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Abstract

Environmental concerns and a shortage of truck drivers motivate a paradigm shift in truck-dominated

supply chains. To alleviate the pressure on truck transport, one can consolidate freight with other

companies. Freight consolidation can be facilitated by third-party logistics service providers, who

combine shipments that require delivery to the same destination on the same day. More gains can

be realized through “proactive freight consolidation”, by proactively synchronizing the timing of

shipments prior to placing orders. This is facilitated by a joint replenishment policy. The truck

intensity of supply chains can be further reduced by shifting freight from road towards alterna-

tive transport modes, such as train. Modal split transport combines two complementary transport

modes by using both modes in parallel. We analyze how proactive freight consolidation can be

combined with modal split transport. We propose a heuristic that combines a can-order joint re-

plenishment policy to consolidate freight orders proactively via truck, with a tailored base-surge

policy to coordinate shipments via train. We develop a lower bound on the optimal cost to validate

our heuristic. By comparing the truck usage and cost performance of our policy against alternative

replenishment strategies, we show how the combination of proactive freight consolidation and modal

split transport can shift freight towards alternative transport modes, without negatively impacting

costs or service.
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1. Introduction

In today’s supply chains, most freight is transported via road, one of the most polluting transport

modes (Ritchie, 2020). As both the amount of freight transportation and the share of road transport

are projected to increase, so will the negative impact of congestion, air pollution, and greenhouse

gas (GHG) emissions (European Environment Agency, 2021). While other sectors report steady

declines in GHG emissions since 1990, the transportation sector struggles to decarbonize (European

Environment Agency, 2021). The transportation sector is urged to rethink truck-dominated supply

chains to achieve the ambitious targets to combat climate change, such as, e.g., Europe’s promise

in the Green Deal to become climate neutral by 2050.

In addition to the environmental harm caused by truck transport, there is a dire shortage of

truck drivers. Although this is not new (McKinnon et al., 2016), the problem did become worse

recently (Kirby, 2022). According to estimates of the American Trucking Associations (2021), the

shortage of truck drivers in the United States reached an all-time high of 80,000 drivers in 2021.

Similar figures are reported in the European Union (Arnold and Vladkov, 2021). Among others,

this shortage of truck drivers has led to fuel pumps running dry in the United States and Great

Britain in the summer of 2021, which disrupted a large part of their economies (Bair, 2021; Gross,

2021). The prospects are not bright either, as the sector suffers from increased ageing. The average

age of a truck driver in Europe is 44 years, and 46 years in the United States (Kirby, 2022). The

shortage in truck drivers, which is projected to increase in the coming years, urges immediate action.

Measures to make the job of truck driver more appealing will not suffice. Supply chains will have

to decrease their reliance on truck transport.

Two solutions are often brought forward to reduce the use of truck transport in today’s supply

chains. Firstly, the available capacity of truck transport can be used more efficiently by consolidating

freight, and by collaborating with different – even competing – companies at the same level of

the supply chain, known as horizontal collaboration (Ferrell et al., 2020). Secondly, more freight

volume can be shipped with alternative transport modes, such as train. Yet, the lower flexibility

of rail transport both in terms of shipment quantities and departure schedules, hampers an entire

“modal shift” towards this environmentally friendly mode (Dong et al., 2018b). The solution lies

in smartly combining inflexible (but sustainable) rail transport with flexible (albeit unsustainable)

truck delivery, referred to as modal split transport (MST) by Dong et al. (2018b). Still, companies

often lack scale to make this (partly) modal shift economically viable. As trucks are only used to

cover a small portion of a company’s total shipment volume, their load factor may be lower under
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MST. This is where freight consolidation can offer a solution, thereby achieving the required scale

and load factors under MST.

In this paper, we consider a supply chain in which a number of companies, closely located to

each other, replenish their (upstream) orders from their suppliers who are also located in the same

vicinity of each other. Transportation between the suppliers and the receivers can be done by truck

or train, and orders of different companies can be consolidated. By appealing to a logistics service

provider (LSP), companies already commit to some form of freight consolidation. LSPs try to

bundle orders of different companies that require delivery to the same area on the same day. This

practice, known as “groupage”, aims to increase the load factor, thereby lowering transportation

costs and GHG emissions (McKinnon, 2004). Yet, under this kind of collaboration the replenishment

process of each company remains optimized individually, and bundling opportunities are identified

a posteriori. We therefore refer to this form of groupage as reactive consolidation.

More gains can be achieved by optimizing the replenishment process holistically, thereby mini-

mizing the supply chain cost over all collaborating companies and identifying consolidation oppor-

tunities proactively (Vanovermeire et al., 2014). Under such proactive consolidation, a company

can, for example, advance a particular order to benefit from a consolidation opportunity with an-

other company. The resulting increase in inventory holding costs can then be compensated by

reduced transportation costs. A real-life example is given by the collaboration between UCB and

Baxter, two global health care companies. The company Tri-Vizor acts as a neutral “orchestrator”

and synchronizes the replenishment flows of both companies between Belgium and Romania. The

consolidated flows are assigned to a transportation company, resulting in higher load factors and

lower transportation costs. Moreover, the scale created due to the collaboration allowed to use rail

transport in a cost-efficient way (Boute et al., 2011). In this case, proactive consolidation was car-

ried out at the initiative of the collaborating companies (i.e., UCB and Baxter), and facilitated by

a neutral orchestrator (i.e., Tri-Vizor). Alternatively, proactive consolidation can also be initiated

by the LSP who then acts as a neutral trustee, provided that shippers are flexible in the timing of

their inventory replenishments.

Proactive consolidation implies the synchronization of the companies’ replenishment processes.

In the inventory literature, this is known as the joint replenishment problem (JRP). The JRP

considers the coordination of the replenishment of products that share a joint order cost, such that

inventory and order costs of all products are minimized. JRP policies can be used to facilitate

freight consolidation when the same transport mode is used for different companies (Tinoco et al.,
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2017; Vanvuchelen et al., 2020).

To combine the use of rail with road transport, dual transport mode policies can be adopted.

Dong et al. (2018b) present a tailored base-surge (TBS) dual-mode policy that splits the freight

volumes between road and rail transport. The proposed policy ships a constant volume via train at

a fixed time interval, while a period dependent base-stock policy is used for truck transport with a

base-stock level that is dependent on the time until the next train arrives.

To the best of our knowledge, no policies exist that orchestrate the replenishment of different

companies proactively using two parallel transport modes. As both the dual mode and the JRP are

intractable, the optimal replenishment policy for this dual-mode JRP is intricate, if not impossible,

to derive. We therefore resort to a heuristic, proactive consolidation policy that allows parallel

shipments using two complementary transport modes. We coin our proposed policy the joint TBS

policy. It combines a TBS policy that ships constant volumes on rail per company and uses a

period dependent can-order policy to coordinate truck transport. We propose a heuristic search

procedure that decomposes the problem per company, and that solves the single-company problems

sequentially until convergence of the best policy parameters. To benchmark our joint TBS policy, we

develop a lower bound on the optimal dual-mode JRP policy, and report a gap of around 10%. This

is in line with other JRP policies that make use of a single transport mode, thereby validating our

approach for joining replenishments in a multi-modal setting. A numerical experiment demonstrates

how MST and proactive freight consolidation can reduce truck usage by shipping more volume per

truck and/or shifting more freight towards rail transport. We also show how the combination of

MST with proactive consolidation can shift freight towards alternative transport modes, without

negatively impacting costs or service. As rail transport has a much higher efficiency in terms of

emissions per tonne-kilometer compared to heavy goods vehicles (European Environment Agency,

2022), we thus demonstrate how logistics can be decarbonized in a cost-efficient way. Although we

focus our attention on rail transport (inspired by Europe’s push to drastically increase the share of

rail freight transportation (Chapuis et al., 2022)), we note that our model and insights remain valid

when considering alternative transport modes, such as inland waterways.

In the next section, we position our work in the literature. Afterwards, we formally introduce the

dual-mode JRP and our proposed joint TBS policy that combines proactive consolidation and dual-

mode transport. In Section 4 we describe the decomposition method to optimize the parameters

of our joint TBS policy, and we derive a lower bound on the optimal dual-mode JRP policy in

Section 5. We show the impact of our joint TBS policy on truck usage and costs in a numerical
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experiment in Section 6. Section 7 concludes this paper. Appendix A provides an overview of the

notation used throughout the paper.

2. Positioning in the literature

This paper contributes to the literature on both multi-modal transportation and collaborative

shipping. Coined as a key to design efficient and sustainable supply chains, multi-modality has

received ample attention over the last years. Bontekoning et al. (2004), SteadieSeifi et al. (2014),

and Ambra et al. (2019) provide extensive reviews. Most research on multi-modal transport does

not consider the inventory dynamics that arise due to transport mode decisions. Yet, the impact of

multi-modal transportation on the entire supply chain should be taken into account, as choosing a

cost-efficient transport mode can increase costs elsewhere in the supply chain, such as for example

in inventories (Dong et al., 2018a).

Literature on collaborative shipping is well-established and covers many topics including col-

laborative vehicle routing, the selection of collaborating actors, gain and cost sharing between col-

laborating companies, and many more. Extensive reviews are provided by Cruijssen et al. (2007),

Verdonck et al. (2013), Gansterer and Hartl (2018), and Pan et al. (2019). Similar to the litera-

ture on multi-modal transportation, few articles approach collaborative shipping from an inventory

perspective, studying how inventory replenishment cycles between collaborating companies can be

synchronized. Tinoco et al. (2017) and Vanvuchelen et al. (2020) focus on collaborative shipping by

modelling the problem as a JRP (e.g., Tinoco et al. (2017) study gain and cost sharing allocation

under collaborative shipping facilitated by a can-order joint replenishment policy).

The joint consideration of multi-modal transportation and collaborative shipping is mostly stud-

ied through the development of collaborative, multi-modal supply chain networks. Groothedde et al.

(2005), for example, design and implement a collaborative, multi-modal hub network to distribute

fast moving consumer goods in the Netherlands. Kreutzberger (2010) identifies and compares dif-

ferent collaborative networks in terms of network costs. Other articles assume a given multi-modal

network, and optimize collaborative freight flows in this network. Van Heeswijk et al. (2018), for

example, use an arc-expansion procedure to optimize intermodal (potentially bundled) routes of

given orders. Pan et al. (2013) pool the flows of two multi-modal supply chains using mixed integer

linear programming with the goal of minimizing CO2 emissions. Yet, while there is an abundance

of articles that consider the design of multi-modal networks and the optimization of collaborative

flows, the decision-making of the different companies in these networks (i.e., the orders placed in
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the networks) is often assumed to be given.

We contribute to the literature by studying ordering policies in collaborative, multi-modal sup-

ply chains. The combination of multi-modal and collaborative shipping introduces a new, complex

inventory problem for which we propose a novel heuristic and lower bound. The technique pro-

posed to optimize the parameters of our heuristic ordering policy extends existing optimization

techniques. Our lower bound is used to validate our heuristic, but can additionally serve to bench-

mark future policies. By combining multi-modal and collaborative shipping, we demonstrate how

the cost efficiency of MST can be improved through proactive freight consolidation.

3. Replenishment strategies for the dual-mode joint replenishment problem

We consider a periodic review inventory model, where inventory can be replenished using truck

transport and/or rail transport, and a set of companies N = {1, ..., N}. Each company places

orders to minimize its holding, shortage, and order (transport) costs. We assume that N contains

companies in close proximity to each other, with the origin and destination of their shipments in

the same vicinity, such that it allows possible consolidation of freight. We refer to Creemers et al.

(2017) to identify companies with their origin and destination in the same vicinity. Every period

(e.g., a day), each company places orders after having observed its respective inventory position.

Orders by truck can be placed every period, while a train only runs every T periods. Orders are

consolidated in the same shipment if they are placed at the same moment in time using the same

transport mode.

We assume that each company’s order quantity shipped via rail is constant during the entire

planning horizon. As a result, the total volume shipped by rail remains constant and can be reserved

at the rail operator (Dong et al., 2018b). The volumes shipped by truck, in contrast, can vary over

time. We do not impose a capacity limit to the truck capacity, although the model could be extended

accordingly (at the expense of increased model complexity). As such, rail transport is used for the

constant “base” demand, whereas trucks are used to cover “surge” demand. The sequence of events

is as follows: first, inventory is replenished; then, demand is satisfied; finally, an order is placed.

Orders shipped by trucks can be placed every period, whereas shipments by rail can only be placed

every T periods. Orders placed by truck at the end of period t replenish inventory at the start of

period t+ 1 .

Let K denote the transport cost to ship a (consolidated) order by truck, and K̃ the transport

cost to ship a (consolidated) order by train. K (K̃) can be interpreted as the cost to ship a container
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from origin to destination via truck (train), containing orders from one or more companies. In the

JRP literature, these costs are referred to as “major” order costs, as they are shared amongst

all companies joining the order on the specific transport mode. We assume K̃ < K, similar to

other articles, e.g., Bouchery and Fransoo (2015). The negative externalities associated with truck

transport (e.g., emissions, noise, congestion, accidents) further motivate this cost difference. Note

that, if K̃ ≥ K, from an economic cost perspective it would never be beneficial to make use of train

transport.

In addition to the (potentially shared) major order cost, a company-specific order cost ki is

incurred per company i that takes part in the order. This fixed cost reflects the cost of handling

and loading, and is referred to as the “minor” order cost in JRP literature. Daily demand is

assumed to be Poisson distributed with a demand rate λi for company i. Demand that cannot be

met immediately, is backlogged (such that negative inventory positions are possible). At the end of

each period, we incur a holding cost h per unit in inventory, and a shortage cost p per unit backlog.

With a set of N companies and two available transport modes, we can distinguish four dif-

ferent replenishment strategies (see also Table 1): (1) Each company decides individually on its

replenishment orders, only making use of truck transport. When orders coincide, they can be reac-

tively consolidated. (2) The set of N companies decide holistically on their replenishment, thereby

proactively consolidating their orders, and only make use of truck transport. (3) Each company

replenishes individually, making use of both train and truck transport (MST). (4) The companies

make use of MST, and proactively synchronize their truck replenishment. In what follows, we

describe the policies that can be used in each of the four replenishment strategies.

3.1. Reactive consolidation using trucks only

Under this replenishment strategy, each company optimizes its replenishment individually using

only road transport. A third-party logistics provider consolidates shipments placed in the same

period. With fixed transportation costs and backordering, it is well-known that an (s, S) policy

minimizes the cost of each company individually (Arrow et al., 1951). In this setting, each company i

has its respective reorder point si and order-up-to level Si. Whenever the inventory position of a

company i is at or below its reorder point si, an order is placed to replenish the inventory position

to the order-up-to level Si. If multiple companies order (coincidentally) at the same point in time,

consolidation is possible, and the major fixed transportation cost K is incurred only once.

7



Reactive Consolidation Proactive Consolidation

T
ru

ck
o
n
ly Can-order JRP policy

(s, S) policy per company i ∈ N (Balintfy, 1964)

(Arrow et al., 1951) Periodic JRP policy
(Atkins and Iyogun, 1988; Viswanathan, 1997)

M
o
d
a
l
S
p
li
t

TBS policy per company i ∈ N Joint TBS policy
(Dong and Transchel, 2020) (Presented in this paper)

Table 1: Framework in which different strategies for the dual-mode JRP can be positioned. For proactive consolidation
with MST, we provide a new joint TBS policy and a heuristic search procedure to find policy parameters.

3.2. Proactive consolidation using trucks only

The classical JRP considers the replenishment of N products that minimizes the total costs

(i.e., holding, shortage, and order costs) over all products. By interpreting the N products as N

companies, JRP policies can be used to facilitate proactive consolidation of orders of N compa-

nies (Tinoco et al., 2017; Vanvuchelen et al., 2020). JRP policies reduce the transportation costs

by proactively synchronizing the companies’ replenishment, thereby sharing the major order cost.

The optimal JRP policy can be obtained through dynamic programming. Yet, the computational

requirements quickly grow with the number of companies. Although methods have been proposed

to reduce the computational complexity (e.g., Creemers and Boute, 2022), calculating the optimal

policy remains intractable, and even impossible, for problems with more than two companies.

The intractability of the optimal policy poses the need for well-performing heuristics that coor-

dinate orders, and are easy to compute. Under a can-order policy, introduced by Balintfy (1964),

an order is placed to lift a company’s inventory position up to its order-up-to level Si when the

inventory position of a company i hits its reorder level si. Other companies j ∈ N \{i} join the order

up to their respective order-up-to level Sj if their inventory position is at or below their can-order

level cj . An alternative JRP heuristic is the periodic P (s, S) JRP policy, which places orders at

fixed periodic intervals (Viswanathan, 1997). Every replenishment interval, the inventory position

of each company i is checked, and raised up to its respective Si when the inventory position is at

or below its respective si.
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3.3. Modal split transport and reactive consolidation

When each company individually optimizes its dual-mode replenishment, a third-party logistics

provider can consolidate orders on both transport modes if possible. Dong et al. (2018b) use an

inventory replenishment heuristic from the dual sourcing literature to determine the modal split for

a single company. They apply the tailored base-surge (TBS) policy by shipping constant volumes

via train every T periods, and by using a dynamic base-stock policy for road transport in which

the base-stock level depends on the time until the next train arrives. Dong and Transchel (2020)

show that the total cost (holding, shortage, and order) per period is convex in the delivery quantity

shipped using rail. They exploit this observation to optimize their MST policy using a binary search

method. Policy iteration is used to identify the optimal trucking policy for each delivery quantity

shipped using rail, after which the total system (i.e., train and truck) is evaluated. Dong and

Transchel (2020) characterize the optimal road replenishment policy (in the presence of a periodic

fixed rail quantity) as a base-stock policy for which the base-stock level is higher if it still takes a

longer time for the next train to arrive.

3.4. Modal split transport and proactive consolidation on truck transport

To the best of our knowledge, no policy exists that considers the combination of dual-mode

transport and proactive consolidation. We therefore propose a new policy, and use a heuristic

search procedure to find policy parameters. Our heuristic policy (the optimal policy is intractable)

combines a TBS policy with a can-order policy. We coin it the joint TBS policy. Each company i

ships a fixed volume via train every T periods, denoted Qi. A time dependent can-order policy

coordinates orders placed by truck transport. The can-order policy is time dependent in the sense

that its parameters depend on the time until the next train arrives, denoted by θ = 0, 1, ..., T − 1.

For each company, the reorder point sθi , can-order level cθi , and order-up-to level Sθ
i are thus

dependent on θ. We define si = (s0i , s
1
i , ..., s

T−1
i ), ci = (c0i , c

1
i , ..., s

T−1
i ), and Si = (S0

i , S
1
i , ..., S

T−1
i )

as the can-order policy parameters that govern the truck transports of company i depending on

the time until the next train arrival 1. Combined with each company’s rail quantity Qi, the total

number of policy parameters for N companies is (3× T ×N) +N . As the number of companies N

grows, the optimization of the policy parameters becomes computationally intractable, and heuristic

solution methods are required. In the next section, we propose a heuristic to optimize the policy

parameters of the joint TBS policy.

1Throughout the paper, we adopt boldface notation for vectors with components corresponding to θ = 0, 1, ..., T−1.
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Initialize Qi = 0, si = (0, ..., 0), ci = (0, ..., 0), Si = (0, ..., 0), ∀i ∈ N

i = 1

Optimize Qi (subproblem 1), and
si, ci, and Si (subproblem 2)

i = i+ 1

i = N + 1?

Convergence?

Stop

yes

yes

no

no

Figure 1: Flowchart to describe the different steps to optimize the joint TBS policy.

4. Parameter optimization of the joint TBS policy

We propose a decomposition algorithm to optimize the parameter set {Qi, si, ci,Si},∀i ∈ N .

The algorithm has three hierarchical levels. The master problem iterates over all companies i, and

calculates their respective policy parameters, until the global policy over all companies converges.

To identify the policy parameters for company i, we optimize Qi through a binary search. We refer

to this as subproblem 1. Given Qi, we optimize {si, ci,Si}. We refer to this as subproblem 2. In

what follows, we describe these optimizations in more detail. Figure 1 provides a flowchart that

describes the high-level working of our algorithm. To demonstrate the dynamics, we illustrate with

the following example.

Example We consider N = 3 companies with a Poisson demand of resp. λ1 = 2;λ2 = 3;λ3 = 4.

Holding and shortage costs are equal to h = 1 and p = 2. The minor order cost is the same for all

companies, ki = 3, while the major order cost for truck transport is K = 33, and the major order

cost for rail transport is K̃ = 8. A train runs every T = 3 periods.

4.1. Master problem: sequentially iterate over all companies until convergence

We decompose the dual-mode JRP by sequentially optimizing the policy parameters for each

company i until the global policy (over all companies i ∈ N ) converges. To acknowledge the
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interdependence between the replenishment processes of the companies, we use the concept of

discount replenishment opportunities. Discount replenishment opportunities for company i arise

when another company j ∈ N \ i initiates an order, such that company i can join the order

while only incurring its minor order cost ki (Silver, 1974; Federgruen et al., 1984). This implies

that another company (i.e., the company that initiated the order) pays the major order cost. By

estimating the occurrence of discount replenishment opportunities with a stochastic process, the

multi-company problem can be decomposed, without sacrificing the relationship between the order

processes of the collaborating companies. As the discount replenishment opportunities depend on

the other companies’ replenishment policies (as we will discuss in Section 4.3), we iterate until the

policy parameters converge. All policy parameters are initialized to 0: Qi = 0, si = (0, ..., 0),

ci = (0, ..., 0), Si = (0, ..., 0), ∀i ∈ N .

Example (ctd.) We first optimize the policy parameters of company 1. Solving subproblem 1

(cf. the solution procedure discussed infra in Section 4.2) reveals that Q1 = 5 is optimal, and the

optimization in subproblem 2 (cf. the solution procedure discussed infra in Section 4.3) leads to s1 =

(−7,−4,−2), c1 = (−1, 1, 2), and S1 = (1, 3, 5). Given the policy parameter values of company 1,

we optimize the policy parameters for company 2, and obtain Q2 = 8, s2 = (−11,−5,−2), c2 =

(−3, 1, 3), and S2 = (0, 3, 5). Given the policy parameters for company 1 and 2, we find that

Q3 = 10 and s3 = (−13,−5,−2), c3 = (−2, 2, 5), and S3 = (1, 4, 8) minimizes the costs for

company 3. As the policies of company 2 and 3 affect the discount replenishment opportunities

for company 1, we re-optimize the policy parameters of company 1, yielding Q1 = 5 and s1 =

(−8,−4,−3), c1 = (−2, 0, 2), and S1 = (1, 3, 4). We repeat for company 2 and find Q2 = 8,

and s2 = (−11,−5,−3), c2 = (−3, 0, 3), and S2 = (−1, 3, 5). Similarly, we find Q3 = 10 and

s3 = (−12,−4,−2), c3 = (−2, 2, 5), and S3 = (1, 5, 8). Given the updated policy parameter values,

we perform a new iteration and find that the optimization yields the exact same policy parameter

values for company 1, 2, and 3. The algorithm stops after three iterations.

4.2. Subproblem 1: optimize the rail quantity for company i

We use a binary search to optimize the quantity to be shipped via rail, Qi, similar to the method

of Dong and Transchel (2020). For this, we rely on the conjecture that the costs for company i are

convex in Qi, when the can-order policy governing truck transports is optimized given Qi (we cannot

make theoretical claims but extensive numerical tests confirm our conjecture). The binary search

finds the value for Qi in [qmin = 1; qmax = λiT ] for which the convex cost function is minimal. Note
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that a value higher than λiT would lead to an infinite amount of inventory buildup (and associated

costs) in the long run. The binary search splits the search space in two parts, and evaluates Qi

adjacent to the split, i.e., Q′
i = ⌈(qmin + qmax)/2⌉ and Q′′

i = Q′
i − 1. For each of these two values

of Qi, we optimize {si, ci,Si}, cf. Subproblem 2 described in Section 4.3, and evaluate their average

cost performance (in an exact way using Markov chain analysis). If Q′′
i yields the lowest costs, the

search space is adjusted by changing qmax = Q′′
i ; if Q

′
i yields the lowest costs, the search space is

adjusted by changing qmin = Q′
i. A new iteration starts until qmin = qmax, at which point we have

identified the value of Qi that minimizes the costs for company i.

Example (ctd.) To illustrate the binary search procedure, we consider the optimization of Q1 in

the first iteration of the master problem. The initial search space for Q1 is [1; 2× 3 = 6], such that

Q′
1 = ⌈(1 + 6)/2⌉ = 4 and Q′′

1 = 3. After calculating the best can-order policy parameters for both

values of Q1 (see Section 4.3), their respective costs (obtained through Markov chain analysis) are

7.01 for Q1 = 4 and 7.96 for Q1 = 3. This reduces the search space to [4; 6], in which we evaluate

Q′
1 = ⌈(4 + 6)/2⌉ = 5 and Q′′

1 = 4, yielding a cost of respectively 6.25 for Q1 = 5 and 7.01 for

Q1 = 4. This reduces the search space to [5; 6] in which we obtain a cost of 6.48 for Q1 = 6 and 6.25

for Q1 = 5. At this point, we find that the value of Q1 = 5 yields the lowest cost for company 1.

4.3. Subproblem 2: optimize the can-order policy parameters for company i, given Qi

In subproblem 2, we decompose the multi-company problem into N single-company problems.

For each company i, we optimize the can-order policy parameters, given its order quantity shipped

by rail (Qi; obtained in subproblem 1), and given the can-order policies of all other companies

j ∈ N \{i}. To mimic the orders that are initiated by other companies j ∈ N \{i}, we use so-called

“discount replenishment opportunities” (Silver, 1974; Federgruen et al., 1984). This entails that,

if a discount replenishment opportunity arises, company i can join a “virtual” order of another

company, and only incurs its minor order cost ki. Discount replenishment opportunities allow us

to recapture some of the interdependencies between orders of different companies that were lost by

decomposing the multi-company problem into single-company problems.

The discount replenishment opportunities can be estimated by a stochastic process. In absence

of any rail deliveries, Johansen and Melchiors (2003) suggest to model discount replenishment

opportunities by a Bernouilli process characterised by the parameter µi, representing the probability

that at least one company j ∈ N \ {i} places an order. The latter can be expressed in terms of βj ,
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the fraction of ordering moments where company j initiates an order,

µi = 1−Πj∈N\i(1− βj), (1)

where βj depends on the can-order policy parameters of company j. They can be calculated by

analyzing the steady state distribution of the corresponding Markov chain, i.e., βj is the sum of the

steady-state probabilities of states where company j has an inventory position of sj or smaller.

Assuming that the arrivals of discount replenishment opportunities for company i are memory-

less and independent of the order process of company i (as in Johansen and Melchiors, 2003), the

optimization of the can-order policy for company i can be obtained through dynamic programming

(Zheng (1994) has shown that the optimal policy for a company for which discount replenishment

opportunities occur is indeed a can-order policy). The state of the corresponding Markov decision

process (MDP) is defined by (yt, ϕt), with yt the inventory position of company i in period t, and

ϕt = 1 if there is a discount replenishment opportunity for company i in period t (and ϕt = 0 other-

wise). Both the demand process, characterized by λi, and the probability of discount replenishment

opportunities, characterized by µi, determine the transition probabilities of the MDP. Solving this

MDP using traditional dynamic programming methods such as value iteration allows to derive the

cost-minimizing can-order policy parameters, si, ci, and Si.

In the presence of rail replenishment, the parameters of the can-order policy additionally depend

on the time until the next train arrival. As a result, the probability of the occurrence of a discount

replenishment opportunity depends on the time until the next train arrival θ = 0, 1, ..., T − 1. The

discount replenishment opportunities for company i are driven by T different Bernouilli processes

with parameters µθ
i , denoting the probability that a discount replenishment opportunity occurs for

company i when a train arrives in θ periods. Each parameter µθ
i is calculated using Eq. (1), with

βθ
j the fraction of time at which company j initiates an order in a state in which a train arrives in

θ periods. Then, given a value of Qi, the cost-minimizing policy of company i can be obtained by

modelling it as an MDP with states (yt, ϕt, θt), and by solving it with value (or policy) iteration.

The transition probabilities of this MDP are dictated by the demand process λi, the probability of

discount replenishment opportunities µθ
i , and the quantity shipped via rail Qi.

Example (ctd.) We illustrate the optimization of the can-order policy for company 3, given

Q1 = 5, s1 = (−7,−4,−2), c1 = (−1, 1, 2), S1 = (1, 3, 5), Q2 = 8, s2 = (−11,−5,−2), c2 =

(−3, 1, 3), and S2 = (0, 3, 5). The steady state distributions of the policies for company 1 and 2
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are obtained by modelling these can-order policies as a Markov chain. Adding the steady state

probabilities of states where companies 1 and 2 have an inventory position of sθj or below at θ =

0, 1, ..., T−1 leads to β1 = (0.0123, 0.0385, 0.0806) and β2 = (0.0017, 0.0297, 0.0638). The probability

of a discount replenishment opportunity for company 3 at the different train epochs is then given by

µθ
3 = 1−Πj∈N\{3}(1−βθ

j ), leading to µ3 = (0.0140, 0.0671, 0.1393). These probabilities determine the

transition probabilities of the MDP with states (yt, ϕt, θt), together with the demand rate λ3 and the

rail quantity Q3. With Q3 = 10 (as obtained after solving subproblem 1), we solve this MDP using

value iteration. By analyzing the optimal actions in each state, we find that s3 = (−13,−5,−2),

c3 = (−2, 2, 5), and S3 = (1, 4, 8).

5. A lower bound on the optimal dual-mode joint replenishment policy

To evaluate the performance of our joint TBS policy, we benchmark it against a lower bound

that we derive on the long run average cost per period of the optimal dual-mode JRP policy. Our

lower bound extends the one derived by Atkins and Iyogun (1988) for the single-mode JRP to a

dual transport mode setting. We compare our lower bound against the proposed joint TBS policy

in a numerical experiment.

5.1. Derivation of the lower bound

Atkins and Iyogun (1988) and Viswanathan (2007) show how the lower bound on the long run

average cost per period of the optimal single-mode JRP policy can be found by allocating a portion

of the major order cost to each company. Let Xt = {x1, x2, ..., xN} be order quantities for the set

of companies N in a given period t. Assuming a major order cost K and minor order costs ki, the

total order costs over all companies ∀i ∈ N incurred by ordering Xt are:

Kδ(
∑
i∈N

xi) +
∑
i∈N

kiδ(xi),

with δ(ξ) = 1 if ξ > 0 and δ(ξ) = 0 otherwise.

Suppose we allocate the shared order cost K to the N companies with weights αi, such that

αiK is allocated to company i ∈ N with 0 ≤ αi ≤ 1, ∀i ∈ N and
∑

i∈N αi = 1. Then, the total

order costs over these N problems incurred by ordering Xt are equal to:

∑
i∈N

(αiK + ki)δ(xi).
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As δ(
∑

i∈N xi) ≥
∑

i∈N αiδ(xi) for any feasible αi, we know that:

Kδ(
∑
i∈N

xi) +
∑
i∈N

kiδ(xi) ≥
∑
i∈N

(αiK + ki)δ(xi).

As neither holding nor shortage costs are affected by allocating the major order cost K to

different companies, the lower bound on the long run average cost per period of the optimal JRP

policy is thus given by
∑

i∈N Ci(αi), with Ci(αi) the long run average cost per period of the optimal

policy for the single-company problem with a fixed order cost αiK + ki. This result holds for any

choice of allocation αi as long as 0 ≤ αi ≤ 1, ∀i ∈ N and
∑

i∈N αi = 1. The optimal lower bound

is obtained by the values αi, ∀i ∈ N , such that
∑

i∈N Ci(αi) is maximized. Viswanathan (2007)

provides an algorithm to find these optimal weights in the single-mode JRP.

Using the same technique of allocating the major order cost, we develop a lower bound for the

dual-mode JRP considered in this paper. Let αi be the portion of the major truck transportation

cost K allocated to company i ∈ N , with 0 ≤ αi ≤ 1, ∀i ∈ N and
∑

i∈N αi = 1. Define Ci(αi) as

the long run average cost per period (consisting of holding, shortage, and truck transportation costs)

of the optimal policy for the single-company dual-mode problem with a fixed truck transportation

cost of αiK+ki. We assume that an order will be placed by train every T periods (if not, the lower

bound for the single-mode JRP can be used). Then the lower bound on the long run average cost

per period of the optimal dual-mode JRP policy is given by:

∑
i∈N

Ci(αi) +
K̃

T
.

The question remains how to find αi such that the lower bound
∑

i∈N Ci(αi) is maximized.

Given a certain set of weights for which
∑

i∈N αi < 1, the sensible thing to do is to increase αi

with a small number ∆α for company i that orders the most trucks per period on average. This

will induce the largest increase in
∑

i∈N Ci(αi), resulting in a tighter lower bound. Therefore, we

propose the following method for allocating the major order cost. We start with αi = 0, ∀i ∈ N ,

and calculate the optimal dual-mode ordering policy for each company i individually using a binary

search method (similar to Section 4.2). Next, we derive the steady state distribution (i.e., the

probability of being in a particular state, following a certain policy) of the optimal MST policy for

each company. Then, the company i with the largest probability mass of steady state probabilities

in which a truck order is placed (i.e., at or below its respective reorder level) is identified, its αi
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is increased slightly by adding ∆α, and its optimal MST policy is recalculated. Increasing the

allocated fixed truck transportation cost reduces the number of trucks ordered. Therefore, we again

identify company i that orders most trucks per period, increase its αi with ∆α, and recalculate its

optimal MST policy. We repeat this procedure until
∑

i∈N αi = 1.

We note that the choice of ∆α determines the strength of the lower bound: a low ∆α yields

a tighter lower bound. This comes at the cost of a higher computation time, however, as a new

policy is calculated 1/∆α times to obtain the lower bound. We numerically tested the effect of ∆α

on the strength of the lower bound, and found decreasing marginal gains by reducing ∆α. In our

numerical experiments, starting from ∆α = 0.3, reducing ∆α only yielded negligible improvement.

5.2. Validation of the lower bound and the joint TBS policy

We set up a numerical experiment to compare the joint TBS policy against our lower bound. A

tighter gap indicates both a good performance of our policy, as well as a tight lower bound to the

optimal policy. We consider 27 four-company settings with varying demands, and consider different

values of p, k, K, and K̃ (see Table 2). The pair (k,K) is set to (3,33), (5,30), and (5,15) in different

settings, reflecting a ratio k/(K − k) of 0.10, 0.25, and 0.50, similar to the numerical experiment in

Federgruen et al. (1984). The major train transportation cost K̃ is set to represent a ratio K̃/K

of approximately 0.25, 0.50, and 0.75. The holding cost h is equal to 1 in every setting. To reflect

different service levels, the shortage cost p is set to 2, 5, and 10. In all settings, different companies

have their own Poisson demand rates λi = {2, 3, 4, 5} to reflect different sized companies. Lastly,

we assume that the number of periods between two train runs is set to T = 3 in all settings.

For each of these 27 instances, we find that the relative difference in cost performance between

the joint TBS policy and our lower bound, calculated with ∆α = 0.01, is around 10%. These cost

differences have the same order of magnitude as the cost differences between the can-order policy2

and the optimal lower bound for the single-mode JRP, proposed by Viswanathan (2007). This

validates our joint TBS policy and parameter optimization.

2We considered both the periodic review can-order and the P (s, S) policy. Although they have comparable perfor-
mance (with a difference of no more than 3% over all instances), the can-order policy outperformed the P (s, S) policy
in all settings considered, and is therefore used to report performance gaps. The can-order policy was calculated by
decomposing the problem per company, and by optimizing the subproblem using full enumeration while evaluating
the global problem using simulation. This was repeated for each company until no improvement in policy performance
was found. The P (s, S) policy was calculated by choosing a replenishment interval τ from the set T = {1, 2, ..}, and
optimizing si and Si for each company i ∈ N given τ using the algorithm of Zheng and Federgruen (1991). Starting
from τ = 1, the replenishment interval was increased until no improvement in policy performance was found.
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Cost performance gap

Setting p k K K̃ joint TBS policy can-order policy
with our lower bound with optimal lower bound

1 2 3 33 8 12.9080 % 8.2503 %
2 2 3 33 17 11.6073 % 8.2503 %
3 2 3 33 25 10.713 % 8.2503 %
4 2 5 30 8 10.5730 % 7.8938 %
5 2 5 30 15 9.8086 % 7.8938 %
6 2 5 30 23 9.0970 % 7.8938 %
7 2 5 15 4 8.3474 % 8.1631 %
8 2 5 15 8 7.9744 % 8.1631 %
9 2 5 15 11 7.6961 % 8.1631 %
10 5 3 33 8 13.9990 % 10.8194 %
11 5 3 33 17 12.8302 % 10.8194 %
12 5 3 33 25 11.9170 % 10.8194 %
13 5 5 30 8 11.7436 % 10.6238 %
14 5 5 30 15 10.7699 % 10.6238 %
15 5 5 30 23 10.0990 % 10.6238 %
16 5 5 15 4 8.8467 % 8.9839 %
17 5 5 15 8 8.4964 % 8.9839 %
18 5 5 15 11 8.2519 % 8.9839 %
19 10 3 33 8 13.862 % 11.8951 %
20 10 3 33 17 12.8300 % 11.8951 %
21 10 3 33 25 12.0345 % 11.8951 %
22 10 5 30 8 11.4988 % 11.7094 %
23 10 5 30 15 10.8490 % 11.7094 %
24 10 5 30 23 10.2049 % 11.7094 %
25 10 5 15 4 8.7065 % 9.3490 %
26 10 5 15 8 8.3693 % 9.3490 %
27 10 5 15 11 8.1591 % 9.3490 %

Table 2: A numerical experiment with 27 settings is set up in which h = 1, λi = {2, 3, 4, 5}, and T = 3 in all settings.
The experiment reveals that the cost performance gap between the joint TBS policy and the lower bound on the
optimal dual-mode JRP policy is around 10%. This is in line with the gap between the can-order policy and the
optimal lower bound in a single-mode JRP setting, developed by Viswanathan (2007). The boldface indicates the
lowest of the two.

6. Numerical analysis of proactive consolidation and modal split transport

Now that we have introduced (and validated) a heuristic policy to combine proactive freight con-

solidation and modal split transport, we can numerically analyze their impact on the use of truck

transport (i.e., how often a truck is ordered and how much volume is put on trucks), as well as on

total transportation costs. To do so, we compare the different replenishment strategies outlined in

Table 1, that is, (1) only truck transport and reactive freight consolidation; (2) only truck transport

with proactive freight consolidation; (3) modal split transport with reactive consolidation; and (4)

modal split transport with proactive consolidation. For truck transport only with reactive consoli-

dation, we optimize the periodic (s, S) policy of each company individually using the algorithm of

Zheng and Federgruen (1991). If multiple companies place an order by truck in the same period,

the truck transport is shared, and the fixed order cost K is only incurred once. For truck transport

with proactive bundling, we optimize a periodic review can-order policy (see footnote 2 for the

description on its optimization in Section 5.2). For MST and reactive consolidation, we optimize
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Replenishment Average number of Average number of Average number of
strategy orders by truck per period units per order by truck units per order by train

Truck only & Reactive Consolidation 0.6059 23.2902 0
Truck only & Proactive Consolidation 0.4044 35.2962 0

MST & Reactive Consolidation 0.2231 9.7110 35.7778
MST & Proactive Consolidation 0.2145 14.6132 33.0000

Table 3: The average number of orders by truck per period, the average number of units per order by truck, and
the average number of units per order by train over all 27 settings (see Table 2) for each of the four replenishment
strategies (see Table 1). We observe that both MST and proactive consolidation reduce truck usage. Whereas the
former shifts more freight towards rail transport, the latter ships more volume per truck order.

the modal split for each company individually using the approach of Dong and Transchel (2020).

Orders placed by truck or train in the same period are consolidated, such that their fixed order

cost is incurred only once. For MST and proactive consolidation, we optimize the joint TBS policy

using the procedure outlined in Section 4. The optimized policies are evaluated by simulating 10

times a horizon of 1 million periods, and using a warm-up of 10,000 periods.

Table 3 reports the average number of (joint) orders by truck per period, the average number

of units per order by truck, and the average number of units per order by train following each

of the four replenishment strategies for the 27 numerical settings outlined in Table 2. Compared

to only using trucks with reactive consolidation (the currently most adopted practice by LSPs),

we observe how proactive consolidation, MST, or a combination of both reduces the number of

orders placed by truck. Proactive consolidation using only trucks achieves this through increased

freight consolidation, as can be seen by the higher volume ordered by truck. It is noteworthy

to observe the lower volumes ordered per truck under both MST strategies. In those cases, a

“base” volume is shipped per train, and truck transport is only used to cover the remaining “surge”

demand. Interestingly, the volumes shipped per order by rail are in general higher under reactive

consolidation than under proactive consolidation. This is due to the fact that truck transport

is relatively cheaper under proactive consolidation because it shares the fixed transportation cost

more often. This entails that, under MST, more volume is shipped via truck when collaborating

proactively compared to reactively, meaning that proactive consolidation stimulates higher truck

loads under MST. Lastly, we note that the average number of trucks shipped per period does not

differ much between reactive and proactive consolidation using MST. Yet, proactive consolidation

using MST manages to reduce the truck intensity slightly when compared to reactive consolidation

using MST.

To visually compare the order processes between the four replenishment strategies, we provide

an excerpt of 100 periods (i.e., the first 100 periods following the 10,000 warm-up periods) in the
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Figure 2: Excerpt of 100 simulation periods (the first 100 periods following the 10,000 warm-up periods) of the order
process related to each of the four replenishment strategies defined in Table 1, for numerical setting 1 (see Table 2). In
each subplot, the x-axis represents the time and the y-axis represents the order quantity on a specific transport mode.
Dark and light grey bars represent orders via truck and train respectively. We can visually observe the decrease in
truck usage due to proactive consolidation and modal split transport.

simulation experiment of setting 1 (see Table 2) in Figure 2. The x- and y-axis represent time and

volume shipped by a specific transport mode, respectively. The dark and light gray bars represent

orders shipped per truck and train, respectively. We can visually confirm the decrease in number

of trucks when bundling proactively or using MST, compared to reactive consolidation using trucks

only. Furthermore, we verify the increase in quantities shipped per truck when shifting from reactive

to proactive consolidation. Lastly, we observe that, when using only trucks, the variance in order

sizes is larger when bundling reactively, compared to proactive consolidation. Analyzing the other

experiments, we observe that this is the case in 21 out of 27 settings. This could have benefits in

practice as the prospect of more stable orders may allow carriers to organize their operations more

efficiently.

We note that the reduction in truck usage under MST will entail a large reduction in GHG

emissions. It is estimated that rail freight transportation emits on average 82% less gCO2 per

tonne-kilometer, well-to-wheel, compared to transportation via heavy goods vehicles (European

Environment Agency, 2022). The question remains whether this strong reduction in GHG emissions

is also cost efficient.

19



Gains compared to reactive consolidation using trucks only

Setting p k K K̃ Truck only & proactive consolidation MST & reactive consolidation MST & proactive consolidation

1 2 3 33 8 29.4480% (± 0.0890%) 26.7206% (± 0.1435%) 32.6750% (± 0.1585%)
2 2 3 33 17 29.4480% (± 0.0890%) 20.2427% (± 0.1581%) 26.2565% (± 0.1073%)
3 2 3 33 25 29.4480% (± 0.0890%) 14.5425% (± 0.1397%) 20.5036% (± 0.0834%)
4 2 5 30 8 25.3737% (± 0.0910%) 20.3239% (± 0.1266%) 25.4715% (± 0.1324%)
5 2 5 30 15 25.3737% (± 0.0910%) 15.2513% (± 0.1193%) 20.4114% (± 0.1272%)
6 2 5 30 23 25.3737% (± 0.0910%) 9.4423% ( ± 0.1224%) 14.5967% (± 0.1010%)
7 2 5 15 4 15.8646% ( ± 0.0737%) 9.4628% (± 0.0935%) 13.8949% (± 0.0783%)
8 2 5 15 8 15.8646% (± 0.0737%) 5.6442% (± 0.0822%) 10.0614% (± 0.0665%)
9 2 5 15 11 15.8646% (± 0.0737%) 2.7455% (± 0.1116%) 7.2037% (± 0.0768%)
10 5 3 33 8 25.3669% (± 0.1140%) 23.6900% (± 0.1266%) 29.0555% (± 0.1207%)
11 5 3 33 17 25.3669% (± 0.1140%) 18.0399% (± 0.0922%) 23.3816% (± 0.1096%)
12 5 3 33 25 25.3669% (± 0.1140%) 12.9612% (± 0.0916%) 18.3577% (± 0.1195%)
13 5 5 30 8 21.5248% (± 0.1058%) 18.2871% (± 0.1391%) 23.0223% (± 0.1007%)
14 5 5 30 15 21.5248% (± 0.1058%) 13.8467% (± 0.0739%) 18.5876% (± 0.1050%)
15 5 5 30 23 21.5248% (± 0.1058%) 8.7733% (± 0.0807%) 13.4910% (± 0.0737%)
16 5 5 15 4 13.3146% (± 0.0610%) 8.7338% (± 0.0740%) 12.2453% (± 0.0842%)
17 5 5 15 8 13.3146% (± 0.0610%) 5.4053% (± 0.0928%) 8.9525% (± 0.0765%)
18 5 5 15 11 13.3146% (± 0.0610%) 2.9736% (± 0.1242%) 6.4823% (0.0705%)
19 10 3 33 8 22.3624% (± 0.1330%) 21.9332% (± 0.1673%) 26.6710% (± 0.1550%)
20 10 3 33 17 22.3624% (± 0.1330%) 16.5974% (± 0.1157%) 21.3621% (± 0.1089%)
21 10 3 33 25 22.3624% (± 0.1330%) 11.9165% (± 0.1390%) 16.6439% (± 0.1223%)
22 10 5 30 8 18.7435% (± 0.1080%) 16.9544% (± 0.0986%) 21.0087% (± 0.1160%)
23 10 5 30 15 18.7435% (± 0.1080%) 12.8128% (± 0.1098%) 16.8759% (± 0.1095%)
24 10 5 30 23 18.7435% (± 0.1080%) 8.0830% (± 0.1005%) 12.1400% (± 0.0810%)
25 10 5 15 4 11.5362% (± 0.0788%) 8.0124% (± 0.0912%) 11.0083% (± 0.0727%)
26 10 5 15 8 11.5362% (± 0.0788%) 4.9702% (± 0.0882%) 8.0063% (± 0.0996%)
27 10 5 15 11 11.5362% (± 0.0788%) 2.6990% (± 0.0956%) 5.7310% (± 0.1048%)

Average 20.3927% 12.6320% 17.1888%

Table 4: Gains of different replenishment strategies compared to reactive consolidation using trucks only in 27 numer-
ical settings in which h = 1, λi = {2, 3, 4, 5}, and T = 3 in all settings. Gains are calculated as the relative difference
between the long run average cost per period of reactive consolidation using trucks only, and the other replenishment
strategies, respectively. The figures in bold represent the highest gains in each setting. 95% confidence intervals are
added between brackets. We can observe the gains that proactive consolidation, modal split transport, or a combi-
nation of both has on the cost performance. While proactive consolidation using only trucks is the cheapest in most
settings, cost-efficient modal split policies can be found by using proactive consolidation, if the train transportation
cost is sufficiently low.

Table 4 reports the relative cost difference of all companies under the different replenishment

strategies compared to the situation without proactive consolidation and without MST in each of

the 27 numerical settings. For a complete picture, 95% confidence intervals are also provided, even

though they are very narrow due to the long simulation runtimes. The numbers in bold represent

the highest gains in each of the settings.

We observe that combining MST and proactive consolidation decreases costs on average by

17.19% compared to reactive consolidation using only trucks. Proactive consolidation seems to be

important to make multi-modal ordering policies more cost-efficient. MST policies with reactive

consolidation only save on average 12.63% compared to reactive consolidation using only trucks. We

observe that proactive consolidation using trucks only is often the best strategy in terms of costs,

reporting an average gain of 20.39% compared to reactive consolidation using only trucks. Still, if

the train transportation cost is sufficiently low (e.g., K̃/K = 0.25), cost-competitive MST policies
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can be found by consolidating proactively.

A deeper analysis into the drivers of the cost efficiency of proactive consolidation and MST

reveals more gains of proactive consolidation for higher values of the major trucking order cost K

compared to the minor order cost k, and lower values of the shortage cost p (lower target service

levels). The gains of MST strongly depend on the ratio between the rail and truck transport cost

K̃/K: if rail transport is cheap compared to truck transport, the gains of MST are high. Yet, even

in settings with low K̃/K, proactive consolidation is needed to make MST policies cost-competitive.

It thus seems that proactive consolidation can be key to further induce a modal shift to decarbonize

logistics in a cost-efficient manner.

7. Conclusion

In this paper we analyze the potential of proactive freight consolidation and modal split trans-

port to reduce the dominant usage of (polluting) truck transport. Whereas the former reduces truck

intensity by synchronizing orders of collaborating companies, thereby increasing the number of con-

solidation opportunities, the latter reduces the use of trucks by shipping more freight via alternative

transport modes, such as rail transport. Proactive consolidation and MST can be facilitated by re-

spectively joint replenishment and dual sourcing policies. To combine proactive consolidation with

MST, we propose a heuristic policy that combines a tailored base-surge (dual sourcing) policy and

a can-order (joint replenishment) policy. To optimize our policy, we develop a heuristic algorithm

that decomposes the problem per company and solves the single-company problems sequentially

until convergence. To validate our policy (optimization), we derive a lower bound on the optimal

policy and present a gap of around 10% in several numerical settings. This is in line with other

well-performing joint replenishment policies reported in a single-mode setting.

A numerical experiment reveals how proactive freight consolidation and MST impact truck usage

and cost performance. By combining MST with proactive consolidation, we can obtain a further

reduction in truck usage compared to traditional groupage, without negatively impacting total

costs. Demonstrating how a modal shift can positively impact costs, may induce a “mental shift”

towards collaborative, multi-modal supply chains. Especially taking into account increasing truck

transport prices, and an increasing governmental pressure towards alternative transport modes,

(collaborative) multi-modal transportation becomes a viable alternative compared to traditional

trucking. Still, there are some issues to be resolved to allow for better collaboration which in turn

can lead to profitable multi-modality, such as anti-trust compliance, adequate gain and cost sharing
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mechanisms, and the need for a neutral orchestrator.

Our model could be further extended by adding capacity constraints on both transport modes.

Although our current insights will continue to hold, it could lead to an explicit additional quantifica-

tion of the load factors of both trucks and trains. Likewise, the stringent assumption of fixed order

quantities by rail imposed per company could be relaxed in favor of a fixed order quantity over all

companies. That way, the collaborating companies decide on a total rail quantity and allocate this

among each other depending on their inventory position. This could entail a pooling effect that may

further promote a modal shift. The resulting problem, however, requires the optimal allocation of

rail capacity for each possible combination of companies’ inventory levels, in addition to determining

the total rail capacity reserved for the collaborating companies. This is a new project on its own,

subject for future research.
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MST Modal Split Transport
JRP Joint Replenishment Problem
TBS Tailored Base-Surge
N Set of collaborating companies
N Number of collaborating companies
T Number of periods between two consecutive train runs
t Current period
K Fixed (major) transport cost to ship an order by truck

K̃ Fixed (major) transport cost to ship an order by train
ki Fixed (minor) transport cost when company i ships an order
λi Poisson demand rate for company i
h Holding cost per unit in inventory, per period
p Shortage cost per unit backlog, per period
Qi Volume that company i ships per train every T periods
θt Number of periods until the next train arrives at time t
sθi Reorder point of company i if a train arrives in θ periods
cθi Can-order level of company i if a train arrives in θ periods
Sθ
i Order-up-to level of company i if a train arrives in θ periods

yt Inventory position of a company at time t
ϕt 1 if there is a discount replenishment opportunity at time t, 0 otherwise
µθ
i Probability that a discount replenishment arises occurs for company i when a train arrives in θ periods

βθ
i Fraction of time at which company i initiates an order in a state in which a train arrives in θ periods

αi Portion of the fixed truck transport cost that is allocated to company i
Ci(αi) Long-run average cost per period of the optimal policy for the single-company problem with a fixed order cost αiK + ki
∆α Step size used to allocate the fixed transportation cost
τ Replenishment interval of the P (s, S) policy
T Set of possible replenishment intervals of the P (s, S) policy

Table A.5: Overview of the notation and abbreviations used in this paper, in order of appearance.
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