Theorem 1.

Within the proof of consistency, it is implicitly assumed that identifiability of the model

holds. This however is guaranteed since identifiability of the model parameters underlying

the estimation problem in each of the two estimation steps is ensured. Indeed, for the

marginal parameters, this is proven in [12]; and for the copula parameter, this follows from

the uniqueness of the copula given that the margins are continuous ([36]).

3.2. Asymptotic normality

With the consistency results available we now tackle the asymptotic normality of the

IFM estimator. This is done by adapting Theorem 1 to our framework and checking

whether the conditions are satisfied. Before stating the asymptotic normality result, we

introduce some notations. Denote

G =

 Iη0 0

I⊤
η0θ0

C
Iθ0

C

 , (13)
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with

Iη0 = −E

[
∂

∂η

(
d∑

j=1

∂

∂η
ln
(
fZj

(Zj;ηj)
))]∣∣∣∣∣

η=η0

, Iθ0
C

= −E

[
∂2

∂θ2
C

ln (c(FZ(Z;η);θC ))

]∣∣∣∣
θ=θ0

,

Iη0θ0
C

= −E

[
∂

∂θ⊤
C

(
∂

∂η
ln (c(FZ(Z;η);θC ))

)]∣∣∣∣
θ=θ0

, (14)

with Iη0 ∈ Rq×q Iθ0
C
∈ Rp×p and Iη0 ∈ Rp×q.

Theorem 3. Assume Assumptions (M1)−(M4) (or (M5)−(M6)) and (M7)−(M8) hold

for Zj, ∀j = 1, . . . , d. Further suppose Assumptions (R1)− (R4) hold as well as

(N1) ĝn

(
Z
˜

; θ̂IFM
n

)⊤

ĝn

(
Z
˜

; θ̂IFM
n

)
≤ inf

θ∈Θ
ĝn(Z

˜
;θ)⊤ĝn(Z

˜
;θ) + op(n

−1),

(N2) Wθ0 = Ip.

Then the IFM estimator is asymptotically normally distributed, i.e.

√
n(θ̂IFM

n − θ0)
D→ N

(
0,
(
G⊤ΣG

)−1
)
, for n → ∞,

with G as in (13) and with Σ−1 as in Condition (iv) of Theorem 1.

Proof. First, Conditions (I) − (III) from Theorem 1 need to be checked. Condition (I)

holds by Assumption (N1). By Assumptions (M1), (M3), [(M4) or (M6)], (M7), (M8)

and (R1) and (R3), Theorem 2 holds true which implies that the estimator is consistent.

Hence Condition (II) is satisfied. Condition (III) was shown to hold in Theorem 2 by

Assumption (N2) and if Condition (iv) of Theorem 1 is satisfied.

We next investigate the remaining Conditions (i) − (v) of Theorem 1.

Checking Condition (i). From (12) and the strong law of large numbers applied to ĝn(Z
˜

;θ)

(since E[
∣∣g(Z(i),θ)

∣∣] < ∞),

g0(θ) = E


∂

∂η1
ln (fZ1(Z1;η1))

...

∂
∂ηd

ln (fZd
(Zd;ηd))

∂
∂θC

ln (c(FZ(Z;η);θC ))

 .
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By (4) and arguments in the proof of Theorem 2, it follows that g0(θ
0) = 0.

Checking Condition (ii). ∂
∂θC

ln (c(FZ(Z;η);θC )) is differentiable with respect to ηj. Thus

in extension also its expectation. In addition, E
[

∂
∂ηj

ln
(
fZj

(Zj;ηj)
)]

is differentiable with

respect to ηj in η0 (see Theorem 3.4 in [12]). This makes that g0(θ
0) is differentiable with

respect to ηj. As the copula parameter does not appear in the margins, by Assumption

(R2), g0(θ
0) is differentiable with respect to the copula parameters as well. This concludes

the differentiability part.

For the second part of Condition (ii). By the formulation of Condition (ii), it follows that

G =
∂

∂θ
g0(θ)

∣∣∣∣
θ=θ0

,

leading to the expression in (13). Invertibility of G is guaranteed by invertibility of Iη and

IθC with

G−1 =

 I−1
η0 0

I−1
θ0
C
I⊤
η0θ0

C
I−1
η0 I−1

θ0
C

 .

Hence
(
G⊤Wθ0G

)−1
= G−1(G⊤)−1 exists, and G⊤Wθ0G is thus non-singular.

Checking Condition (iii). This is satisfied by (M1) and (R1).

Checking Condition (iv). The quantity ĝn(Z
˜

;θ0) is an empirical mean with E[g(Z(i);θ0)] =

g0(θ
0) = 0 and E[g(Z(i);θ0)g(Z(i);θ0)⊤] < ∞. By the multivariate central limit theorem,

it follows that
√
nĝn(Z

˜
;θ0)

D→ N (0,Σ), for n → ∞.

Checking Condition (v). The last condition is satisfied by Proposition 1.

In conclusion, by Theorem 1, it follows that
√
n(θ̂IFM

n − θ0)
D→ N

(
0,
(
G⊤ΣG

)−1
)

, for

n → ∞.

3.3. Assumptions (R1)—(R4): illustrative examples

As a first illustration of a copula where all assumptions (R1)—(R4) are met, we consider

the bivariate Gaussian copula with copula density

c(ρ;u1, u2) =
1√

1 − ρ2
e
− 1

2(1−ρ2)

(
ρ2Φ−1(u1)2+ρ2Φ−1(u2)2−2ρΦ−1(u1)Φ−1(u2)

)
,
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in which ρ ∈ N (ρ0) ⊂ (−1, 1) and Φ−1 is the inverse of the cumulative distribution function

of a standard normal distribution. Assumption (R1) is thus met. For Assumption (R2),

the following expressions are required, in which xj = Φ−1(uj), j = 1, 2

∂

∂ρ
ln (c(ρ;u1, u2)) =

ρ

1 − ρ2
− ρ

(1 − ρ2)2
(x2

1 + x2
2) +

1 + ρ2

(1 − ρ2)2
x1x2,

and
∂2

∂ρ2
ln (c(ρ;u1, u2)) = −ρ4 − 1 + (3ρ2 + 1)(x2

1 + x2
2) − 2ρ(ρ2 + 3)x1x2

(1 − ρ2)3
.

Thus, the first two derivatives exist and are finite under Assumption (R1) and uj ̸= 0, 1.

For Assumptions (R3) and (R4) moments of the xj are required. Consider as an illustration

E[Φ−1(U1)
k]. By definition and by using the substitution Φ−1(uj) = xj this equals

E[Φ−1(U1)
k] =

∫
[0,1]2

Φ−1(u1)
kc(ρ;u1, u2)du1du2

=

∫
R2

xk
1

1

2π
√

1 − ρ2
e
− 1

2(−1ρ2)
(x2

1+x2
2−2ρx1x2)dx1dx2,

which is the k-th moment of a standard bivariate normal distribution with correlation

ρ. To check Assumption (R3), we can thus evaluate the resulting expression using the

moments of (X1, X2) ∼ N2(0,
[
1 ρ
ρ 1

]
). We need E[X4

1 ] = E[X4
2 ] = 3, E[X2

1 ] = E[X2
2 ] = 1,

E[X3
1X2] = E[X1X

3
2 ] = 3ρ, E[X2

1X
2
2 ] = 1 + 2ρ2 and E[X1X2] = ρ. This gives

E

[(
∂

∂ρ
ln (c(ρ;U1, U2))

)2]
=

1 + ρ2

(1 − ρ2)2
,

which is strictly positive and finite under (R1).

For Assumption (R4) a similar reasoning can be used. Under Assumption (R1), with ρ

not near the boundary of (−1, 1), we can set

H(u) = sup
ρ∈N (ρ0)

∥∥∥∥ ∂

∂ρ
ln (c(ρ;u1, u2))

∥∥∥∥ .
Then E[H(U)] is related to some finite combination of moments of Xj which results in

(R4) holding true. The last assumption to check is (N1) as (N2) is a fixed choice to be

made. For this, is suffices that the margin parameter estimator and that of the copula

parameter are root-n consistent. For the QBA-distributed margins, this assumption is
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satisfied by (5). For ρ, we rely on the result that for a bivariate normal distribution, the

MLE of the correlation parameter is indeed also root-n consistent by classical likelihood

theory arguments. A similar reasoning can be made for other copulas based on elliptical

distributions, as long as the first few moments exist.

A second illustrative example concerning the mildness of Assumptions (R1)—(R4) is

provided in Section S.3 of the Supplementary Material.

4. Simulation study

The simulation study consists of two parts. In a first exploratory part, with Setting

1, the aim is to briefly investigate the finite-sample performance of the IFM estimators of

the copula and marginal parameters, focusing on the behaviour for increasing sample size.

In a second part, with Setting 2, the aim is to study the finite-sample distributions of the

estimated parameters more in detail, keeping in mind the asymptotic results obtained in

Section 3.2. Throughout the simulation study as well as in Section 5 we consider for the

margins the following distributions: the QBA-normal, the QBA-logistic, the QBA-Laplace,

and the QBA-Student’s t-distributions, with densities as in (3) with as reference density fj

the density of respectively a symmetric standard normal, logistic, Laplace and Student’s t.

Throughout this section 1 000 samples of sample size n are simulated from a considered

simulation model. From the r-th sample, with r = 1, . . . , 1 000, we obtain the IFM estimate,

denoted θ̂
(r)
j , of a model parameter θj. Approximations of the bias, variance and mean

squared error (MSE) for each parameter θj are then calculated via

Abias(θ̂j) =
1

1 000

1 000∑
r=1

θ̂
(r)
j − θj , AVar(θ̂j) =

1

999

1 000∑
r=1

(
θ̂
(r)
j − 1

1 000

1 000∑
l=1

θ̂
(r)
j

)2

and AMSE(θ̂j) = AVar(θ̂j) + Abias(θ̂j)
2. (15)

Setting 1. In this setting we consider three copula models: a ten-dimensional Frank

copula, a bivariate Gaussian copula and a six-dimensional Student’s t-copula. Margins and

their parameters are kept the same in each of the three models: as such, for example, the

margins of the Gaussian copula correspond to the first two margins of the Frank Copula.
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The marginal distributions FZj
and their parameters are listed in Table 1 (see the columns

under the heading ‘Setting 1’). Copula parameters are chosen such that they have a pairwise

Kendall’s tau of approximately 0.2, except for the Student’s t-copula, which has pairwise

Kendall type dependencies of at most 0.35.

Table 1: Margin distributions and parameters for Settings 1 and 2.

Setting 1 Setting 2

Margin Type αj µj ϕj νj Margin Type αj µj ϕj

d1 QBA-Student’s t 0.2 2 0.2 4 d1 QBA-Laplace 0.4 1 0.5

d2 QBA-normal 0.7 3 0.4 d2 QBA-normal 0.7 2 2.9

d3 QBA-logistic 0.3 −1 0.1 d3 QBA-logistic 0.3 3 0.1

d4 QBA-Laplace 0.8 −1 2

d5 QBA-Student’s t 0.6 4 1 15

d6 QBA-normal 0.3 −2 1

d7 QBA-logistic 0.3 1 10

d8 QBA-Laplace 0.5 −2 0.5

d9 QBA-Student’s t 0.7 −3 5 25

d10 QBA-normal 0.2 4 3

The Archimedean Frank copula is characterized by a single parameter θC which governs

the dependency. We take θC = 2, which corresponds to a weak dependency. For the

bivariate Gaussian copula θC = ρ = 0.2, whereas for the six-dimensional Student’s t-

copula θC = (Vec(Σ)⊤, νC )⊤, with νC = 3 and the 6 × 6 correlation matrix Σ given in

(S.2) in the Supplementary Material.

In Setting 1 we consider sample sizes n equal to 75, 150, 300 and 600 (hence doubling

each time the sample size). Note that the number of parameters to be estimated in the simu-

lation models is considerable: 34, 8 and 36 parameters for, respectively, the 10-dimensional

Frank copula model; the 2-dimensional Gaussian copula model; and the 6-dimensional

Student’s t-copula model. By employing IFM we estimate each margin separately. Each

margin contains at most 4 parameters, and we thus have at least 75 observations to get

20



●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2−11

2−10

2−9

2−8

2−7

75 150 300 600
n

A
M

S
E

●

●

●

●

●

alpha1
alpha2
alpha3
alpha4
alpha5

(a) α (part 1).

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2−11

2−10

2−9

2−8

2−7

75 150 300 600
n

A
M

S
E

●

●

●

●

●

alpha6
alpha7
alpha8
alpha9
alpha10

(b) α (part 2).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2−10

2−8

2−6

2−4

2−2

20

75 150 300 600
n

A
M

S
E

●

●

●

●

●

mu1
mu2
mu3
mu4
mu5

(c) µ (part 1).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2−5

20

25

75 150 300 600
n

A
M

S
E

●

●

●

●

●

mu6
mu7
mu8
mu9
mu10

(d) µ (part 2).

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2−14

2−12

2−10

2−8

2−6

2−4

2−2

75 150 300 600
n

A
M

S
E

●

●

●

●

●

phi1
phi2
phi3
phi4
phi5

(e) ϕ (part 1).

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

2−10

2−5

20

75 150 300 600
n

A
M

S
E

●

●

●

●

●

phi6
phi7
phi8
phi9
phi10

(f) ϕ (part 2).

●

●

●

●

●

●

●

●

●

●

●

●

20

25

210

215

220

75 150 300 600
n

A
M

S
E

●

●

●

nu1
nu5
nu9

(g) ν.

●

●

●

●

2−7

2−6.5

2−6

2−5.5

2−5

2−4.5

2−4

75 150 300 600
n

A
M

S
E

● theta

(h) θC .

Figure 1: Setting 1. Approximate Mean Squared Error of the estimated (36) parameters for the ten

dimensional Frank-copula with parameters as in Table 1 and θC = 2. Results for sample sizes 75, 150, 300

and 600, presented on a vertical log2-scale.

estimates for them. So in terms of quality of the marginal parameter estimates, we would

expect decent results. For all models, margin estimation is performed by the bobyqa-
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algorithm contained in the R-package nloptr (see [33] and [23]). Twenty different starting

values are used per margin and as a convergence criterion, a relative step size of 10−5 is

used. The number of iterations is capped at 50 000. Regarding estimation of the copula pa-

rameters, this is performed under the default setting of the fitCopula function contained

in the copula-package (see [19]). Because of numerical stability, the optimization method

used differs for the three copula models. For the Frank copula, L-BFGS-B is used, for the

Gaussian copula Nelder-Mead and for the Student’s t-copula BFGS. In essence this does not

make a difference in the quality of the estimation, but it leads to a significant difference in

computation time. This is most noticeable for the elliptical copulas as BFGS takes longer

to converge (given models with the same dimensions).
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Figure 2: Setting 1. Approximate Mean Squared Error of θC for the Frank copula of dimensions 2, 6 and

10. Results for sample sizes 75, 150, 300 and 600, presented on a vertical log2-scale.

Figure 1 presents the AMSE-values, on a logarithm with base number 2 scale, for the

parameter estimates of the Frank copula model. The simulation results regarding the

Gaussian and Student’s t-copula are presented in the Supplementary Material in Figures

S.1 and S.2, respectively. All simulation results show a very good finite-sample performance

of the IFM estimation procedure.
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Figure 2 summarizes results on AMSE-values (on a log2-scale) for simulations from a

two-, six- and ten-dimensional Frank copula model. This shows a decreasing AMSE of θC

for increasing dimensions and increasing sample size. The effect of the sample size is as

expected; however, the impact of the dimensionality might seem strange at first sight as

the AMSE actually improves if we increase the dimensionality. This contradicts the curse

of dimensionality. This phenomenon is also reported in [17] and [8]. This is due to the fact

that an Archimedean copula is exchangeable, which circumvents the curse of dimensionality

(see [17]) and turns it into a blessing of dimensionality.

Table 2: Setting 2: approximate bias, variance and ratio of approximate variance and asymptotic variance.

Average Âs.Var denotes the average of the estimated asymptotic variance over the different replications.

n Parameter α1 µ1 ϕ1 α2 µ2 ϕ2 α3 µ3 ϕ3 θC

True value 0.4 1 0.5 0.4 2 2.9 0.3 3 0.1 1.3

25

ABias −0.0040 −0.0059 −0.0724 0.0326 0.3187 −0.9689 −0.0218 −0.0113 −0.0286 −0.0098

AVar 0.0243 0.2926 0.0186 0.0495 22.4019 1.5661 0.0433 0.0636 0.0017 0.0264

Ratio 2.5302 3.5113 1.5925 2.6702 2.1141 2.1356 2.7408 2.4376 2.0482 1.0335

Average Âs.Var 0.0086 0.0709 0.0113 0.0130 6.8762 0.5304 0.0118 0.0183 0.0006 0.0256

50

ABias −0.0003 0.0034 −0.0254 0.0173 0.2712 −0.4068 −0.0154 −0.0116 −0.0121 0.0069

AVar 0.0079 0.0832 0.0069 0.0179 8.9105 0.7708 0.0144 0.0226 0.0008 0.0132

Ratio 1.6452 1.9963 1.1834 1.9342 1.6818 2.1021 1.8228 1.7297 1.9260 1.0345

Average Âs.Var 0.0048 0.0384 0.0056 0.0089 4.6942 0.3355 0.0077 0.0113 0.0004 0.0124

100

ABias −0.0006 −0.0001 −0.0098 0.0084 0.1595 −0.1663 −0.0073 −0.0066 −0.0048 0.0041

AVar 0.0034 0.0350 0.0032 0.0064 3.5964 0.2780 0.0051 0.0082 0.0003 0.0070

Ratio 1.4346 1.6806 1.0986 1.3762 1.3576 1.5161 1.2789 1.2570 1.3980 1.0980

Average Âs.Var 0.0024 0.0205 0.0030 0.0044 2.4820 0.1825 0.0038 0.0062 0.0002 0.0065

250

ABias −0.0010 0.0021 −0.0043 0.0036 0.0527 −0.0635 −0.0018 −0.0006 −0.0014 0.0015

AVar 0.0012 0.0121 0.0012 0.0021 1.1617 0.0830 0.0017 0.0028 0.0001 0.0027

Ratio 1.2617 1.4473 0.9975 1.1351 1.0963 1.1314 1.0813 1.0849 1.1389 1.0694

Average Âs.Var 0.0010 0.0083 0.0012 0.0018 1.0330 0.0738 0.0016 0.0026 0.0001 0.0026

1 000

ABias −0.0007 −0.0016 −0.0009 0.0008 0.0143 −0.0124 −0.0003 −0.0001 −0.0004 0.0015

AVar 0.0003 0.0026 0.0003 0.0005 0.2771 0.0183 0.0004 0.0007 0.0000 0.0006

Ratio 1.1737 1.2295 1.0552 1.0519 1.0461 1.0003 1.0912 1.0913 1.0510 1.0157

Average Âs.Var 0.0002 0.0021 0.0003 0.0005 0.2635 0.0185 0.0004 0.0007 0.0000 0.0006

Setting 2. In this setting, we investigate the finite-sample distribution of the IFM esti-

mator. We consider a Gumbel copula with parameter θC = 1.3 and margins as indicated

in Table 1 (under the heading ‘Setting 2’). With this copula parameter we have again a
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rather weak dependence structure, with a bivariate Kendall’s tau equal to approximately

0.23. The simulation model thus includes 10 parameters. We draw samples of sizes n = 25,

50, 100, 250 and 1 000. For each sample size we summarize the simulation results by

presenting the approximate bias, variance and MSE, calculated from (15). Furthermore,

for each parameter, the approximate (finite-sample) variance is compared to the theoret-

ical (asymptotic) variance established in Theorem 3, and computed via n−1
(
G⊤ΣG

)−1

with Σ and G as in (iv) of Theorem 1 and (13), respectively. For presentational ease we

report the ratio of the approximate (finite-sample) variance and the theoretical (asymp-

totic) variance. The results can be found in Table 2. To give an idea about the quality

of the estimated asymptotic variance, obtained by substituting the estimated parameters

into the expression for the asymptotic variance we also report on the average of this esti-

mated (asymptotic) variance over the different replications (denoted as Average Âs.Var in

the Table 2). Note that the approximate variance approaches the asymptotic (theoretical)

variance, at the expected n−1-rate. The ratio gets closer to one with increasing sample

size. The approximate bias is smaller for larger sample sizes. Boxplots of the parameter

estimates are shown in Figures S.4 and S.5 in the Supplementary Material. These confirm

the behaviour summarized in Table 2.

In Sections S.5 and S.6 of the Supplementary Material we further provide illustrations,

via simulations in the above Setting 2, of the finite-sample distributions of the estimators,

as compared to the asymptotic normal distribution.

5. Real data examples

In the two real data examples, we use a parametric copula C with flexible skew asym-

metric marginal distributions coming from the family defined in (3). We consider the same

four candidate QBA-distributions as in Section 4: the QBA-normal, the QBA-logistic, the

QBA-Laplace, and the QBA-Student’s t-distributions. Candidates for the copula C are

four Archimedean copulas (Gumbel, Joe, Frank and Clayton copula), as well as a Gaussian

and Student’s t-copula. These six copulas together with the four margins leads to 6 + 4×d

possible parametric models that we consider in our analysis. As a benchmark to compare
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the fitted distributions to, we use the multivariate skew-normal and the skew-t distribution,

available in the literature.

The comparison of different models is based on an information criterion. A commonly-

used information criterion is Akaike’s information criterion (AIC, [1]):

AICn = −2ℓ
(
θ̂ML
n ;Z(1), . . . ,Z(n)

)
+ 2k, (16)

in which k is the number of model parameters to be estimated. Note that since we used

IFM parameter estimation instead of MLE, using the AIC formula above is no longer

completely correct. In order to give accurate results, the penalty should be slightly

modified. This results into the copula information criteria (CIC), which is of the form

CICn = −2ℓ
(
θ̂IFM
n ;Z(1), . . . ,Z(n)

)
+ 2k̃n, where k̃n is a penalty term based on the Fisher

information and variance of the score functions of both the margins and the copula. More

precisely

k̃n =
d∑

j=1

k̃ηj
+ k̃θC =

d∑
j=1

tr
(
I−1
ηj

Kηj

)
+ tr

(
I−1
η K∗

η

)
+ tr

(
−I−1

θC
ITη,θC I

−1
η Kη,θC + I−1

θC
KθC

)
,

in which Iηj
, IθC and Iη,θC are as defined in (14) and

Kηj
= E

[(
∂

∂ηj

ln fZj
(Zj;ηj)

)(
∂

∂ηj

ln fZj
(Zj;ηj)

)⊤
]
,

KθC = E

[(
∂

∂θC

ln c(FZ(z;η);θC )

)(
∂

∂θC

ln c(FZ(z;η);θC )

)⊤
]
,

Kη,θC = E

[(
∂

∂ηj

ln fZj
(Zj;ηj)

)(
∂

∂θC

ln c(FZ(z;η);θC )

)⊤
]
,

and K∗
η = E

[(
∂

∂ηj

ln fZj
(Zj;ηj)

)(
∂

∂η
ln c(FZj

(FZ(z;η);θC )

)⊤
]
.

If the margins and copula are correctly specified and regularity conditions fulfilled, then

the CIC penalty simplifies to the classical AIC penalty as shown in [2] and the likelihood

contribution of (16) is obtained using the IFM parameter estimates. Hence using the IFM

two-step maximum likelihood estimator θ̂IFM
n in (16) one gets the two-stage AIC criterion,
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denoted by AIC2ML in the tables, in which the log-likelihood is given by

ℓ

(
θ̂IFM
n ;Z

˜

)
=

n∑
i=1

(
ln
(
c
(
FZ1(Z

(i)
1 ; η̂IFM

1,n ), . . . , FZd
(Z

(i)
d ; η̂IFM

d,n );θC

))
+

d∑
j=1

ln
(
fZj

(Z
(i)
j ; η̂IFM

j,n

))
.

A full exposition on the above information criteria is given in [25]. As noted in the

latter paper, the difference between AIC2ML and CIC is only notable in small samples. In

larger samples, this difference is minimal. This justifies the use of the AIC2ML criterion for

comparison here. As for the skew-normal and skew-t distributions parameter estimates are

obtained through MLE, and hence (16) remains valid. In our analysis we proceed as follows.

The best fitted margins are chosen using the AIC criterion. Using the pseudo-observations

obtained from the best fitting margins, a copula is chosen (from the 6 considered copulas),

and the copula that leads to a minimal CIC is then considered the best copula.

Since we only consider 4 candidate margins, we carry out a test to see whether or not the

chosen margin (denoted FZj
) is appropriate for the corresponding variable. For this purpose

a Kolmogorov-Smirnov (KS) goodness-of-fit test (see [27] and [37]) is conducted. This test

compares the empirical cumulative distribution function FZj ,n based on the observations

of a variable Zj (say) with the fit FZj
(·; η̂IFM

j,n ). For a margin FZj
, the test statistic is

Kn = sup
z∈R

∣∣FZj ,n(z) − FZj
(z; η̂IFM

j,n )
∣∣. As the test statistic Kn involves estimated parameters,

it is a known that the critical values of the KS-test are no longer applicable. In order to

correct for this behaviour, the P -value of the test is obtained from a bootstrap adaptation

proposed in [3]. Under mild conditions, fulfilled by Assumptions (M1)−(M6) and uniform

continuity of the reference density fj(·), this bootstrap test is consistent. The smooth

bootstrap procedure is as follows, first the test statistic from the sample against the fitted

distribution is calculated. Next, B independent samples of the same size as the data are

drawn from the fitted distribution. For each of the B samples, the chosen distribution is

then refitted and the test statistic from the refitted distribution against the original fitted

distribution is computed. The P -value is then obtained by taking the number of bootstrap

samples which yield a larger test statistic than the data. In our analysis 1 000 bootstrap

samples are used.
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5.1. Pokémon data

This data set contains information on the characteristics (statistics) of 800 existing

Pokémon characters. The dataset is freely available at https://www.kaggle.com/mlomuscio/

pokemon. Variables in this data set are the inherent statistics each Pokémon has. These are:

Hitpoints (HP), Attack (Atk), Defence (Def), Special attack (Sp. Atk), Special Defence

(Sp. Def) and Speed (Spd). The best fitting margin distributions with their correspond-

ing parameters and AIC value are given in Table 3. In Figure S.6 in Section S.7.1 of the

Supplementary Material, the four fitted margins for the variable Defence are depicted. All

four fits clearly show that the data on Defence is right skewed. This is also reflected in

the estimate α̂MLE
Def = 0.2458 in Table 3 for the selected QBA-logistic margin. Thus, using

skewed margins is necessary for this data set.

Table 3: Pokémon data: best fitting margin (with parameters) based on AIC for each of the variables and

corresponding AIC and p-value of Smooth bootstrapped KS-test.

Variable Best fitted margin α̂MLE µ̂MLE ϕ̂MLE ν̂MLE AIC
Smooth Bootstrap

KS-test

HP QBA-Student’s t 0.3001 54.4601 8.4933 7.3854 7312.223 0.010

Atk QBA-normal 0.3172 60.6742 13.6339 7795.042 0.517

Def QBA-logistic 0.2458 51.0036 5.9594 7643.270 0.097

Sp. Atk QBA-normal 0.2177 45.3211 10.4044 7747.145 0.293

Sp. Def QBA-Student’s t 0.2670 52.2203 9.9730 28.4425 7515.755 0.036

Spd QBA-normal 0.3255 51.9137 12.5273 7637.763 0.005

Some further caution is needed when applying the bootstrap KS-test discussed above.

Indeed, despite the data being regarded as continuous, there are accumulations of mass

at multiples of 5. This creates quite large jumps in the empirical cumulative distribu-

tion function FZj ,n. To accommodate this near discrete behaviour, a smooth goodness-

of-fit test is applied. This is obtained by replacing FZj ,n in the classical tests with a

smoothed version. As shown in [34], these type of tests have better power and are over-

all better when data show a more discrete behaviour. The smooth tests are close to the

classical FZj ,n-based test as shown in [41] and asymptotically equivalent in terms of ef-
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ficiency (see [4]). We thus opted for a smoothed Kolmogorov-Smirnov test (available

in the snpar-package) with a uniform kernel. Bandwidth is taken as proposed in [41],

i.e. h = 2.0362 ((8π)/3)1/5 (IQR(Zj,1, . . . , Zj,n))/(1.349))2/3 n−1/3, with IQR(Zj,1, . . . , Zj,n)

the interquartile range of the observations on the variable Zj. As the parameters are es-

timated, we apply the smoothed KS-test combined with the bootstrapping principle. The

results for the smooth bootstrap KS-test can be found in Table 3. These indicate that

the fits for Attack, Defence and Special Attack are appropriate at a 5% significance level

whereas at a 1% significance level all variables except Speed are modelled appropriately.

Table 4: Pokémon data: log-likelihood, AIC2ML and CIC contributions of copula fits using pseudo-

observations obtained through the margin of Table 3.

Copula Log-likelihood AIC2ML contribution CIC contribution

Gumbel 542.9811 −1083.9622 −1082.445

Clayton 625.5084 −1249.0168 −1244.927

Frank 613.4586 −1224.9172 −1223.599

Joe 362.8394 −723.6788 −720.091

Gaussian 800.7414 −1571.4827 −1552.521

Student’s t 945.1691 −1858.3381 −1856.663

With the margins fitted, the pseudo-observations can be obtained. We fit all six cop-

ulas to them, which resulted into the copula contribution to the log-likelihood, AIC- and

CIC-values listed in Table 4. From this, it is immediately clear that a Student’s t-copula

provides the best fit. The estimated copula parameters are Σ̂IFM
Pokémon given in (S.3) (in

the Supplementary Material) and ν̂IFM
C = 7. All estimated correlations are positive and

rather large, except for the variable Speed for which the estimates are slightly lower. These

positive correlations are to be expected as overall, characteristic features increase all to-

gether (evolution to more competitive Pokémons). The lower correlation between Speed

and other characteristics can be explained by balancing reasons as Pokémon usually having

lower Speed because one or more of their other characteristics are rather large, preventing

them from becoming overpowered as they can be outspeeded.
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For comparison of our Student’s t-copula-based model with the two benchmarks (mul-

tivariate skew-normal and skew-t distributions), we give in Table 5 the total AIC2ML value

of our model and those of the two benchmark models. Clearly the copula-based model

provides a better fit. This follows from the AIC2ML value always being larger or equal

to the AIC of the model, as IFM parameters are sub-optimal when considered in the full

MLE context. Since we already have a lower criterion value, estimating the model with

MLE would only improve this thereby further distancing the copula-based model from the

skew-elliptical ones.

Table 5: Pokémon data: AIC2ML for the selected copula-based and the skew-elliptical models.

Model Student’s t-copula Skew-normal Skew-t

AIC2ML 43792.86 44758.60 44397.44

5.2. White wine quality

The second data set is a subset of the quality of wine data used in [6]. For a first

analysis here, three variables are selected for white wines only: Volatile Acidity (amount

of tartaric acid in g per dm3), pH and Sulphates (amount of potassium sulphate in g per

dm3). According to [16] these characteristics are important when it comes to predicting

the quality of wines. Figure 3 depicts histograms for the data on each variable. Pairwise

scatter plots are in Figure S.7 in the Supplementary Material. As the data consists of wines

of different quality, which has an impact on the variables considered here, we only take into

account the 880 wines which are rated at quality 7. All three variables are continuous, but

they are rounded to 0.01 (0.005 for Volatile Acidity), and hence we also here apply the

smoothed bootstrap KS-test. We consider our 6 + 4 × 3 = 18 parametric models and the

two benchmark models (for comparison purpose). Tables 6 and S.2 report on the results.

From Table 6 we can conclude that Volatile Acidity and Sulphates are well described by

our selected margin model, whereas this is to a lesser extent the case for the variable pH.

Concerning the margins, the histograms in Figure 3 already show clear right-skewness. See
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Figure 3: White wine data: histograms of the variables.

Table 6: Wine data: best fitting margin (with parameters) based on AIC, for each of the variables, and

corresponding AIC and p-value of the smooth bootstrapped KS-test.

Variable
Best fitted

margin
α̂MLE µ̂MLE ϕ̂MLE AIC

Smooth Bootstrap

KS-test

Volatile acidity QBA-normal 0.2333 0.1905 0.0305 −1827.3514 0.190

pH QBA-normal 0.4012 3.1636 0.0755 −753.7036 0.011

Sulphates QBA-logistic 0.2441 0.4068 0.0250 −1219.6643 0.383

also the estimates α̂MLE
j in Table 6 which are all smaller than 0.5. With α̂MLE

pH = 0.4012, the

distribution for the variable pH seems closer to symmetry than for the other two variables.

The copula fits using the pseudo-observations from these margins are given in Table

S.2 in the Supplementary Material. Contrary to the first data example, a Gaussian cop-

ula is selected here. The estimated correlation matrix, given in (S.4), indicates that the

pseudo-observations for pH are positively correlated with the pseudo-observations of both

Sulphates and Volatile acidity, whereas the latter two are slightly negatively correlated.

The selected copula model clearly outperforms both benchmark skew-elliptical models, as

can be concluded from the AIC2ML values for the selected copula-based model (−3828.686),

the skew-normal distribution (−3701.502) and the skew-t-distribution (−3709.944).
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5.3. Further investigation of wine data

In a further analysis we were interested in finding differences, based on the same three

variables, between red and white wines of different quality (wines of quality categories 4

and 7). Section S.7.3 contains the detailed analysis. Figure 4 shows densities of the fitted

univariate margins and contour plots of the fitted bivariate margins. This figure clearly

reveals the main differences between the four groups of wines, described in Section S.7.3.

0

1

2

3

4

5

0.00 0.25 0.50 0.75 1.00
Volatile Acidity

D
en

si
ty

0

1

2

3

4

3.0 3.5 4.0
pH

D
en

si
ty

0

2

4

0.4 0.8 1.2
Sulphates

D
en

si
ty

3.0

3.2

3.4

0.2 0.4 0.6 0.8
Volatile Acidity

pH

0.4

0.6

0.8

1.0

0.25 0.50 0.75
Volatile Acidity

S
ul

ph
at

es

0.4

0.6

0.8

2.9 3.1 3.3 3.5 3.7
pH

S
ul

ph
at

es

White quality 4 White quality 7 Red quality 4 Red quality 7

Figure 4: Wine data: univariate and bivariate margins (contour plots) of the fits for white and red wines

of quality 4 and 7. Contours represent density levels of 2, 4, 6 and 8.

6. Discussion

In this work, we have shed some light on statistical inference results for parameter

estimation for copula-based multivariate distributions with skew margins. More specifically,

conditions were provided under which consistency and asymptotic normality hold for a

family of margins that are not necessarily continuously differentiable, but still behave “well

enough”. We obtained these results under the specific setting that margins come from the

quantile-based asymmetric family of distributions. However, this is not a requirement as

similar conditions for other families of possibly non-smooth distributions can be derived.
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In obtaining the results, the more general framework of GMM estimators turns out to be

crucial. This allows for the necessary tools in obtaining the statistical inference results.

The main disadvantage of choosing a parametric estimation technique for the margins

in IFM is that the model must be correctly specified. By using asymmetric margins, the

risk of misspecification is lowered. If clear signs of skewness are present in the marginal

data, asymmetric margins do have a significant advantage over classic symmetric margins.

Misspecification might still be present. Therefore, a close inspection of whether the chosen

margins are suitable should be conducted. If they provide a viable choice, an efficiency

argument works in favor of using the parametric margins. Otherwise, one can resort to

a semi-parametric setting, for which statistical inference results are also available in the

dedicated literature. A mix of both parametric and non-parametric margins might be of

interest as it may combine the best of both worlds. This is part of future research.

In the provided examples, we restrict ourselves to classical families of copulas. The

attentive reader might note that all of these are in a sense symmetric. The Archimedean

copulas are exchangeable and the Gaussian and Student’s t-copula elliptically symmetric.

If there are clear indications of asymmetric dependence in the data, symmetric copulas no

longer suffice. However, the general conditions stated here do not discriminate on the type

of copula. As long as a copula meets the conditions, the obtained results apply. These

can thus readily be incorporated in other families of copulas as well to allow for even more

flexible modelling. It must be stated though, that tractability might be lost in doing so.

So one must weigh the advantages against the disadvantages. It might also be of interest

to study more specifically how the tail behaviour of the multivariate copula impacts the

multivariate distribution. A first step in such a study would be to describe in an adequate

way how to measure multivariate tail dependence. There are various approaches to measure

multivariate tail dependence. See for example [14] for a recent paper in this respect.
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SUPPLEMENTARY MATERIAL
Additional Material. The Supplementary Material contains some preliminaries in Sec-

tion S.1, the proof of Proposition 1 in Section S.2, and some additional simulation

results in Sections S.4–S.6. An additional example for which Assumptions (R1)—

(R4) are checked is provided in Section S.3. Finally Section S.7 contains supplements

to the real data applications. See PaperCopTwoPSupplement.pdf.

R-codes. R-codes for all numerical examples are provided in PaperCopTwoPRCodes.zip.
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SUPPLEMENTARY MATERIAL

to the paper

Estimation in copula models with two-piece skewed

margins using the inference for margins method

by

Jonas Baillien, Irène Gijbels and Anneleen Verhasselt

S.1. Preliminaries

Lemma S.1 (ULLN, [3], Lemma 2.4 p2129). Let Z(1), . . . , Z(n) be i.i.d. replicates from Z,

a univariate random variable with density function fZ(z;η), η ∈ H. If

(U1) H is compact,

(U2) ∂
∂η

ln
(
fZ(z(i);η)

)
is continuous almost everywhere in η ∈ H,

(U3) sup
η∈H

∥∥∥ ∂
∂η

ln (fZ(z;η))
∥∥∥ ≤ G(z), and E[G(Z)] < ∞.

Then

sup
η∈H

∥∥∥∥∥ 1

n

n∑
i=1

∂

∂η
ln (fZ(Z;η)) − E

[
∂

∂η
ln (fZ(Z;η))

]∥∥∥∥∥ P→ 0,

and E
[

∂
∂η

ln (fZ(Z;η))
]
is continuous in η.

Theorem S.1 ([3], Theorem 2.6 p2132). With Z
˜
as previously defined, if

(C1) Ŵθ,n
P→ Wθ, as n → ∞ for all θ ∈ Θ,

(C2) Wθ is positive semi-definite and Wθg0(θ) = 0 if and only if θ = θ0,

(C3) θ0 ∈ Θ compact,

(C4) g(z;θ) is continuous almost everywhere in θ ∈ Θ,

(C5) E

[
sup
θ0∈Θ

∥g(Z;θ)∥
]
< ∞.

Then θ
P→ θ0, for n → ∞.
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S.2. Uniform law of large numbers for ĝn

Proposition 1. Under Assumption (M1), (R1), (R2) and (R4), the uniform law of large

numbers (Lemma S.1) applies to ĝn as in (11), i.e.

sup
θ∈Θ

∥∥∥∥ĝn(Z
˜

;θ) − g(Z
˜

;θ)

∥∥∥∥ P→ 0 as n → ∞.

Proof. We want to use Lemma S.1 to show that ĝn(θ) is uniformly convergent to g0(θ),

and g0(θ) is continuous in θ. Hence, for

1

n

n∑
i=1

∂

∂ηj

ln
(
fZj

(Zj;ηj)
)
,

∀j = 1, . . . , d, the conditions of Lemma S.1 need to be fulfilled. Condition (U1) of Lemma

S.1 holds by Assumption (M1). For Condition (U2) it suffices to note that

∂

∂ηj

ln
(
fZj

(Zj;ηj)
)
,

possibly has a single discontinuity for the derivative with respect to µ in the point µ = z(i).

Rest to check Condition (U3). This can be checked on a function-to-function basis. As

an example, consider Z to follow a QBA-normal distribution (other distributions can be

checked in a similar fashion). We have

∂
∂α

ln (fZ(z;η)) = 1−2α
α(1−α)

+

 1−α
ϕ2 (z2 − 2zµ + µ2) if z ≤ µ

−α
ϕ2 (z2 − 2zµ + µ2) if z > µ

∂
∂µ

ln (fZ(z;η)) =



(
1−α
ϕ

)2
(z − µ) if z < µ

1
2

((
1−α
ϕ

)2
+
(

α
ϕ

)2)
(z − µ) if z = µ(

α
ϕ

)2
(z − µ) if z > µ

∂
∂ϕ

ln (fZ(z;η)) = − 1
ϕ

+


(1−α)2

ϕ3 (z2 − 2zµ + µ2) if z ≤ µ

α2

ϕ3 (z2 − 2zµ + µ2) if z > µ.

With the imposed bounds on the parameters α, µ and ϕ, there exist finite δi, i = 1, . . . , 8

depending solely on ε such that

∥∥∥∥ ∂

∂η
ln (fZ(z;η))

∥∥∥∥2 ≤
∥∥∥∥∥∥∥∥∥


δ1 + δ2z + δ3z

2

δ4 + δ5z

δ6 + δ7z + δ8z
2


∥∥∥∥∥∥∥∥∥
2

= G(z)2

2



By the existence and finiteness of the moments of Z under the imposed restrictions of the

domain of the parameters, E[|G(Z)|2] < ∞ and thus also E[|G(Z)|] < ∞. From this,

uniform convergence of ĝn,ηj
j = 1, . . . , d holds.

Lemma S.1 can also be used to show uniform convergence of 1
n

∑n
i=1

∂
∂θC

ln
(
c
(
U(i);θC

))
.

Condition (U1) of Lemma S.1 is fulfilled by (R1). Condition (U2) is true ∀θC ∈ ΘC by

(R2) and U ∈]0, 1[d. As the borders of the domain have measure 0, possible discontinuities

there pose no problem. This is necessary due to problems occurring at the boundaries as

the copula density itself may fail to be continuous, as noted in [4] and [5]. To round up,

Condition (U3) is satisfied by (R4).

S.3. Frank copula and Assumptions (R1)—(R4)

In Section 3.3 it was shown that a bivariate Gaussian copula satisfies Assumptions

(R1)—(R4). We here provide a second example for which these assumptions are satsfied:

the bivariate Frank-copula. This copula is a member of the Archimedean family, and is

governed by a single parameter θ. For the Frank family, the copula parameter can take on

any real value, except for zero. Negative values of θ indicate negative dependence and are

only allowed in the bivariate case. Any higher dimensional generalization has θ > 0. The

example presented here is bivariate, but we limit it to positive dependence. The copula

density is given by

c(θ;u1, u2) = (1 + θ)(u1u2)
−1−θ(u−θ

1 + u−θ
2 − 1)−2− 1

θ . (S.1)

The first two derivatives of the log-copula density are easily obtained as

∂

∂θ
ln (c(θ;u1, u2)) =

1

1 + θ
− ln (u1u2) +

1

θ2
ln
(
u−θ
1 + u−θ

2 − 1
)

+ (2 +
1

θ
)
u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1
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∂2

∂θ2
ln (c(θ;u1, u2)) = − 1

(1 + θ)2
− 2

θ3
ln
(
u−θ
1 + u−θ

2 − 1
)

+
2

θ2
u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1

− (2 +
1

θ
)
u−θ
1 ln2(u1) + u−θ

2 ln2(u2)

u−θ
1 + u−θ

2 − 1

+ (2 +
1

θ
)

(
u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1

)2

.

Hence, the first two derivatives exist. They are also finite for uj ̸= 0, j = 1, 2. As the

denominators have no positive root (for θ), only near zero and at infinity problems can

occur. For θ → ∞, the following two results hold

lim
θ→∞

1

θ2
ln
(
u−θ
1 + u−θ

2 − 1
)

= 0

lim
θ→∞

u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1
= ln (min{u1, u2}) ,

which results in ∂
∂θ

ln (c(θ;u1, u2)) being finite. Similar results hold for the second order

derivative. When θ → 0, Taylor series expansions can be used.

ln
(
u−θ
1 + u−θ

2 − 1
)

= −θ ln (u1u2) − θ2 ln (u1) ln (u2)

−θ3

2
ln (u1) ln (u2) ln (u1u2) + O(θ4),

u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1
= ln (u1u2) + 2θ ln (u1) ln (u2)

+
3θ2

2
ln (u1) ln (u2) ln (u1u2) + O(θ3),

u−θ
1 ln2(u1) + u−θ

2 ln2(u2)

u−θ
1 + u−θ

2 − 1
= ln2(u1) + ln2(u2) + θ ln (u1) ln (u2) ln (u1u2) + O(θ2).

Plugging the above expansions, cut off at the appropriate term in order to get rid of all

θ’s in the denominators, into the expressions for the first two derivatives of the log-copula

density yields

lim
θ→0

∂

∂θ
ln (c(θ;u1, u2)) = 1 + ln (u1u2)

lim
θ→0

∂2

∂θ2
ln (c(θ;u1, u2)) = 4 ln (u1) ln (u2) + 2 ln (u1) ln (u2) ln (u1u2) − 1,
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which are both finite if uj ̸= 0. Therefore, Assumption (R2) is satisfied. For (R3), we need

to find an expression or a bound for

E

[(
∂

∂θ
ln
(
c
(
U; θ

)))2
]

= −E

[
∂2

∂θ
ln
(
c
(
U; θ

))]

=

∫ 1

0

∫ 1

0

[
1

(1 + θ)2
+

2

θ3
ln
(
u−θ
1 + u−θ

2 − 1
)

− 2

θ2
u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1

+(2 +
1

θ
)
u−θ
1 ln2(u1) + u−θ

2 ln2(u2)

u−θ
1 + u−θ

2 − 1

−(2 +
1

θ
)

(
u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1

)2
]

·c(θ;u1, u2)du1du2.

First note that the latter is strictly positive for all 0 < θ < ∞. We proceed by splitting up

the domain in four regions. The reason for this is that only when uj approaches zero, the

second derivative goes to infinity. let ε > 0 such that ε → 0. These four regions of [0, 1]2

are then given by

R1 = [0, ε) × [ε, 1], R2 = [ε, 1] × [0, ε), R3 = [0, ε) × [0, ε) and R4 = [ε, 1] × [ε, 1].

For R1, note that u−θ
1 >> u−θ

2 − 1. The individual terms of the second derivative can then

be approximated by
2

θ3
ln
(
u−θ
1 + u−θ

2 − 1
)
≈ −2 ln (u1)

θ2

− 2

θ2
u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1
≈ −2 ln (u1)

θ2

u−θ
1 ln2(u1) + u−θ

2 ln2(u2)

u−θ
1 + u−θ

2 − 1
−
(
u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1

)2

≈ K1 ln (u1)
2 ,

with K1 > 0 since we can approximate the dominant terms in the latter expression as

u−θ
1 ln (u1)

2

u−θ
1 + u−θ

2 − 1
− u−2θ

1 ln (u1)
2

(u−θ
1 + u−θ

2 − 1)2
.
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This term is positive since

1 ≥ u−θ
1

u−θ
1 + u−θ

2 − 1
≥
(

u−θ
1

u−θ
1 + u−θ

2 − 1

)2

=
u−2θ
1

(u−θ
1 + u−θ

2 − 1)2
.

Hence, on R1

0 < −∂2

∂θ
ln
(
c
(
u; θ
))

≤ 1

(1 + θ)2
−D1

2 ln (u1)

θ2
+ K1(2 +

1

θ
) ln (u1)

2 ,

with 0 < D1, K1 < ∞. In an identical fashion, a bound on R2 of the same form can be

obtained. For R3, we assume we can write u1 = bu2, for some positive b and that u1 and

u2 are small enough such that u−θ
1 + u−θ

2 ≤ u−θ
1 u−θ

2 + 1. Under these two assumptions, the

following bounds are obtained

�

2

θ3
ln
(
u−θ
1 + u−θ

2 − 1
)
≤ 2

θ3
ln
(
u−θ
1 u−θ

2

)
= − 2

θ2
(ln (u1) + ln (u2)) .

� − 2

θ2
u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1
≈ − 2

θ2

(
ln (u1)

1 + bθ
+

ln (u2)

1 + b−θ

)
.

�

u−θ
1 ln2(u1) + u−θ

2 ln2(u2)

u−θ
1 + u−θ

2 − 1
−
(
u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1

)2

≈ u−θ
1 ln (u1)

2

u−θ
1 (1 + bθ)

+
u−θ
2 ln (u2)

2

u−θ
2 (1 + b−θ)

− u−2θ
1 ln (u1)

2

u−2θ
1 (1 + bθ)2

− u−2θ
1 ln (u1)

2

u−2θ
1 (1 + bθ)2

− 2u−θ
1 ln (u1)u

−θ
2 ln (u2)

u−2θ
1 + 2u−θ

1 u−θ
2 + u−2θ

2

≤ ln (u1)
2

(
1

1 + bθ
− 1

(1 + bθ)2

)
+ ln (u2)

2

(
1

1 + b−θ
− 1

(1 + b−θ)2

)
= E1 ln (u1)

2 + E2 ln (u2)
2 ,

with 0 < E1, E2 < ∞ since 1 ≥ 1
1+bθ

≥ 1
(1+bθ)2

and 1 ≥ 1
1+b−θ ≥ 1

(1+b−θ)2
.

So on R3,
∂2

∂θ
ln
(
c
(
u; θ
))

can be bounded above by 1
(1+θ)2

−D2
ln(u1)+ln(u2)

θ2
+K2(2+1

θ
)(ln (u1)

2+

ln (u1)
2), with 0 < D2, K2 < ∞. Rests there R4, on which ∂2

∂θ
ln
(
c
(
u; θ
))

is a bounded

function, say by a constant M . Now, as all these bounding functions on the four regions of

the domain are positive, a bound on the entire domain can be obtained by simply adding

them together. Using the obtained bounds, E[ln (Uj)] = −1 and E[ln (Uj)
2] = 2, we arrive

at

0 < −E

[
∂2

∂θ
ln
(
c
(
U; θ

))]
<

1

(1 + θ)2
+

M1

θ2
+ M2(2 +

1

θ
) + M < ∞.
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Thus, (R3) holds. For (R4) we approach the problem in a similar way as for (R3). By

boundedness of the first order derivative, say by a constant K > 0, on R4 the majority of

the domain is covered. For the remainder of the domain, a bound can be achieved in the

following way. When uj → 0,
∣∣ ∂
∂θ

ln (c(θ;u1, u2))
∣∣ → ∞ at a rate proportional to − ln (uj)

for uj → 0. The reason for this is, say for u1 → 0, u−θ
1 >> u−θ

2 − 1 and

1

θ2
ln
(
u−θ
1 + u−θ

2 − 1
)

≈ − ln (u1)

θ

(2 +
1

θ
)
u−θ
1 ln (u1) + u−θ

2 ln (u2)

u−θ
1 + u−θ

2 − 1
≈ 2 ln (u1) +

ln (u1)

θ
.

In this light, we suggest a function H(U) of the form

H(u) = K + D1 ln (u1) + D2 ln (u2) ,

with −∞ < Dj < 0, j = 1, 2. Since E[ln (U1)] = −1, it can easily be seen that E[H(U)] <

∞, thereby fulfilling (R4). The exact choice of K and Dj can be made on some worst

case scenario over the subset of interest of the parameter space of θ. On the other hand,

for the final assumption, (N1) a similar argument as for the Gaussian copula can be used

that, under uniform margins, root-n consistency holds by classical likelihood theory (see

e.g. [1]).

S.4. Influence of the choice of W on estimates.

In order to investigate the effect that the weighting matrix W of the GMM framework

has, a small simulation is conducted. From Theorem 3, asymptotically, both the “optimal”

and identity matrix result in the same (asymptotic) variance-covariance matrix for the pa-

rameters estimators. However, in small samples, this might differ. We consider a bivariate

Gaussian copula with two QBA-normal distributed margins. The first margin has param-

eters α1 = 0.3, µ1 = 0.5 and ϕ1 = 0.5 whereas the second has parameters α2 = 0.8, µ2 = 2

and ϕ2 = 2. The correlation ρ of the copula is set to 0.2 like in the other simulations. We

consider sample sizes 25, 50, 100, 250 and 500. It is expected that for the smaller sample

sizes, the optimal weighting matrix will outperform the identity, but as the sample size

7



increases, they should perform comparable. In Table S.1, the mean, variance, median and

mean absolute deviation (MAD) of the estimated parameters for both weighting matrices

are presented for 1 000 Monte Carlo runs (i.e. simulated samples) of the model. For the

smaller sample sizes, the optimal weighting matrix clearly outperforms the identity ma-

trix with better, less variable estimates. As the sample size increases, the method using

the identity matrix, catches up with the method using the optimal weighting matrix, and

eventually even outperforms it. The latter is due to the simpler computation and the lack

of the need for matrix inversion, which can cause numerical instabilities.

Table S.1: Mean, variance, median and MAD for the above model.

Parameter: α1 µ1 ϕ1 α2 µ2 ϕ2 ρ

true value: 0.3 0.5 0.5 0.8 2 2 0.2

W Id Opt Id Opt Id Opt Id Opt Id Opt Id Opt Id Opt

n = 25

mean 0.311 0.298 0.499 0.452 0.537 0.538 0.778 0.765 1.478 2.176 2.161 2.569 0.200 0.211

var 0.014 0.006 1.283 0.293 0.823 0.589 0.004 0.004 2.938 1.904 3.820 1.887 0.038 0.042

median 0.292 0.289 0.495 0.486 0.456 0.469 0.785 0.774 1.508 2.049 2.055 2.240 0.203 0.221

MAD 0.120 0.075 0.463 0.269 0.121 0.100 0.065 0.061 1.313 0.866 0.503 0.610 0.189 0.199

n = 50

mean 0.299 0.293 0.510 0.402 0.469 0.532 0.783 0.757 1.581 2.116 2.089 2.707 0.200 0.219

var 0.009 0.004 0.148 0.318 0.010 0.191 0.003 0.004 1.321 1.600 0.414 1.611 0.019 0.022

median 0.291 0.291 0.466 0.459 0.476 0.481 0.789 0.764 1.664 2.048 2.043 2.316 0.205 0.230

MAD 0.098 0.060 0.380 0.234 0.105 0.080 0.055 0.063 1.093 0.839 0.436 0.674 0.133 0.138

n = 100

mean 0.300 0.295 0.474 0.392 0.504 0.536 0.787 0.748 1.777 2.186 2.114 2.857 0.206 0.230

var 0.005 0.003 0.251 0.275 0.099 0.099 0.002 0.004 1.357 1.560 0.575 1.322 0.010 0.014

median 0.297 0.293 0.481 0.452 0.490 0.490 0.792 0.756 1.800 2.092 2.056 2.433 0.211 0.233

MAD 0.073 0.054 0.292 0.215 0.077 0.064 0.045 0.071 0.871 0.856 0.363 0.829 0.098 0.113

n = 250

mean 0.304 0.298 0.473 0.289 0.522 0.595 0.780 0.729 1.807 2.135 2.250 3.168 0.211 0.244

var 0.002 0.003 0.217 0.494 0.093 0.178 0.002 0.004 1.984 1.600 0.848 1.543 0.007 0.012

median 0.302 0.294 0.499 0.432 0.502 0.496 0.785 0.733 1.772 2.059 2.094 2.781 0.205 0.238

MAD 0.048 0.050 0.186 0.194 0.052 0.059 0.037 0.075 0.713 0.795 0.298 1.098 0.063 0.086

n = 500

mean 0.306 0.302 0.394 0.224 0.561 0.657 0.769 0.719 2.000 2.111 2.530 3.370 0.225 0.264

var 0.002 0.003 0.863 0.638 0.188 0.291 0.003 0.004 4.239 1.766 2.313 1.653 0.007 0.013

median 0.303 0.297 0.498 0.425 0.503 0.504 0.780 0.715 1.736 2.067 2.156 3.148 0.208 0.252

MAD 0.038 0.051 0.148 0.199 0.044 0.068 0.039 0.073 0.655 0.752 0.307 1.308 0.052 0.079
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S.5. Simulations in Setting 1: further details and results

For the Student’s t-copula simulation model the correlation matrix equals

Σ =



1.00 0.2 −0.05 0.08 −0.2 0.17

0.2 1.00 0.18 −0.22 0.03 −0.13

−0.05 0.18 1.00 −0.08 0.3 −0.34

0.08 −0.22 −0.08 1.00 0.01 0.17

−0.2 0.03 0.3 0.01 1.00 −0.21

0.17 −0.13 −0.34 0.17 −0.21 1.00


. (S.2)
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Figure S.1: Setting 1. Approximate Mean Squared Error of the fitted parameters for the bivariate Gaussian

copula with parameters as in Table 1 and ρ = 0.2. Results for sample sizes 75, 150, 300 and 600 on a

vertical log2-scale.

Figure S.1 summarizes simulation results for the second simulation model involving a
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bivariate Gaussian copula and margins as indicated in Table 1. Note that the finite-sample

performance of the IFM estimators is very good.
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Figure S.2: Setting 1. Approximate Mean Squared Error of the fitted parameters for the six dimensional

Student’s t-copula with parameters as in Table 1 and (S.2). Results for sample sizes 75, 150, 300 and 600

on a vertical log2-scale.
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Figure S.2 finally presents the simulation results for the six-dimensional Student’s t-

copula copula, with margins as listed in Table 1. We can draw similar conclusions as for

the two other simulation models.

S.6. Simulations in Setting 2: further details and results

S.6.1. Asymptotic normality distributions for the estimated parameters

In Figure S.3 we present histograms based on the 1 000 estimated values θ̂j resulting

from the simulated samples for Setting 2, for sample sizes n = 50 and n = 250. For each

parameter we also present the approximate (asymptotic) normal distribution, with as mean

the true parameter value and as standard deviation the standard deviation established

in Theorem 3. As is clearly noted the presented distributions become more and more

concentrated around the true parameter value.
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Figure S.3: Setting 2. Histograms of parameter estimates for sample sizes n = 50 and n = 250. The red

line indicates the theoretical asymptotic distribution for that sample size. The vertical blue line present

the true parameter value.
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S.6.2. Asymptotic variance-covariance matrix and estimated version

For the simulation model under Setting 2, the asymptotic variance-covariance matrix

(up to a factor 1/n), for which the expression is provided in Theorem 3, relying on expression

(13) is equal to

0.2400 0.5000 0.1000 0 0 0 0 0 0 0.0096

0.5000 2.0833 0.2083 0 0 0 0 0 0 0.0994

0.1000 0.2083 0.2917 0 0 0 0 0 0 0.1513

0 0 0 0.4630 10.2040 −2.5578 0 0 0 −0.0435

0 0 0 10.2040 264.9114 −56.3650 0 0 0 0.6051

0 0 0 −2.5578 −56.3650 18.3336 0 0 0 0.6645

0 0 0 0 0 0 0.3949 0.4487 0.0752 −0.1329

0 0 0 0 0 0 0.4487 0.6527 0.0855 −0.1539

0 0 0 0 0 0 0.0752 0.0855 0.0213 0.0039

0.0096 0.0994 0.1513 −0.0435 0.6051 0.6645 −0.1329 −0.1539 0.0039 0.6382



.

For a given sample, of size n, an estimate for this asymptotic variance-covariance matrix is

obtained by replacing the true parameter values (in the simulation model) by their estimates,

obtained by the two steps IFM method. For each sample we thus get an estimated variance-

covariance maxtrix. The next two matrices present the average values, over all Monte Carlo

simulations, that we obtained from the samples of sizes n = 50 and n = 1000.

The average of the estimated variance-covariance matrix, based on 1 000 Monte Carlo samples

13



of size n = 50 is

0.2396 0.4769 0.0935 0 0 0 0 0 0 0.0077

0.4769 1.9195 0.1890 0 0 0 0 0 0 0.0790

0.0935 0.1890 0.2820 0 0 0 0 0 0 0.1358

0 0 0 0.4470 9.4605 −2.2751 0 0 0 −0.0203

0 0 0 9.4605 234.7113 −47.3600 0 0 0 0.8625

0 0 0 −2.2751 −47.3600 16.7762 0 0 0 0.3927

0 0 0 0 0 0 0.3851 0.4132 0.0681 −0.1077

0 0 0 0 0 0 0.4132 0.5636 0.0716 −0.1165

0 0 0 0 0 0 0.0681 0.0716 0.0192 0.0053

0.0077 0.0790 0.1358 −0.0203 0.8625 0.3927 −0.1077 −0.1165 0.0053 0.6210



.

The average of the estimated variance-covariance matrices, based on 1 000 Monte Carlo sam-

ples of size n = 1000 resulted into the matrix

0.2399 0.4992 0.1007 0 0 0 0 0 0 0.0091

0.4992 2.0786 0.2098 0 0 0 0 0 0 0.0886

0.1007 0.2098 0.2929 0 0 0 0 0 0 0.1489

0 0 0 0.4612 10.1515 −2.5699 0 0 0 −0.0263

0 0 0 10.1515 263.4619 −56.5172 0 0 0 0.9369

0 0 0 −2.5699 −56.5172 18.5025 0 0 0 0.5365

0 0 0 0 0 0 0.3940 0.4476 0.0752 −0.1140

0 0 0 0 0 0 0.4476 0.6502 0.0849 −0.1266

0 0 0 0 0 0 0.0752 0.0849 0.0213 0.0082

0.0091 0.0886 0.1489 −0.0263 0.9369 0.5365 −0.1140 −0.1266 0.0082 0.6346


Note that all entries of the average matrix for sample size n = 1000 are closer to these of the

true asymptotic variance-covariance matrix, than when n = 50. This is another illustration of the

quality of the estimators.

S.6.2.1. Graphical summary of simulation study Setting 2

Figures S.4 and S.5 present boxplots of the estimated parameters for the simulation model

in Setting 2, for sample sizes n = 25, 50, 100, 250 and 1 000. Figure S.4 gives the results for

14



the parameters of the margins, whereas the results for the copula parameter are in Figure S.5.

Note the evolution with increasing sample size: the bias reduces and the variance gets smaller, as

expected. The boxplots also reveal more symmetry in the finite-sample distributions of the IFM

estimates, for larger sample size.
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Figure S.4: Setting 2. Boxplots of parameter estimates of the margins for different sample sizes. The red

line indicates the true parameter value.
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Figure S.5: Setting 2. Boxplots of θ̂C for different sample sizes. The red line indicates the true parameter

value.

S.7. Real data examples: supplement

S.7.1. Pokémon data: more details of the analysis

Figure S.6 shows the histogram of the data on the variable Defence, together with the four

fitted margins. Due to a rather large tail-weight, the QBA-Student’s t and QBA-logistic distri-

butions provide superior fits compared to the QBA-normal and QBA-Laplace distribution.
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Figure S.6: Pokémon data: four different QBA-distributions fitted to the variable Defence.
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The estimated correlation matrix for the (selected) Student’s t-copula is

Σ̂IFM
Pokémon =



1 0.5808 0.4847 0.5074 0.5074 0.2653

0.5808 1 0.5467 0.4155 0.3437 0.3707

0.4847 0.5467 1 0.3454 0.6050 0.1043

0.4854 0.4155 0.3454 1 0.6076 0.4658

0.5074 0.3437 0.6050 0.6076 1 0.3186

0.2653 0.3707 0.1043 0.4658 0.3186 1

.


(S.3)

S.7.2. White wine data analysis: more details

Figure S.7 depicts pairwise scatter plots for the data on white wines.
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Figure S.7: White wine data. Pairwise scatter plot.

Table S.2 presents the values of the log-likelihood, and of the AIC2ML and CIC contributions

of the fitted copula for the white wine data. Among the considered copulas a Gaussian copula is

selected, with estimated correlation matrix

Σ̂IFM
Wine =


1 0.0535 −0.0427

0.0535 1 0.1810

−0.0427 0.1810 1

 . (S.4)
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Table S.2: Wine data: log-likelihood, AIC2ML and CIC contributions of the fitted copula candidates using

the pseudo-observations obtained using the margins of Table 6.

Copula Log-likelihood AIC2ML contribution CIC contribution

Gumbel 5.3958 −8.7916 −8.5984

Clayton 3.8325 −5.6650 −5.5928

Frank 4.9623 −7.9246 −7.8227

Joe 4.0677 −6.1353 −5.9099

Gaussian 16.9834 −27.9667 −27.7091

Student’s t 17.5354 −27.0707 −27.2917

S.7.3. Wine data: further analysis

To further investigate the wine data, also lower quality wines and red wines of the same

quality are selected in order to see whether there are specific differences in the model to describe

the various data appropriately. The same three variables, Volatile Acidity, pH and Sulphates, are

considered for both red and white wines of quality 4 and 7. Note that the number of observations

differs greatly between the four considered groups. For red wines, we have 53 wines of quality 4

compared to 199 of quality 7 whereas for the white wines, 163 have quality label 4 and 880 have

quality 7. This might impact the model as fewer observations may lead to larger uncertainties on

both the margins as the copula itself. We employed the same method of analysis as in Sections

5.1 and 5.2. Results are reported in Tables S.3 and S.4.

Table S.3 shows that all four groups have mostly different members of the QBA-family that

were selected for the different margins. The most prominent distinction between different qualities

of wine can be made for the red wines. As µ indicates the location of the mode, it is immediately

clear that for both Volatile Acidity and Sulphates, there is a large discrepancy in the estimated

modes for red wines of the two qualities. For red wines of quality 7 the estimated mode of

Volatile Acidity is much smaller, combined with a more extreme skewing parameter. For red

wines of quality 4, data on Volatile Acidity are more centered around the higher estimated mode

value, but due to a larger scale parameter, they are also more spread. Quite the opposite holds

true for the amount of Sulphates present in the white wines, as their parameters are quite close.

Volatile Acidity of quality 4 white wines is alike to that of quality 7 red wines, but quality 7
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Table S.3: Wine data: parameters of best fitting margins for the four considered wine groups based on

AIC.

Data Variable
Best fitting

margin
α̂MLE µ̂MLE ϕ̂MLE ν̂MLE

Red wine of

quality 4

Volatile Acidity QBA-normal 0.3987 0.6231 0.1037

pH QBA-Laplace 0.4147 3.3400 0.0606

Sulphates QBA-Student’s t 0.3300 0.5118 0.0294 2

Red wine of

quality 7

Volatile Acidity QBA-Laplace 0.2360 0.3000 0.0357

pH QBA-logistic 0.4453 3.2653 0.0408

Sulphates QBA-logistic 0.4584 0.7230 0.0367

White wine of

quality 4

Volatile Acidity QBA-Laplace 0.2416 0.2700 0.0399

pH QBA-normal 0.3070 3.0889 0.0666

Sulphates QBA-normal 0.2186 0.3736 0.0382

White wine of

quality 7

Volatile Acidity QBA-normal 0.2333 0.1905 0.0305

pH QBA-normal 0.4012 3.1636 0.0755

Sulphates QBA-logistic 0.2441 0.4068 0.0250

white wines have similar skewness, but a smaller mode. Overall, white wines of quality 7 have

the lowest amount of Volatile Acidity. In terms of pH, there is little difference between the four

groups of wines, only white wines of quality 4 have a slightly larger right skewed pH combined

with a smaller mode to compensate.

Table S.4 shows the chosen copula based on these margins together with the estimated copula

parameters. A gaussian copula turned out to be the best option for all groups, except for the

white wines of quality 4 where the dependence is modelled through a Student’s t-copula. Overall,

the dependency structure shows less pronounced dependencies for higher quality wines and also

for white wines compared to red wines. Surprisingly, the dependency between pH and Sulphates

is negative for red wines, but positive for the white wines. So as pH increases, the amount of

Sulphates decreases for red whines, whereas it increases for white wines.

A visual presentation to see the differences was already provided in Figure 4, showing the
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Table S.4: Wine data: chosen copula based on AIC for the four groups of wine data.

Data Chosen copula Copula parameters

Red wine of quality 4 Gaussian Σ̂IFM =


1 0.3414 −0.2071

0.3414 1 −0.1850

−0.2071 −0.1850 1



Red wine of quality 7 Gaussian Σ̂IFM =


1 0.2663 −0.2356

0.2663 1 −0.0266

−0.2356 −0.0266 1



White wine of quality 4 Student’s t Σ̂IFM =


1 0.1718 −0.0996

0.1718 1 0.2266

−0.0996 0.2266 1

 & ν̂IFM
C = 9.5341

White wine of quality 7 Gaussian Σ̂IFM =


1 0.0535 −0.0427

0.0535 1 0.1810

−0.0427 0.1810 1



densities of the estimated univariate margins and the estimated bivariate margins (contour plots).

A 3D-plot of the fitted densities can be found in Figure S.8. Note that all axes are the same for

all 4 sub-figures to facilitate an easy and clear visual comparison. For each four the bottom right

quarter (starting at the mode) has been removed for visual purposes.
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(a) White wine of quality 4.
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(b) White wine of quality 7.
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(c) Red wine of quality 4.

Volatile Acidity

0.2
0.4

0.6
0.8

1.0

pH

3.0

3.2

3.4

3.6

3.8

S
ulphates

0.2

0.3

0.4

0.5

0.6

0.7

0.8

10

15

20

25

30

35

Density

(d) Red wine of quality 7.

Figure S.8: Wine data: comparison of fitted densities for white and red wines of quality 4 and 7.

21


