
Nature Machine Intelligence

nature machine intelligence

https://doi.org/10.1038/s42256-022-00568-3Article

Three types of incremental learning

Gido M. van de Ven    1,2,3  , Tinne Tuytelaars3 & Andreas S. Tolias    1,4

Incrementally learning new information from a non-stationary stream
of data, referred to as ‘continual learning’, is a key feature of natural
intelligence, but a challenging problem for deep neural networks. In
recent years, numerous deep learning methods for continual learning
have been proposed, but comparing their performances is difficult due to
the lack of a common framework. To help address this, we describe three
fundamental types, or ‘scenarios’, of continual learning: task-incremental,
domain-incremental and class-incremental learning. Each of these
scenarios has its own set of challenges. To illustrate this, we provide a
comprehensive empirical comparison of currently used continual learning
strategies, by performing the Split MNIST and Split CIFAR-100 protocols
according to each scenario. We demonstrate substantial differences
between the three scenarios in terms of difficulty and in terms of the
effectiveness of different strategies. The proposed categorization aims
to structure the continual learning field, by forming a key foundation for
clearly defining benchmark problems.

An important open problem in deep learning is enabling neural net-
works to incrementally learn from non-stationary streams of data1,2.
For example, when deep neural networks are trained on samples from
a new task or data distribution, they tend to rapidly lose previously
acquired capabilities, a phenomenon referred to as catastrophic for-
getting3,4. In stark contrast, humans and other animals are able to
incrementally learn new skills without compromising those that were
already learned5. The field of continual learning, also referred to as
lifelong learning, is devoted to closing the gap in incremental learning
ability between natural and artificial intelligence. In recent years, this
area of machine learning research has been rapidly expanding, fuelled
by the potential utility of deploying continual learning algorithms
for applications such as medical diagnosis6, autonomous driving7 or
predicting financial markets8.

Despite its scope, continual learning research is relatively unstruc-
tured and the field lacks a shared framework. Because of an abundance
of subtle, but often important, differences between evaluation proto-
cols, systematic comparison between continual learning algorithms is
challenging, even when papers use the same datasets9. It is therefore
not surprising that numerous continual learning methods claim to be

state-of-the-art. To help address this, here we describe a structured
and intuitive framework for continual learning.

We put forward the view that, at the computational level10, there
are three fundamental types, or ‘scenarios’, of supervised continual
learning. Informally, (a) in task-incremental learning, an algorithm
must incrementally learn a set of clearly distinguishable tasks; (b) in
domain-incremental learning, an algorithm must learn the same kind
of problem but in different contexts; and (c) in class-incremental learn-
ing, an algorithm must incrementally learn to distinguish between a
growing number of objects or classes. In this article, we formally define
these three scenarios and point out different challenges associated
with each one of them. We also review existing strategies for continual
learning with deep neural networks and we provide a comprehensive,
empirical comparison to test how suitable these different strategies
are for each scenario.

Three continual learning scenarios
In classical machine learning, an algorithm has access to all training
data at the same time. In continual learning, the data instead arrives
in a sequence, or in a number of steps, and the underlying distribution

Received: 1 October 2021

Accepted: 18 October 2022

Published online: xx xx xxxx

 Check for updates

1Center for Neuroscience and Artificial Intelligence, Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA. 2Computational
and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, UK. 3Processing Speech and Images, Department
of Electrical Engineering, KU Leuven, Leuven, Belgium. 4Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.

 e-mail: gido.vandeven@kuleuven.be

http://www.nature.com/natmachintell
https://doi.org/10.1038/s42256-022-00568-3
http://orcid.org/0000-0002-5239-5660
http://orcid.org/0000-0002-4305-6376
http://crossmark.crossref.org/dialog/?doi=10.1038/s42256-022-00568-3&domain=pdf
mailto:gido.vandeven@kuleuven.be

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

the agent would not be expected to distinguish between animals
encountered in different episodes (for example, between cats and
cows), with class-incremental learning this is required. An important
challenge in this scenario is learning to discriminate between classes
that are not observed together, which has turned out to be very chal-
lenging for deep neural networks, especially when storing examples
of previously seen classes is not allowed29,30.

Formalization in a restricted, ‘academic’ setting
To more formally define these three scenarios, we start by considering
the simple, but frequently studied, continual learning setting in which
a classification problem is split up into multiple parts or episodes that
must be learned sequentially, with no overlap between the different
episodes. In the continual learning literature, these episodes are often
called tasks, but in this article we will refer to them as ‘contexts’. The
term task is problematic because in the literature it is used with several
different meanings or connotations. From here on, we will use the term
task only to refer to a context when it is always clear to the learning
algorithm when a sample belongs to that context (as is the case with
task-incremental learning).

In the ‘academic continual learning setting’ sketched above (that
is, classification-based, non-overlapping contexts encountered
sequentially), a clear distinction can be drawn between the three sce-
narios. To formalize this, we express each sample as consisting of three
components: an input x ∈ 𝒳𝒳, a within-context label y ∈ 𝒳𝒳 and a context
label c ∈ 𝒳𝒳. The three scenarios can then be defined based on how
the function or mapping that must be learned relates to the context
space 𝒳𝒳. With task-incremental learning, an algorithm is expected to
learn a mapping of the form f ∶ 𝒳𝒳 𝒳 𝒳𝒳 𝒳 𝒳𝒳, with domain-incremental
learning a mapping of the form f ∶ 𝒳𝒳 𝒳 𝒳𝒳 must be learned and with
class-incremental learning the shape of the mapping to be learned is
f ∶ 𝒳𝒳 𝒳 𝒳𝒳 𝒳 𝒳𝒳. For class-incremental learning this mapping can also

be written as f ∶ 𝒳𝒳 𝒳 𝒳𝒳, with 𝒳𝒳 the ‘global label space’ obtained by
combining 𝒳𝒳 and 𝒳𝒳.

These definitions imply that the three scenarios can be distin-
guished based on whether at test time context identity information is
known to the algorithm and, in case it is not, whether it must be inferred
(Fig. 1). Each scenario thus specifies whether context labels are available
during testing, but not necessarily whether they are available during
training. With task- and class-incremental learning, it is often implicit
that context labels are provided during training (for example, in the
case of supervised learning), but with domain-incremental learning it
is good practice to explicitly state whether context labels (or context
boundaries) are provided during training.

To illustrate the continual learning scenarios with an example,
Fig. 2 shows how Split MNIST, which is a popular toy problem for con-
tinual learning27,28,31,32, can be performed according to each of the three
scenarios. Further examples illustrating these scenarios with other
context sequences are provided in Supplementary Note 1.

of the data changes over time. In this article, we propose that, depend-
ing on how the aspect of the data that changes over time relates to the
function or mapping that must be learned, there are three fundamen-
tal ways in which a supervised learning problem can be incremental
(Table 1). Below, we start by describing the resulting three continual
learning scenarios intuitively. After that we define them more formally:
first in a restricted, ‘academic’ setting, before generalizing them to
more flexible continual learning settings.

Intuitive descriptions and each scenario’s challenges
The first continual learning scenario we refer to as ‘task-incremental
learning’ (or Task-IL). This scenario is best described as the case where
an algorithm must incrementally learn a set of distinct tasks (see
refs. 11–13 for examples from the literature). The defining charac-
teristic of task-incremental learning is that it is always clear to the
algorithm—also at test time—which task must be performed. In prac-
tice, this could mean that task identity is explicitly provided, or that
the tasks are clearly distinguishable. In this scenario it is possible to
train models with task-specific components (for example, a separate
output layer per task), or even to have a completely separate network
for each task to be learned. In this last case there is no forgetting at all.
The challenge with task-incremental learning, therefore, is not—or
should not be—to simply prevent catastrophic forgetting, but rather
to find effective ways to share learned representations across tasks,
to optimize the trade-off between performance and computational
complexity and to use information learned in one task to improve per-
formance on other tasks (that is, to achieve positive forward or even
backward transfer between tasks)14,15. These are still open challenges.
Real-world examples of task-incremental learning are learning to play
different sports or different musical instruments, because typically it
is always clear which sport or instrument should be played.

We call the second scenario ‘domain-incremental learning’ (or
Domain-IL). In this scenario, the structure of the problem is always the
same, but the context or input-distribution changes (for example, there
are domain-shifts; see refs. 16,17). Similarly to task-incremental learning,
this scenario can be described as that an algorithm must incrementally
learn a set of ‘tasks’ (although now it might be more intuitive to think
of them as ‘domains’), but with the crucial difference that—at least at
test time—the algorithm does not know to which task a sample belongs.
However, identifying the task is not necessary, because each task has
the same possible outputs (for example, the same classes are used in
each task). Using task-specific components in this scenario is, however,
only possible if an algorithm first identifies the task18–23, but that is
not necessarily the most efficient strategy. Preventing forgetting ‘by
design’ is therefore not possible with domain-incremental learning, and
alleviating catastrophic forgetting is still an important unsolved chal-
lenge. Examples of this scenario are incrementally learning to recognize
objects under variable lighting conditions24 (for example, indoors
versus outdoors) or learning to drive in different weather conditions17.

The third continual learning scenario is ‘class-incremental learn-
ing’ (or Class-IL). This scenario is best described as the case where an
algorithm must incrementally learn to discriminate between a grow-
ing number of objects or classes (for example, refs. 25,26). An often
used set-up for this scenario is that a sequence of classification-based
tasks (although now it might be more intuitive to think of them as
‘episodes’) is encountered, whereby each task contains different
classes and the algorithm must learn to distinguish between all
classes19,27,28. In this case, task identification is necessary to solve
the problem, as it determines which possible classes the current
sample might belong to. In other words, the algorithm should be
able both to solve each individual task (that is, distinguish between
classes within an episode) and to identify which task a sample belongs
to (that is, distinguish between classes from different episodes).
For example, an agent might first learn about cats and dogs, and
later about cows and horses; while with task-incremental learning

Table 1 | Overview of the three continual learning scenarios

Scenario Intuitive description Mapping to learn

Task-incremental
learning

Sequentially learn to solve
a number of distinct tasks

f ∶ 𝒳𝒳 𝒳 𝒳𝒳 𝒳 𝒳𝒳

Domain-incremental
learning

Learn to solve the same
problem in different
contexts

f ∶ 𝒳𝒳 𝒳 𝒳𝒳

Class-incremental
learning

Discriminate between
incrementally observed
classes

f ∶ 𝒳𝒳 𝒳 𝒳𝒳 𝒳 𝒳𝒳

Notation: 𝒳𝒳 is the input space, 𝒴𝒴 is the within-context output space and 𝒞𝒞 is the context
space. In this article, the term ‘context’ refers to an underlying distribution from which
observations are sampled. The context changes over time. In the continual learning literature,
the term ‘task’ is often used in a way analogous to how the term ‘context’ is used here.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

It might be unintuitive to distinguish domain- and class-
incremental learning by whether context identity must be inferred,
because with class-incremental learning context identification is often
not explicitly performed, as typically a direct mapping is learned from
the input space 𝒳𝒳 to the set of global labels 𝒳𝒳. Another way to tell these
two scenarios apart is by whether different contexts contain the same
classes (domain-incremental learning) or different classes
(class-incremental learning). However, it should then be realized that
whether two samples belong to the same class can change depending
on perspective: in the Split MNIST example (Fig. 2), with domain-
incremental learning the digits ‘0’ and ‘2’ belong to the same class (as
they are both even digits), but with class-incremental learning they are
considered different classes.

Generalization to more flexible settings
The clear separation between the three scenarios makes the academic
continual learning setting convenient for studying these scenarios
and their different challenges in isolation. However, this setting does
not reflect well the arbitrary non-stationarity that can be observed in
the real world33–40. To generalize the three scenarios to more flexible
continual learning settings, we first introduce a distinction between
the concepts ‘context set’ and ‘data stream’:

The ‘context set’ is defined as a collection of underlying distribu-
tions, denoted by {𝒟𝒟c}c∈𝒞𝒞, from which the observations presented to
the algorithm are sampled. For a supervised continual learning prob-
lem, for each context c ∈ 𝒳𝒳, samples from 𝒟𝒟c consist of an input x ∈ 𝒳𝒳
and a within-context label y ∈ 𝒳𝒳. (With class-incremental learning each
context could also contain a single class, in which case the within-
context label y is not used.)

The ‘data stream’ is defined as a (possibly unbounded) stream of
experiences that are sequentially presented to the algorithm: e1, e2, …. Each
experience consists of a set of observations sampled from one or more of
the underlying distributions of the context set. These experiences are the
incremental steps of a continual learning problem, in the sense that at each
step, the algorithm has free access to the data of the current experience,
but not to the data from past or future experiences (see also ref. 41).

In the academic continual-learning setting, there is no distinction
between the context set and the data stream, because each experience
consists of all the training data of a particular context. In general,
however, such a direct relation is not needed. Every observation within
each experience can in principle be sampled from any combination of
underlying datasets from the context set. This can be formalized as:

et[i] ∼ ∑
c∈𝒞𝒞

pt,i
c 𝒟𝒟c (1)

whereby et[i] is observation i of experience t and pt,i
c is the probability

that this observation is sampled from 𝒟𝒟c. Importantly, in this framework,
from a probabilistic perspective, two observations at different points
in time can only differ from each other with respect to the (combination
of) contexts from which they are sampled. With this formulation, the
context set describes the aspects of the data that ‘can’ change over time
and the probabilities pt,i

c describe ‘how’ they change over time.
An advantage of distinguishing between the context set and the

data stream is that it makes it possible to describe continual learning
problems with gradual transitions between contexts34,37,40,42 or whereby
contexts are revisited43–45. In this framework, which is suitable for
so-called ‘task-free continual learning’33,46–48, generalized versions of
the three scenarios can be defined based on how the mapping that must
be learned relates to the context space 𝒳𝒳, which describes the
non-stationary aspect of the data. Supplementary Note 2 illustrates
how a ‘task-free’ data stream can be performed according to each of
the generalized versions of the three scenarios.

We note that for complex real-world incremental learning prob-
lems, it might not be straight-forward to express the mapping that
must be learned in terms of the context space 𝒳𝒳, for example, because
there are different aspects of the data that change over time. To accom-
modate this, a multidimensional context space 𝒳𝒳 can be used, whereby
each dimension could adhere to a different scenario. This allows for
continual-learning problems that are mixtures of scenarios (Supple-
mentary Note 3). Another generalization is that contexts do not need
to be discrete, but can be continuous (in that case the summation in
equation (1) becomes an integral); an example of a continuous context
set is Rotated MNIST with arbitrary rotation (Supplementary Note 3).

Empirical comparison
To further explore the differences between the three continual learning
scenarios, here we provide an empirical comparison of the performance
of different deep learning strategies. To do this comparison in a struc-
tured manner, in Supplementary Note 4 we discuss and distinguish
five computational strategies for continual learning (Fig. 3). For each
strategy, we included a few representative methods in our comparison.

Compared methods
The use of context-specific components was represented by
context-dependent gating (XdG12), which masks for each context a
randomly selected subset of hidden units; and the separate networks
approach, where the available parameter budget is divided over all
contexts and a separate network is learned for each context.

Included parameter regularization methods were elastic weight
consolidation (EWC49), which estimates parameter importance using a
diagonal approximation to the Fisher information; and synaptic intel-
ligence (SI31), which estimates parameter importance online based on
the training trajectory.

For functional regularization, compared were learning without for-
getting (LwF50), which uses the inputs from the current context as anchor
points; and functional regularization of the memorable past (FROMP51),
which uses stored examples from past contexts as anchor points.

The included replay methods were deep generative replay
(DGR27), which replays generated representations at the input level;
brain-inspired replay (BI-R28), which replays generated representations
at the latent feature level; experience replay (ER52,53), which replays
stored samples in the ‘standard way’ (that is, loss on replayed data
added to loss on current data); and averaged gradient episodic memory
(A-GEM54), which replays the same stored samples but using the loss
on replayed data as inequality constraint (that is, loss on current data
optimized under constraint that loss on replayed data cannot increase).

The compared template-based methods were iCaRL25, with mean
latent feature representations of stored examples as templates; and the
generative classifier from ref. 55, which uses class-specific generative
models as templates.

Task incremental

At test time, is
context identity known?

YES NO

Must context identity
be inferred?

Domain incremental

NO YES

Class incremental

Fig. 1 | Decision tree for the three continual learning scenarios. The scenarios
can be defined based on whether at test time context identity is known and if it is
not, whether it must be inferred.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

Finally, two baselines were included. As lower target, referred to
as ‘none’, the model was incrementally trained on all contexts in the
standard way. As upper target, referred to as ‘joint’, the model was
trained on the data of all contexts at the same time.

Set-up
We performed both the Split MNIST and the Split CIFAR-100 protocol
according to each of the three scenarios. All experiments used the
academic continual learning setting and context identity information
was available during training. To make the comparisons as informative
as possible, we used similar network architectures and similar training
protocols for all compared methods. Depending on the continual learn-
ing scenario, the output layer of the network was treated differently.
With task-incremental learning, a multi-headed output layer was used
whereby each context had its own output units and only the units of the
context under consideration were used. For the other two scenarios,
single-headed output layers were used, with the number of output
units equal to the number of classes per context (domain-incremental
learning) or to the total number of classes (class-incremental learning).
See Methods for more detail.

Results
For both Split MNIST (Table 2) and Split CIFAR-100 (Table 3), we found
clear differences between the three continual learning scenarios. With
task-incremental learning, almost all tested methods performed well

compared to the ‘none’ and ‘joint’ baselines, with domain-incremental
learning the relative performances of many methods dropped consider-
ably and with class-incremental learning they decreased even further.

The decline in performance across the three scenarios was most
pronounced for the parameter regularization methods. On both pro-
tocols, EWC and SI performed close to the upper target when context
identity was known during testing (that is, task-incremental learning);
with domain-incremental learning the performance of both methods
was substantially lower, but remained above the lower target of sequen-
tially training a network in the standard way; and with class-incremental
learning the performance of EWC and SI was similar to the lower target,
indicating that in this scenario these methods failed completely. There
was a similar trend across the three scenarios for the functional regu-
larization methods, albeit less pronounced for FROMP than for LwF.

Replay-based methods performed relatively well in all three
scenarios. Although on both protocols their performance still
decreased from task- to domain- to class-incremental learning, the
decline was less sharp than for the regularization-based methods,
and replay-based methods were among the top performers in each
scenario. Template-based classification also performed well with
class-incremental learning, with iCaRL and the Generative Classifier
among the best performing methods on both protocols.

For class-incremental learning, the methods that performed best
either used a generative model or they stored previously seen data
in a memory buffer. Directly comparing methods using these two

d
Context 1

M

Context 2

(x(2),y(2))(x(1),y(1))
(x(M),ŷ(M))

...

Context 1
Context 2

a

Shared

c

x

f (
x)

f (1)

f (2)

Anchor
points

Context 2 data
b

Parameter 2

Pa
ra

m
et

er
 1

Context 1 loss

Context 2 loss

+ Reg

No reg

e

Feature 2

Fe
at

ur
e

1 Class 1
template

Class 2 template

x(test)

δ(2)

δ(1)

Fig. 3 | Schematic illustrations of different continual learning strategies.
a, Context-specific components. Certain parts of the network are only used for
specific contexts. b, Parameter regularization. Parameters important for past
contexts are encouraged not to change too much when learning new contexts.
c, Functional regularization. The input–output mapping learned previously is
encouraged not to change too much at a particular set of inputs (the ‘anchor
points’) when training on new contexts. d, Replay. The training data of a new

context is complemented with data representative of past context. The replayed
data is sampled from M, which can be a memory buffer or a generative model.
e, Template-based classification. A ‘template’ is learned for each class (for
example, a prototype, an energy value or a generative model), and classification
is performed based on which template is most suitable for the sample to be
classified. See Supplementary Note 4 for a detailed discussion of these strategies.

Within-context label:
Global label:

y = 1y = 0
g = 0 g = 1

Context 1 (c = 1)

y = 1y = 0
g = 2 g = 3

Context 2 (c = 2)

y = 1y = 0
g = 4 g = 5

Context 3 (c = 3)

y = 1y = 0
g = 6 g = 7

Context 4 (c = 4)

y = 1y = 0
g = 8 g = 9

Context 5 (c = 5)

Task-incremental learning

Domain-incremental learning

Class-incremental learning

Choice between two digits of same context (e.g. 0 or 1)

Is the digit odd or even?

Intuitive description

Choice between all ten digits

Image + context label

Image

Input (at test time)

Image

Within-context labela

Within-context label

Expected output

Global label

a

b

Fig. 2 | Split MNIST according to the three scenarios. a, The Split MNIST
protocol is obtained by splitting the original MNIST dataset into five contexts,
with each context consisting of two digits. b, Overview of what is expected of the
algorithm at test time when the Split MNIST protocol is performed according
to each continual learning scenario. aWith task-incremental learning, at the

computational level, there is no difference between whether the algorithm must
return the within-context label or the global label, because the within-context
label can be combined with the context label (which is provided as input) to get
the global label.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

types of memories can be arbitrary, as their performance can heavily
depend on the number of stored examples or the kind of generative
model. We instead focus on comparing methods using the same type
of memory.

For methods using generative models, the largest differences were
observed with Split CIFAR-100. In particular, DGR did not perform well
on this protocol, indicating that standard generative replay (that is, at
the input level) is not a good approach when the input data are complex
(see also refs. 28,56,57). There was also a substantial gap in performance
between BI-R and the Generative Classifier. As both methods had a
generative model on the latent features, this suggests that the way in
which a generative model is used (that is, for generating replay or as
templates) is important as well.

For methods using stored data, we found that replaying stored
data in the standard way (as is done by ER) was not often outperformed
by more complex ways of using stored data. In fact, perhaps surpris-
ingly, on all experiments ER comfortably outperformed A-GEM, and
ER performed significantly better than FROMP on two of the three
scenarios of Split MNIST. These results held for different sizes of the
memory buffer (Extended Data Fig. 1). A clear improvement over ER
was only observed with iCaRL, and only when the size of the memory
buffer was relatively small.

Discussion
Continual learning is a key feature of natural intelligence, but an open
challenge for deep learning. Standard deep neural networks tend

Table 2 | Results on Split MNIST

Strategy Method Budget GM Task-IL Domain-IL Class-IL

Baselines None – lower target 84.32 (±0.99) 60.13 (±1.66) 19.89 (±0.02)

Joint – upper target 99.67 (±0.03) 98.59 (±0.05) 98.17 (±0.04)

Context-specific components Separate Networks - - 99.57 (±0.03) - -

XdG - - 99.10 (±0.10) - -

Parameter regularization EWC - - 99.06 (±0.15) 63.03 (±1.58) 20.64 (±0.52)

SI - - 99.20 (±0.11) 66.94 (±1.13) 21.20 (±0.57)

Functional regularization LwF - - 99.60 (±0.03) 71.18 (±1.42) 21.89 (±0.32)

FROMP 100 - 99.12 (±0.13) 84.86 (±1.02) 77.38 (±0.64)

Replay DGR - Yes 99.50 (±0.03) 95.57 (±0.30) 90.35 (±0.24)

BI-R - Yes 99.61 (±0.03) 97.26 (±0.15) 94.41 (±0.15)

ER 100 - 98.98 (±0.07) 93.75 (±0.24) 88.79 (±0.20)

A-GEM 100 - 98.54 (±0.10) 87.67 (±1.33) 65.10 (±3.64)

Template-based classification Generative Classifier - Yes - - 93.82 (±0.06)

iCaRL 100 - - - 92.49 (±0.12)

Reported is the final test accuracy (as percentage, averaged over all contexts) of all compared methods on the Split MNIST protocol, which is performed according to all three scenarios. The
experiments followed the academic continual learning setting and context identity information was available during training. The column ‘Budget’ indicates the number of examples per class
that was allowed to be stored in a memory buffer. The column ‘GM’ indicates whether a generative model was learned, for which additional network capacity was used. Each experiment was
performed 20 times with different random seeds, reported is the mean (±s.e.m.) over these runs.

Table 3 | Results on Split CIFAR-100

Strategy Method Budget GM Task-IL Domain-IL Class-IL

Baselines None – lower target 61.43 (±0.36) 18.42 (±0.33) 7.71 (±0.18)

Joint – upper target 78.78 (±0.25) 46.85 (±0.51) 49.78 (±0.21)

Context-specific components Separate Networks - - 76.83 (±0.25) - -

XdG - - 69.86 (±0.34) - -

Parameter regularization EWC - - 76.34 (±0.29) 21.65 (±0.55) 8.24 (±0.25)

SI - - 74.84 (±0.39) 22.58 (±0.42) 8.10 (±0.24)

Functional regularization LwF - - 78.59 (±0.24) 29.45 (±0.39) 25.57 (±0.27)

Replay DGR - Yes 71.40 (±0.32) 20.52 (±0.43) 9.67 (±0.22)

BI-R - Yes 79.14 (±0.21) 30.26 (±0.44) 25.81 (±0.41)

ER 100 - 76.43 (±0.24) 39.00 (±0.34) 37.57 (±0.21)

A-GEM 100 - 73.30 (±0.39) 20.51 (±0.59) 20.38 (±1.45)

Template-based classification Generative Classifier - Yes - - 46.83 (±0.18)

iCaRL 100 - - - 37.83 (±0.21)

Reported is the final test accuracy (as percentage, averaged over all contexts) of all compared methods on the Split CIFAR-100 protocol, which is performed according to all three scenarios.
The experiments followed the academic continual learning setting and context identity information was available during training. The column ‘Budget’ indicates the number of examples per
class that was allowed to be stored in a memory buffer. The column ‘GM’ indicates whether a generative model was learned, for which additional network capacity was used. Note that we were
not able to run the method FROMP on this protocol due to its high computational costs. Each experiment was performed 10 times with different random seeds, reported is the mean (±s.e.m.)
over these runs. All compared methods used convolutional layers that were pre-trained on CIFAR-10, see Methods for full details.

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

to catastrophically forget previous tasks or data distributions when
trained on a new one. Enabling these networks to incrementally learn,
and retain, information from different contexts has become a topic
of intense research. Yet, despite its scope, the continual learning field
lacks structure and direct comparisons between published papers
can be misleading. Here, we pointed out that an important difference
between continual learning set-ups is whether context identity is known
to the algorithm and—if it is not—whether it must be inferred. Based
on these two distinctions, we identified three scenarios for continual
learning: task-incremental learning, domain-incremental learning and
class-incremental learning.

These three scenarios and their different challenges can be con-
veniently studied in an academic continual learning setting, where a
classification-based problem is split up in discrete, non-overlapping
contexts (which are often called ‘tasks’) that are encountered in
sequence. We showed that in this setting there is a clear separa-
tion between the three scenarios. At least in part because of two
preprints of this article58,59, the terms ‘task-incremental learning’,
‘domain-incremental learning’ and ‘class-incremental learning’ are
sometimes being used in the recent literature in a way that restricts
them to this academic setting. Here, by interpreting these three
scenarios as specifying how the non-stationary aspect of the data
relates to the mapping that must be learned, we propose that they
generalize to more flexible continual-learning settings. To dem-
onstrate the value of such generalized versions of these three sce-
narios, Supplementary Note 2 shows how a ‘task-free’ data stream
without sharp context boundaries can also be performed in three
different ways.

A key insight of this article is that a useful way to categorize
continual-learning problems is based on how the non-stationary aspect
of the data relates to the mapping to be learned. For supervised clas-
sification this leads to the three continual learning scenarios discussed
here, but the same perspective might also be useful for unsupervised
or reinforcement learning (Supplementary Note 5). Continual learning
can be categorized in other ways as well, some of which we discuss in
Supplementary Note 6.

Using the academic continual-learning setting, for each scenario
we performed an empirical comparison of a representative selection
of continual learning algorithms. This comparison revealed marked
differences between the three scenarios in overall difficulty level and
in the relative effectiveness of different continual learning strategies.
The only strategy among the top performers in all three scenarios is
replay, with the replayed data sampled either from a memory buffer
or a generative model. Surprisingly, within the class of methods using
stored data, the strongest performance is often obtained by the method
ER, which replays stored data ‘in the standard way’. In our experiments,
popular methods such as A-GEM and FROMP, which use stored data
in more complex ways, are almost always outperformed by ER, even
though the computational costs of A-GEM and FROMP are strictly
higher than those of ER.

In the class-incremental learning scenario, we found that parameter
regularization methods such as EWC and SI fail almost completely, even
on Split MNIST. Functional regularization typically works better, espe-
cially when using stored data as anchor points, but this strategy also does
not work optimally. We hypothesize that regularization-based strate-
gies—at least by themselves—are not well suited for class-incremental
learning because they do not provide a way to compare between classes
that are not observed together. Regularization-based methods aim
to learn new contexts while preserving the function or parameters
learned in previous contexts. However, with class-incremental learn-
ing, learning a new context (for example, distinguishing ‘2’ and ‘3’)
while preserving what was learned before (for example, distinguish-
ing ‘0’ and ‘1’) is not enough; it is also needed to combine information
from different contexts (for example, for distinguishing ‘1’ and ‘2’).
For learning to distinguish between classes not observed together,

it might be unavoidable to use either replay, which allows for com-
paring between classes from different contexts during training, or
template-based classification, which allows for comparing between
classes from different contexts during inference (that is, during the
classification decision).

Task-incremental learning is sometimes considered ‘easy’, and it
has been argued that the continual-learning community should move
away from the assumption that context identities (or task labels, as they
are often called) are provided at test time60. A reason for this notion
might be that with task-incremental learning, the bar is often set too
low. In our experiments, while all methods indeed perform substan-
tially better than the usual ‘lower target’ in which a single shared neural
network is sequentially trained on all contexts, most methods per-
form worse than the more appropriate lower target in which a smaller,
separate network is trained for each context. To do better than this
‘Separate Networks’ approach, positive forward or backward transfer
between contexts is necessary, but achieving such positive transfer is
not trivial14,15.

Domain-incremental learning might be the least studied continual
learning scenario. A few years ago this scenario was regularly studied
with Permuted MNIST31,49,61, but this protocol is not often used any-
more as it is considered too artificial. The continual learning field is
currently dominated by context sets created by splitting up existing
image classification datasets based on class labels (for example, Split
MNIST, Split CIFAR-100). Although in theory these context sets can
be performed according to all three scenarios, they are typically less
intuitive and/or realistic under the assumptions of domain-incremental
learning. However, in recent years, several resources have been cre-
ated that provide—or enable the generation of—more realistic
context sets well suited for domain-incremental learning24,41,62–64.
These resources might help to renew the community’s interest in
this scenario.

The three continual learning scenarios described in this article
provide a useful basis for defining clear and unambiguous benchmark
problems for continual learning. We hope this will accelerate progress
to bridge the gap between natural and artificial intelligence. Moreover,
we believe that it is an important conceptual insight that, at the com-
putational level, a supervised learning problem can be incremental in
these three different ways. Perhaps especially in the real world, where
continual learning problems are often complex and ‘mixtures’ of sce-
narios, it might be fruitful to approach problems as consisting of a
combination of these three fundamental types of incremental learning.

Methods
All experiments were run using custom-written code for the Python
machine learning framework PyTorch65.

Context sets
For the Split MNIST protocol, the MNIST dataset66 was split into
five contexts, such that each context contained two digits. The dig-
its were randomly divided over the five contexts, so the order of the
digits was different for each random seed. The original 28×28 pixel
greyscale images were used without pre-processing. The standard
training/test-split was used, which resulted in 60,000 training images
(approximately 6,000 per digit) and 10,000 test images (approximately
1,000 per digit).

For the Split CIFAR-100 protocol, the CIFAR-100 dataset67 was
split up into ten contexts, such that each context contained ten image
classes. The classes were randomly divided over the contexts, with a
different class order for each random seed. The original 32×32 pixel
RGB-colour images were normalized (that is, each pixel-value was
subtracted by the relevant channel-wise mean and divided by the
channel-wise standard deviation, with means and standard devia-
tions calculated over all training images). No other pre-processing or
augmentation was applied. The standard training/test-split was used,

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

which resulted in 50,000 training images (500 per class) and 10,000
test images (100 per class).

Base neural network architecture
To make the comparisons as informative as possible, we used the same
base neural network architecture for all methods as much as possible.
For Split MNIST, the base network had two fully connected hidden lay-
ers of 400 ReLU each and a softmax output layer. For Split CIFAR-100,
the base network had five pre-trained convolutional layers followed
by two fully connected layers with 2,000 ReLU each and a softmax out-
put layer. The convolutional layers contained 16, 32, 64, 128 and 256
channels. Each convolutional layer used a 3×3 kernel, a padding of 1 and
there was a stride of 1 in the first layer (that is, no downsampling) and
a stride of 2 in the other layers (that is, image-size was halved in each
of those layers). Batch norm68 was used in all convolutional layers, fol-
lowed by a ReLU non-linearity. No pooling was used. The convolutional
layers were pre-trained on CIFAR-10, which is a dataset containing
similar but non-overlapping images and image classes compared with
CIFAR-10067. To pre-train the convolutional layers, the base neural net-
work was trained to classify the 10 classes of CIFAR-10 for 100 epochs,
using the ADAM-optimizer (β1 = 0.9, β2 = 0.999) with learning rate of
0.0001 and mini-batch size of 256. For the pre-training on CIFAR-10,
images were normalized and augmented by random cropping and hori-
zontal flipping. A similar pre-training protocol was used in ref. 28. During
the incremental training on CIFAR-100, the parameters of the pre-trained
convolutional layers were frozen. For all compared methods, freezing
these parameters resulted in similar or better performance compared
with not freezing them.

Output layer
The softmax output layer of the network was treated differently
depending on the continual learning scenario that was performed.
With task-incremental learning, a multi-headed output layer was used,
meaning that each context had its own output units and only the output
units of the context under consideration—that is, either the current
context or the replayed context—were set to ‘active’ (see next para-
graph). With domain- and class-incremental learning, a single-headed
output layer was used. For domain-incremental learning, this meant
that all contexts used the same output units (that is, there were 2 output
units for Split MNIST and 10 for Split CIFAR-100); for class-incremental
learning, this meant that each class had its own output unit (that is,
there were 10 output units for Split MNIST and 100 for Split CIFAR-100).
With both domain- and class-incremental learning, always all output
units were set to ‘active’. Note that with class-incremental learning
another possibility is to use an ‘expanding head’ and only set the out-
put units of classes seen so far to active (for example, see refs. 28,69).
We found that for our experiments there was not much difference in
performance between these two options. Because all output units
should always be active for the Bayesian interpretation of the param-
eter regularization methods21, we decided to use that approach in
this study.

Whether an output unit was set to ‘active’ controlled whether a
network could assign a positive probability to its corresponding class.
The probability predicted by a neural network with parameters θ that
an input x belongs to output class o was calculated as:

pθ (o|x) =
⎧⎪
⎨⎪
⎩

ez
(x,θ)
o

∑
j
e
z
(x,θ)
j

if output unito is active

0 otherwise

(2)

whereby z(x,θ)o was the logit of output class o obtained by putting input
x through the neural network with parameters θ. The summation in the
denominator was over all active classes in the output layer. Importantly,
with task- and class-incremental learning, output class o refers to the
‘global class’ that is obtained by combining the within-context label y

and the context label c (that is, the set of global classes is given by
𝒳𝒳 = 𝒳𝒳 𝒳 𝒳𝒳). With domain-incremental learning, output class o refers to
the within-context label y.

Data stream
All experiments in this article used the academic continual learning
setting, meaning that the different contexts were presented to the
algorithm one after the other. Within each context, the training data
was fed to the algorithm in a stream of independent and identically
distributed experiences (or iterations). For Split MNIST, each context
was trained for 2,000 iterations with mini-batch size of 128. For Split
CIFAR-100, there were 5,000 iterations per context with mini-batch
size of 256. Some of the compared methods (EWC, FROMP and iCaRL)
performed an additional pass over each context’s training data upon
finishing training on that context.

Loss function and optimization
For all compared methods, the parameters of the neural network were
sequentially trained on each context by optimizing a loss function
(denoted by ℒtotal) using stochastic gradient descent. In each iteration,
the loss was calculated as the average over all samples in the mini-batch
and a single gradient step was taken with the ADAM-optimizer (β1 = 0.9,
β2 = 0.999; ref. 70) and a learning rate of either 0.001 (Split MNIST) or
0.0001 (Split CIFAR-100).

For most compared methods, a central component of the loss
function was the multi-class cross-entropy classification loss on the
data of the current context. For an input x labeled with a hard target o,
this classification loss was given by:

ℒC (x,o;θ) = − logpθ (o|x) (3)

with pθ the conditional probability distribution defined by the neural
network with parameters θ, as given in equation (2).

Memory buffer and generative models
Several of the compared methods (FROMP, ER, A-GEM and iCaRL) main-
tained a memory buffer in which examples of previously seen classes
were stored. Except for the experiments in Extended Data Fig. 1, 100
examples per class were allowed to be stored in the memory buffer (that
is, the per-class memory budget B was set to 100). Some other methods
(DGR, BI-R and the Generative Classifier) learned generative models,
these methods used up to three times as many parameters compared
with the other methods.

Baselines
For the baseline ‘None’, which was included as a lower target, the base
neural network was sequentially trained on each context in the standard
way, meaning that the loss function to be optimized was always just
the classification loss on the current data (that is, ℒtotal = ℒC).

For the baseline ‘Joint’, which was included as an upper target,
the base neural network was trained on the data from all contexts at
the same time. For this baseline, the same total number of iterations
was used as with the sequential training protocol (that is, 5×2,000
iterations for Split MNIST and 10×5,000 iterations for Split CIFAR),
but each mini-batch was always sampled jointly from the data of
all contexts.

Approaches using context-specific components
For XdG and the ‘Separate Networks’ approach, not all parts of the
network were used for each context. These approaches require knowl-
edge of which context a sample belongs to (to select the correct
context-specific components), which meant that they could only be
used in the task-incremental learning scenario. For both approaches,
training was performed using just the classification loss on the current
data (that is, ℒtotal = ℒC).

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

In the task-incremental learning scenario, the other methods
(that is, all methods except XdG and Separate Networks) used the
available context identity information only in the form of a separate
output layer for each context. This is a common and often sensible
way to use context identity information, although in Supplementary
Note 7 we show that sometimes it is more efficient to use context iden-
tity information in other ways.

Separate Networks. For the Separate Networks approach, the available
parameter budget was equally divided over all contexts to be learned,
and a separate sub-network was trained for each context. For Split
MNIST, each context-specific sub-network had two fully connected
hidden layers of 100 ReLU each and a softmax output layer. For Split
CIFAR-100, the pre-trained and frozen convolutional layers were shared
between all contexts, and only the fully connected part of the network
was split up into context-specific sub-networks. Each context-specific
sub-network had two fully connected layers with 400 ReLU each and
a softmax output layer.

XdG. With XdG12, the base neural network was used and for each context a
different, randomly selected subset of X% of the units in each hidden layer
was fully gated (that is, their activations were set to zero), with X a hyper-
parameter whose value was set by a grid search (Supplementary Note 8).

Parameter regularization methods
For the parameter regularization methods EWC and SI, a regularization
term was added to the classification loss: ℒtotal = ℒC + ℒparam−reg. This
regularization term penalized changes to parameters thought to be
important for previously learned contexts.

EWC. The regularization term of EWC49 consisted of a quadratic penalty
term for each previously learned context, whereby the term of each
context penalized parameters for how different they were compared
to their value directly after finishing training on that context. When
training on context K > 1, the EWC regularization term was given by:

ℒ(K)
param−reg (θ) = λ

K−1
∑
k=1

(1
2

Nparams

∑
i=1

F(k)
ii
(θi − θ̂(k)

i
)
2
) (4)

with λ a hyperparameter controlling the regularization strength (which
was set based on a grid search, Supplementary Note 8), θ̂(k)

i
 the value of

the ith parameter at the end of training on context k, and F(k)
ii

 the esti-
mated importance of parameter i for context k. This importance esti-
mate was calculated as the ith diagonal element of the Fisher information
matrix of context k:

F(k)
ii

= 1
|S(k)| ∑

x∈S(k)
(∑

o

̂o(x)
k (δ logpθ (o|x)

δθi

|||
θ=θ̂(k)

)
2

) (5)

whereby S(k) was the training data of context k and ̂o(x)
k

 was the probabil-
ity that x belongs to output class o, as predicted by the network after
finishing training on context k—that is, ̂o(x)

k
= pθ̂(k) (o|x). The inner sum-

mation in equation (5) was over all output classes that were active
during training on context k.

SI. The regularization term of SI (ref. 31) consisted of a single quadratic
term that penalized changes to the parameters away from the value they
had after finishing training on the previous context. When training on
context K > 1, the SI regularization term was given by:

ℒ(K)
param−reg (θ) = γ

Nparams

∑
i=1

Ω(K−1)
i

(θi − θ̂∗
i
)
2

(6)

with γ a hyperparameter controlling the regularization strength (which
was set based on a grid search, see Supplementary Note 8), θ̂∗

i
 the value

of the ith parameter at the end of training on context K − 1, and Ω(K−1)
i

 the
estimated importance of parameter i after the first K − 1 contexts have
been learned. To compute these parameter importance estimates, after
each context k, a per-parameter contribution to the change of the loss
was calculated for each parameter i as follows:

ω(k)
i

=
Niters

∑
t=1

(θi[t(k)] − θi[(t − 1)(k)]) −δℒtotal[t(k)]
δθi

(7)

with Niters the number of iterations per context, θi[t(k)] the value of
parameter i after the tth training iteration on context k and δℒtotal[t(k)]

δθi
 the

gradient of the loss with respect to parameter i during the tth training
iteration on context k. For every context, these per-parameter contribu-
tions were normalized by the square of the total change of that param-
eter during training on that context plus a small dampening term ξ (set
to 0.1, to bound the resulting normalized contributions when a param-
eter’s total change goes to zero), after which they were summed over
all contexts so far:

Ω(K−1)
i

=
K−1
∑
k=1

ω(k)
i

(Δ(k)
i
)
2
+ ξ

(8)

with Δ(k)
i

= θi[Niters
(k)] − θi[0(k)], where θi[0(k)] was the value of parameter

i right before starting training on context k.

Functional regularization methods
Similar as with parameter regularization, the functional regularization
methods LwF and FROMP had a regularization term added to the clas-
sification loss: ℒtotal = ℒC + ℒfunc−reg. This regularization term encour-
aged the input–output mapping of the network not to change too much
at a set of anchor points.

LwF. The method LwF (ref. 50) used the inputs from the current context
as anchor points in combination with knowledge distillation71. During
training on context K > 1, the LwF regularization term was given by:

ℒ(K)
func−reg (x,θ) = −

K−1
∑
k=1

∑
o∈𝒪𝒪k

pT
θ̂∗
(o|x) log [pT

θ
(o|x)] (9)

whereby 𝒪𝒪k was the set of output classes in context k, θ̂∗ was the param-
eter vector with values as they were at the end of training on context
K − 1 and pT

θ
(o|x) was the ‘temperature-raised’ probability that input x

belongs to output class o, as predicted by the network with parameters
θ. These temperature-raised probabilities were defined as:

pT
θ
(o|x) =

exp [z(x,θ)o /T]

∑j exp [z
(x,θ)
j

/T]
(10)

with T the temperature, which was set to 2, and z(x,θ)o the logit of output
class o obtained by putting input x through the neural network with
parameters θ. The summation in the denominator was over all active
classes in the output layer. With task-incremental learning, for each
context’s term in the outer summation of equation (9), only the output
classes contained in that context were active. With domain- and
class-incremental learning, always all output classes were active. In
each iteration, the LwF regularization term was computed as average
over the same inputs that were used to compute ℒC.

We note that this implementation of LwF differs slightly from the
implementation of LwF used in ref. 28. Compared with that implemen-
tation, the regularization term here was weighted less strongly, which
substantially improved the performance of LwF on Split CIFAR-100.
Initial experiments indicated that by reducing the weight of the replay
term in equation (16) it is also be possible to improve the performance

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

of several of the replay methods on Split CIFAR-100, but at the cost of
impaired performance on Split MNIST.

FROMP. The method FROMP (ref. 51) performed functional regulari-
zation in a Bayesian framework and used stored data from previous
contexts, referred to as memorable inputs, as anchor points. During
training on context K, the regularization term of FROMP was given by:

ℒ(K)
func−reg (θ) =

1
2 τ

K−1
∑
k=1

∑
o∈𝒪𝒪k

(m(θ)
k,o −m(θ̂∗)

k,o)
T

K(K−1)
k,o

−1
(m(θ)

k,o −m(θ̂∗)
k,o) (11)

with τ a hyperparameter controlling the regularization strength (which
was set based on a grid search, see Supplementary Note 8) and θ̂∗ the
parameter vector with values as they were at the end of training on con-
text K − 1. Further, m(θ)

k,o was a vector containing for each memorable input
from context k the probability that this input belongs to output class o
as predicted by the network with parameters θ. That is, the ith element
of m(θ)

k,o was given by m(θ)
k,o[i] = pθ (o|x(i,k)) , with x(i,k) the ith memorable

input of context k. Finally, K(K)
k,o was a matrix whose elements were

given by:

K(K)
k,o [i, j] = gk,o[i]V(K)gk,o[j]

T (12)

with:

gk,o[i] =
δpθ (o|x(i,k))

δθ

||||θ=θ̂∗
(13)

and V(K) was a diagonal matrix with diagonal v(K) given by:

1
v(K)

=
K

∑
k=1

∑
x∈𝒟𝒟k

diag (J(k)(x)
TΛ(k)(x)J(k)(x)) (14)

whereby J(k)(x) = δfθ(x)
δθ

||
θ=θ̂(k)

, with fθ(x) the logits obtained by putting
input x through the neural network with parameters θ, and
Λ(k)(x)[i, j] = pθ(k) (i|x) (1 − pθ(k) (j|x)) .

The selection of memorable inputs, which are FROMP’s anchor
points, took place after finishing training on each context. After fin-
ishing on context k, for each input x in that context’s training set, a
relevance score was calculated as:

r (x) = ∑
o∈𝒪𝒪k

pθ (o|x) (1 − pθ (o|x)) (15)

whereby 𝒪𝒪k was the set of output classes in context k and θ were the
parameters after training on context k. Then, for each output class in
context k, the B inputs with the highest relevance scores were selected
as the memorable inputs for that class and stored in the memory buffer.

Replay-based methods
The replay-based methods had two separate loss terms: one for the
data of the current context, denoted as ℒcurrent, and one for the replayed
data, denoted as ℒreplay. Except with A-GEM, during training the objec-
tive was to optimize an overall loss function that was a weighted sum
of these two terms, with the weights depending on how many contexts
had been seen so far:

ℒtotal =
1

Ncontexts so far
ℒcurrent + (1 − 1

Ncontexts so far
)ℒreplay (16)

In each iteration, the number of replayed samples was always equal to
the number of samples from the current context (that is, 128 for Split
MNIST and 256 for Split CIFAR-100).

ER. With ER, the term ℒcurrent was the standard classification loss on the
data of the current context (that is, ℒcurrent = ℒC). The term ℒreplay was

also the standard classification loss, but on the replayed data. In each
iteration, the samples to be replayed were randomly sampled from the
memory buffer. The memory buffer was updated after each context,
when for each new class B samples were randomly selected from the
training data and added to the buffer.

A-GEM. For the method A-GEM (ref. 54), the loss terms ℒcurrent and ℒreplay
were defined similarly as for ER. The population of the memory buffer
and sampling of the the data to be replayed from the memory buffer
were also the same. The only difference compared to ER was that with
A-GEM, the objective was not to minimize the combined loss (that is,
ℒtotal), but instead the objective was to minimize the loss on the current
data (that is, ℒcurrent) under the constraint that the loss on the replayed
data (that is, ℒreplay) did not increase. To achieve this, in every iteration,
the gradient vector that was used to update the parameters (that is,
the gradient vector that was put into the ADAM-optimizer) was required
to have a positive angle with the gradient of ℒreplay. Therefore, whenever
the angle between the gradient of ℒcurrent and the gradient of ℒreplay was
negative, the gradient of ℒcurrent was projected onto the orthogonal
complement of the gradient of ℒreplay. Let ℬcurrent be the mini-batch of
data from the current context and ℬreplay the mini-batch of replayed
data from the memory buffer. The gradient of ℒcurrent was then:

gcurrent =
1

|ℬcurrent|
∑

(x,o)∈ℬcurrent

δℒC(x,o;θ)
δθ

(17)

and the gradient of ℒreplay was given by:

greplay =
1

|ℬreplay|
∑

(x,o)∈ℬreplay

δℒC(x,o;θ)
δθ

(18)

The gradient g* used to update the parameters was then given by:

g∗ = {
gcurrent if gcurrentTgreplay ≥ 0

gcurrent −
gcurrent

Tgreplay

(greplayTgreplay+γ)
greplay otherwise,

(19)

with γ a small constant to ensure numerical stability. In A-GEM’s origi-
nal formulation54 there was no γ-term, but we found that without it,
performance was unstable. We used γ = 1 × 10−7.

DGR. With DGR27, two neural networks were sequentially trained on all
contexts: a classifier, for which we used the base neural network, and a
separate generative model.

For training of the classifier, as with ER and A-GEM, ℒcurrent and ℒreplay
were the standard classification loss on the data of the current context
and the replayed data, respectively. With DGR, the replayed data was
obtained by sampling inputs from a copy of the generative model and
labelling them as the most likely class predicted for those inputs by a
copy of the classifier. The samples replayed during context K were
generated by copies of the generator and classifier stored directly after
finishing training on context K − 1. With task-incremental learning, each
replayed sample was labelled and evaluated separately for all previous
contexts and ℒreplay was the average over those contexts.

As generative model a variational autoencoder (VAE; ref. 72) was
used, which consisted of an encoder network qϕ that mapped an
input-vector x to a vector of latent variables z, and a decoder network
pψ that mapped those latent variables back to a reconstructed or
decoded input-vector ̂x. The architecture of these two networks was
kept similar to that of the base neural network: for Split MNIST, the
encoder and the decoder were both fully connected networks with two
hidden layers of 400 ReLU each; for Split CIFAR-100, the encoder con-
sisted of the same five pre-trained convolutional layers as the base
neural network followed by two fully connected layers with 2,000 ReLU
units, and the decoder consisted of two fully connected layers with

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

2,000 ReLU followed by five deconvolutional (or transposed convolu-
tional) layers73 that mirrored the convolutional layers and contained
128, 64, 32, 16 and 3 channels. The first four deconvolutional layers
used a 4×4 kernel, a padding of 1 and a stride of 2 (that is, image size was
doubled in each of those layers), while the final layer used a 3×3 kernel,
a padding of 1 and a stride of 1 (that is, no upsampling). Batch-norm
and ReLU non-linearities were used in all deconvolutional layers except
for the last one. For both context sets, the VAE’s latent variable layer z
had 100 Gaussian units. The prior over the latent variables was the
standard normal distribution.

For a given input x, the loss function for training the parameters
of the VAE was:

ℒG (x;ϕ,ψ) = ℒlatent (x;ϕ) + ℒrecon (x;ϕ,ψ) (20)

The first term in equation (20), the ‘latent variable regularization term’,
was given by:

ℒlatent(x;ϕ) = 1
2

Nlatent

∑
j=1

(1 + log(σ(x)
j

2
) − μ(x)

j

2
− σ(x)

j

2
) (21)

with Nlatent the number of latent variables, and μ(x)
j

 and σ(x)
j

 the jth ele-
ments of μ(x) and σ(x), which were the outputs of the encoder network
qϕ for input x. The second term in equation (20), the ‘reconstruction
term’, was given by the squared error between the original and decoded
pixel values:

ℒrecon (x;ϕ,ψ) =
Npixels

∑
p=1

(xp − x̃p)
2 (22)

whereby xp was the value of the pth pixel of the original input image x
and x̃p was the value of the pth pixel of the decoded image x̃ = pψ (z(x)),
with z(x) = μ(x) + σ(x) × ϵ and ϵ sampled from 𝒩𝒩 (0, I).

Training of the generative model was also done with generative
replay, which was provided by its own copy stored after finishing train-
ing on the previous context. The loss terms of the current and replayed
data were weighted similarly to the classifier:

ℒG
total =

1
Ncontexts so far

ℒG
current + (1 − 1

Ncontexts so far
)ℒG

replay (23)

BI-R. For the method BI-R, we followed the protocol as described in the
original paper28. For Split CIFAR-100, all five of the proposed modifica-
tions relative to DGR were used: distillation, replay-through-feedback,
conditional replay, gating based on internal context and internal
replay. For Split MNIST, internal replay was not used, but the other
four components were used. We did not combine BI-R with SI. The
hyperparameter X, which controlled the proportion of hidden units
in the decoder that was gated per class, was set based on a grid search
(Supplementary Note 8).

Compared with ref. 28 there were two slight differences: (1) here we
used a different set of pre-trained convolutional layers for each random
seed, while ref. 28 always used the same pre-trained convolutional lay-
ers; and (2) in the class-incremental learning scenario, here we used a
softmax layer with the output units of all classes always set to active,
while ref. 28 used an ‘expanding head’ (that is, only the output units of
classes seen so far were set to active).

Template-based classification methods
Although for the context sets considered in this article, the
template-based classification methods could, in theory, be used
for all three continual learning scenarios, we considered them
only for class-incremental learning. This was because, from
an incremental-learning perspective, the specific benefit of
template-based classification (that is, rephrasing a class-incremental

learning problem as a task-incremental learning problem, see Sup-
plementary Note 4) is only relevant in that scenario.

Generative classifier. For the generative classifier55, a separate VAE
model was trained for each class to be learned. Training of these models
was done as described above for DGR, except that no replay was used
and each VAE was only trained on the examples from its own class.
Each class-specific VAE was trained for either 1,000 iterations (Split
MNIST) or 500 iterations (Split CIFAR-100), which meant that the total
number of training iterations was the same as for the other methods.
The mini-batch size was also the same: 128 for Split MNIST and 256 for
Split CIFAR-100.

The architecture of the VAE models was chosen so that the total
number of parameters of the generative classifier was similar to the
number of parameters used by generative replay. For Split MNIST, the
encoder and the decoder were both fully connected networks with two
hidden layers of 85 ReLU units each and the latent variable layer had
five units. For Split CIFAR-100, the pre-trained convolutional layers
were used as a feature extractor, and the VAE models were trained on
the extracted features rather than on the raw inputs (that is, the recon-
struction loss was in the feature space instead of at the pixel level). The
encoder and decoder both had one fully connected hidden layer with
85 ReLU and a latent variable layer with 20 units.

Classification was performed based on Bayes’ rule: a test sample
was classified as the class under whose generative model it was esti-
mated to be the most likely. That is, the output class label o* predicted
for an input x was given by:

o∗ = argmax
o

p (x|o) (24)

whereby p(x∣o) was the likelihood of input x under the generative
model of class o. These likelihoods were estimated using importance
sampling74:

p(x|o) = 1
S

S

∑
s=1

f (x |||μ
(z(s))
ψo

, I) f (z(s)|| 0, I)

f (z(s) |||μ
(x)
ϕo
,σ(x)ϕo

2
I)

(25)

with μ(x)ϕo
 and σ(x)ϕo

 the outputs of the encoder network for input x, μ(z)ψo
 the

output of the decoder network for input z, S the number of importance
samples and z(s) the sth importance sample drawn from 𝒩𝒩 (μ(x)ϕo

,σ(x)ϕo

2
I).

In this notation, f (x |μ,Σ) indicates the probability density of x under
the multivariate normal distribution with mean μ and covariance matrix
Σ. Similar to ref. 55, we used S = 10,000 importance samples per likeli-
hood estimation.

iCaRL. The method iCaRL (ref. 25) used a neural network for fea-
ture extraction and then performed classification based on a
nearest-class-mean rule in that feature space, whereby the class means
were calculated from stored data. To protect the feature extractor
network from becoming unsuitable for previously learned contexts,
iCaRL also replayed the stored data—as well as the inputs from the
current context with a special form of distillation—during training of
the feature extractor.

For the feature extractor we used the base neural network, except
with the softmax output layer removed. We denote this feature extrac-
tor by ψϕ(.), with trainable parameters ϕ. These parameters were
trained based on a binary classification/distillation loss. For this, during
training only, a sigmoid output layer was appended to ψϕ. The resulting
extended network outputs for any output class o ∈ {1, …, Nclasses so far} a
binary probability whether input x belongs to it:

po
θ
(x) = 1

1 + e−wT
oψϕ(x)

(26)

http://www.nature.com/natmachintell

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

with θ = (ϕ,w1,… ,wNclasses so far) a vector containing all the trainable para
meters of iCaRL. Whenever a new output class o was encountered, new
parameters wo were added to θ.

In each context, the parameters in θ were trained on an extended
dataset containing the current context’s training data as well as all
stored data in the memory buffer. When training on context K, each
input x with hard target o in this extended dataset was paired with a
new target-vector ̄o whose jth element was given by:

̄oj = {
pj

θ̂∗
(x) if output class j in context 1,… ,K − 1

{o=j} if output class j in contextK
(27)

whereby θ̂∗ is the vector with parameter values at the end of training
on context K − 1. The binary classification/distillation loss function for
an input x labelled with such an ‘old-context-soft-target/
new-context-hard-target’ vector ̄o was then given by:

ℒiCaRL (x, ̄o;θ) = −
Nclasses so far

∑
j=1

[̄oj logpj

θ
(x) + (1 − ̄oj) log (1 − pj

θ
(x))] (28)

After finishing training on a context, data to be added to the mem-
ory buffer were selected as follows. For each new output class o, itera-
tively B samples (or ‘exemplars’) were selected based on their extracted
feature vectors according to a procedure referred to as ‘herding’. In
each iteration, a new sample from output class o was selected such that
the average feature vector over all selected examples was as close as
possible to the average feature vector over all available examples
of class o. Let 𝒳𝒳o = {x1, ..., xNo

} be the set of all available examples of
class o and let μo = 1

No

∑x∈𝒳𝒳oψϕ(x) be the average feature vector over
set 𝒳𝒳o. The nth exemplar (for n = 1, …, m) to be selected for output
class o was then given by:

po
n = argmin

x∈𝒳𝒳o

‖
‖‖‖
μo − 1

n
(ψϕ(x) +

n−1
∑
i=1

ψϕ(po
i
))
‖
‖‖‖

(29)

This resulted in ordered exemplar-sets 𝒫𝒫o = {po
1 ,… ,po

m} for each new
output class o that were stored in the memory buffer.

Finally, classification was performed based on a nearest-class-mean
rule in feature space, whereby the class means were calculated from
the stored exemplars. For this, let μo =

1
|𝒫𝒫o |

∑p∈𝒫𝒫oψϕ(p) for o = 1, …, 
Nclasses so far. The output class label o* predicted for a new input x was
then given by:

o∗ = argmin
o=1,…,Nclasses so far

‖
‖ψϕ(x) − μo

‖
‖ (30)

Data availability
All datasets used in this study are freely available online resources:
http://yann.lecun.com/exdb/mnist/ (MNIST66) and https://www.
cs.toronto.edu/~kriz/cifar.html (CIFAR-10 and CIFAR-10067).

Code availability
Documented code that can be used to reproduce or build upon
the reported experiments is available online under an MIT licence:
https://github.com/GMvandeVen/continual-learning75.

References
1.	 Chen, Z. & Liu, B. Lifelong machine learning. Synth. Lect. Artif.

Intell. Mach. Learn. 12, 1–207 (2018).
2.	 Hadsell, R., Rao, D., Rusu, A. A. & Pascanu, R. Embracing change:

continual learning in deep neural networks. Trends Cognit. Sci.
24, 1028–1040 (2020).

3.	 McCloskey, M. & Cohen, N. J. In Psychology of Learning and
Motivation Vol. 24, 109–165 (Elsevier, 1989).

4.	 French, R. M. Catastrophic forgetting in connectionist networks.
Trends Cognit. Sci. 3, 128–135 (1999).

5.	 Kudithipudi, D. et al. Biological underpinnings for lifelong learning
machines. Nat. Mach. Intell. 4, 196–210 (2022).

6.	 Lee, C. S. & Lee, A. Y. Clinical applications of continual learning
machine learning. Lancet Digital Health 2, e279–e281 (2020).

7.	 Shaheen, K., Hanif, M. A., Hasan, O. & Shafique, M. Continual
learning for real-world autonomous systems: Algorithms,
challenges and frameworks. J. Intell. Robot. Syst. 105, 9 (2022).

8.	 Philps, D., Weyde, T., Garcez, A. d. & Batchelor, R. Continual
learning augmented investment decisions. Preprint at
https://arxiv.org/abs/1812.02340 (2018).

9.	 Mundt, M., Lang, S., Delfosse, Q. & Kersting, K. CLEVA-compass:
A continual learning evaluation assessment compass to promote
research transparency and comparability. In International
Conference on Learning Representations (2022).

10.	 Marr, D. Vision: A computational investigation into the human
representation and processing of visual information (WH
Freeman, 1982).

11.	 Ruvolo, P. & Eaton, E. ELLA: An efficient lifelong learning
algorithm. In International Conference on Machine Learning
507–515 (PMLR, 2013).

12.	 Masse, N. Y., Grant, G. D. & Freedman, D. J. Alleviating catastrophic
forgetting using context-dependent gating and synaptic
stabilization. Proc. Natl Acad. Sci. USA 115, E10467–E10475 (2018).

13.	 Ramesh, R. & Chaudhari, P. Model Zoo: A growing brain that
learns continually. In International Conference on Learning
Representations (2022).

14.	 Lopez-Paz, D. & Ranzato, M. Gradient episodic memory for
continual learning. In Advances in Neural Information Processing
Systems Vol. 30, 6470–6479 (2017).

15.	 Vogelstein, J. T. et al. Representation ensembling for synergistic
lifelong learning with quasilinear complexity. Preprint at https://
arxiv.org/abs/2004.12908 (2020).

16.	 Ke, Z., Liu, B., Xu, H. & Shu, L. CLASSIC: Continual and contrastive
learning of aspect sentiment classification tasks. In Proc. 2021
Conference on Empirical Methods in Natural Language Processing
6871–6883 (Association for Computational Linguistics, 2021).

17.	 Mirza, M. J., Masana, M., Possegger, H. & Bischof, H. An efficient
domain-incremental learning approach to drive in all weather
conditions. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops
3001–3011 (2022).

18.	 Aljundi, R., Chakravarty, P. & Tuytelaars, T. Expert gate: Lifelong
learning with a network of experts. In Proc. IEEE Conference on
Computer Vision and Pattern Recognition 3366–3375 (2017).

19.	 von Oswald, J., Henning, C., Sacramento, J. & Grewe, B.
F. Continual learning with hypernetworks. In International
Conference on Learning Representations (2020).

20.	 Wortsman, M. et al. Supermasks in superposition.
In Advances in Neural Information Processing Systems Vol. 33,
15173–15184 (2020).

21.	 Henning, C. et al. Posterior meta-replay for continual learning.
In Advances in Neural Information Processing Systems Vol. 34,
14135–14149 (2021).

22.	 Verma, V. K., Liang, K. J., Mehta, N., Rai, P. & Carin, L. Efficient
feature transformations for discriminative and generative
continual learning. In Proc. IEEE/CVF Conference on Computer
Vision and Pattern Recognition 13865–13875 (2021).

23.	 Heald, J. B., Lengyel, M. & Wolpert, D. M. Contextual inference
underlies the learning of sensorimotor repertoires. Nature 600,
489–493 (2021).

24.	 Lomonaco, V. & Maltoni, D. Core50: a new dataset and benchmark
for continuous object recognition. In Conference on Robot
Learning 17–26 (PMLR, 2017).

http://www.nature.com/natmachintell
http://yann.lecun.com/exdb/mnist/
https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
https://github.com/GMvandeVen/continual-learning
https://arxiv.org/abs/1812.02340
https://arxiv.org/abs/1812.02340
https://arxiv.org/abs/2004.12908
https://arxiv.org/abs/2004.12908

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

25.	 Rebuffi, S.-A., Kolesnikov, A., Sperl, G. & Lampert, C. H. icarl:
Incremental classifier and representation learning. In Proc. IEEE
Conference on Computer Vision and Pattern Recognition
2001–2010 (2017).

26.	 Tao, X. et al. Few-shot class-incremental learning. In Proc. IEEE/
CVF Conference on Computer Vision and Pattern Recognition
12183–12192 (2020).

27.	 Shin, H., Lee, J. K., Kim, J. & Kim, J. Continual learning with deep
generative replay. In Advances in Neural Information Processing
Systems Vol. 30, 2994–3003 (2017).

28.	 van de Ven, G. M., Siegelmann, H. T. & Tolias, A. S. Brain-inspired
replay for continual learning with artificial neural networks. Nat.
Commun. 11, 4069 (2020).

29.	 Belouadah, E., Popescu, A. & Kanellos, I. A comprehensive study
of class incremental learning algorithms for visual tasks. Neural
Networks 135, 38–54 (2021).

30.	 Masana, M. et al. Class-incremental learning: survey and
performance evaluation on image classification. In IEEE
Transactions on Pattern Analysis and Machine Intelligence
(IEEE, 2022). https://doi.org/10.1109/TPAMI.2022.3213473

31.	 Zenke, F., Poole, B. & Ganguli, S. Continual learning through
synaptic intelligence. In International Conference on Machine
Learning 3987–3995 (PMLR, 2017).

32.	 Zeng, G., Chen, Y., Cui, B. & Yu, S. Continual learning of
context-dependent processing in neural networks. Nat. Mach.
Intell. 1, 364–372 (2019).

33.	 Aljundi, R., Kelchtermans, K. & Tuytelaars, T. Task-free continual
learning. In Proc. IEEE/CVF Conference on Computer Vision and
Pattern Recognition 11254–11263 (2019).

34.	 Zeno, C., Golan, I., Hoffer, E. & Soudry, D. Task agnostic
continual learning using online variational bayes. Preprint at
https://arxiv.org/abs/1803.10123v3 (2019).

35.	 Rao, D. et al. Continual unsupervised representation learning.
In Advances in Neural Information Processing Systems Vol. 32,
7647–7657 (2019).

36.	 De Lange, M. & Tuytelaars, T. Continual prototype evolution:
Learning online from non-stationary data streams. In Proc.
IEEE/CVF International Conference on Computer Vision
8250–8259 (2021).

37.	 Li, S., Du, Y., van de Ven, G. M. & Mordatch, I. Energy-based
models for continual learning. Preprint at https://arxiv.org/
abs/2011.12216 (2020).

38.	 Hayes, T. L. & Kanan, C. Lifelong machine learning with deep
streaming linear discriminant analysis. In Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops 220–221 (2020).

39.	 Mai, Z. et al. Online continual learning in image classification:
An empirical survey. Neurocomputing 469, 28–51 (2022).

40.	 Lesort, T., Caccia, M. & Rish, I. Understanding continual
learning settings with data distribution drift analysis. Preprint at
https://arxiv.org/abs/2104.01678 (2021).

41.	 Lomonaco, V. et al. Avalanche: an end-to-end library for
continual learning. In Proc. IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) Workshops
3600–3610 (2021).

42.	 Gepperth, A. & Hammer, B. Incremental learning algorithms and
applications. In European Symposium on Artificial Neural Networks
(ESANN) (2016).

43.	 Stojanov, S. et al. Incremental object learning from contiguous
views. In Proc. IEEE/CVF Conference on Computer Vision and
Pattern Recognition 8777–8786 (2019).

44.	 Caccia, L., Belilovsky, E., Caccia, M. & Pineau, J. Online learned
continual compression with adaptive quantization modules.
In International Conference on Machine Learning 1240–1250
(PMLR, 2020).

45.	 Cossu, A. et al. Is class-incremental enough for continual
learning? Front. Artif. Intell. 5, 829842 (2022).

46.	 Lee, S., Ha, J., Zhang, D. & Kim, G.A neural dirichlet process
mixture model for task-free continual learning. In International
Conference on Learning Representations (2020).

47.	 Jin, X., Sadhu, A., Du, J. & Ren, X. Gradient-based editing of
memory examples for online task-free continual learning. In
Advances in Neural Information Processing Systems Vol. 34,
29193–29205 (2021).

48.	 Shanahan, M., Kaplanis, C. & Mitrović, J. Encoders and ensembles
for task-free continual learning. Preprint at https://arxiv.org/
abs/2105.13327 (2021).

49.	 Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural
networks. Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).

50.	 Li, Z. & Hoiem, D. Learning without forgetting. IEEE Trans. Pattern
Anal. Mach. Intell. 40, 2935–2947 (2017).

51.	 Pan, P. et al. Continual deep learning by functional regularisation
of memorable past. In Advances in Neural Information Processing
Systems Vol. 33, 4453–4464 (2020).

52.	 Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. & Wayne, G.
Experience replay for continual learning. In Advances in Neural
Information Processing Systems Vol. 32 (2019).

53.	 Chaudhry, A. et al. On tiny episodic memories in continual
learning. Preprint at https://arxiv.org/abs/1902.10486 (2019).

54.	 Chaudhry, A., Ranzato, M., Rohrbach, M. & Elhoseiny, M. Efficient
lifelong learning with a-gem. In International Conference on
Learning Representations (2019).

55.	 van de Ven, G. M., Li, Z. & Tolias, A. S. Class-incremental learning
with generative classifiers. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops 3611–3620 (2021).

56.	 Lesort, T., Caselles-Dupré, H., Garcia-Ortiz, M., Stoian, A. & Filliat,
D. Generative models from the perspective of continual learning.
In International Joint Conference on Neural Networks (IEEE, 2019).

57.	 Aljundi, R. et al. Online continual learning with maximally
interfered retrieval. In Advances in Neural Information Processing
Systems Vol. 32 (2019).

58.	 van de Ven, G. M. & Tolias, A. S. Generative replay with feedback
connections as a general strategy for continual learning. Preprint
at https://arxiv.org/abs/1809.10635 (2018).

59.	 van de Ven, G. M. & Tolias, A. S. Three scenarios for continual
learning. Preprint at https://arxiv.org/abs/1904.07734 (2019).

60.	 Farquhar, S. & Gal, Y. Towards robust evaluations of continual
learning. Preprint at https://arxiv.org/abs/1805.09733 (2018).

61.	 Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. & Bengio,
Y. An empirical investigation of catastrophic forgetting in
gradient-based neural networks. Preprint at https://arxiv.org/
abs/1312.6211 (2013).

62.	 Douillard, A. & Lesort, T. Continuum: Simple management
of complex continual learning scenarios. Preprint at https://
arxiv.org/abs/2102.06253 (2021).

63.	 Normandin, F. et al. Sequoia: A software framework to unify
continual learning research. Preprint at https://arxiv.org/
abs/2108.01005 (2021).

64.	 Hess, T., Mundt, M., Pliushch, I. & Ramesh, V. A procedural world
generation framework for systematic evaluation of continual
learning. In Thirty-fifth Conference on Neural Information
Processing Systems, Datasets and Benchmarks Track (2021).

65.	 Paszke, A. et al. Automatic differentiation in pytorch. In NeurIPS
Autodiff Workshop (2017).

66.	 LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. et al. Gradient-based
learning applied to document recognition. Proc. IEEE 86,
2278–2324 (1998).

67.	 Krizhevsky, A., Hinton, G. et al. Learning Multiple Layers of Features
from Tiny Images (University of Toronto, 2009).

http://www.nature.com/natmachintell
https://doi.org/10.1109/TPAMI.2022.3213473
https://arxiv.org/abs/1803.10123v3
https://arxiv.org/abs/2011.12216
https://arxiv.org/abs/2011.12216
https://arxiv.org/abs/2104.01678
https://arxiv.org/abs/2105.13327
https://arxiv.org/abs/2105.13327
https://arxiv.org/abs/1902.10486
https://arxiv.org/abs/1809.10635
https://arxiv.org/abs/1904.07734
https://arxiv.org/abs/1805.09733
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/1312.6211
https://arxiv.org/abs/2102.06253
https://arxiv.org/abs/2102.06253
https://arxiv.org/abs/2108.01005
https://arxiv.org/abs/2108.01005

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

68.	 Ioffe, S. & Szegedy, C. Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
In International Conference on Machine Learning 448–456
(PMLR, 2015).

69.	 Maltoni, D. & Lomonaco, V. Continuous learning in single-
incremental-task scenarios. Neural Networks 116, 56–73 (2019).

70.	 Kingma, D. P. & Ba, J. Adam: A method for stochastic optimization.
Preprint at https://arxiv.org/abs/1412.6980 (2014).

71.	 Hinton, G., Vinyals, O. & Dean, J. Distilling the knowledge in a
neural network. Preprint at https://arxiv.org/abs/1503.02531
(2015).

72.	 Kingma, D. P. & Welling, M. Auto-encoding variational bayes.
Preprint at https://arxiv.org/abs/1312.6114 (2013).

73.	 Zeiler, M. D., Taylor, G. W., Fergus, R. et al. Adaptive
deconvolutional networks for mid and high level feature learning.
In International Conference on Computer Vision 2018–2025
(IEEE, 2011).

74.	 Rezende, D. & Mohamed, S. Variational inference with normalizing
flows. In International Conference on Machine Learning 1530–1538
(PMLR, 2015).

75.	 van de Ven, G. M. GMvandeVen/continual-learning: v1.0.0 (2022).
https://doi.org/10.5281/zenodo.7189378

Acknowledgements
We thank K. Jensen, M. Mundt, W. Barfuss, T. Hess and M. De Lange
for insightful comments. This research project was supported by
an IBRO-ISN Research Fellowship (to G.M.v.d.V.), by the ERC-funded
project KeepOnLearning (reference number 101021347; to T.T.), by the
National Institutes of Health (NIH) under awards R01MH109556
(NIH/NIMH; to A.S.T.) and P30EY002520 (NIH/NEI; to A.S.T.), by
the Lifelong Learning Machines (L2M) programme of the Defence
Advanced Research Projects Agency (DARPA) via contract number
HR0011-18-2-0025 (to A.S.T.) and by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Interior/Interior
Business Center (DoI/IBC) contract number D16PC00003 (to A.S.T.).
The views and conclusions contained herein are those of the authors
and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied,
of NIH, DARPA, IARPA, DoI/IBC or the US government.

Author contributions
Conceptualization, G.M.v.d.V, T.T. and A.S.T.; formal analysis, G.M.v.d.V.;
funding acquisition, A.S.T., T.T. and G.M.v.d.V.; investigation, G.M.v.d.V.;

methodology, G.M.v.d.V.; resources, A.S.T.; software, G.M.v.d.V.;
supervision, A.S.T. and T.T.; visualization, G.M.v.d.V.; writing – original
draft, G.M.v.d.V.; writing – review and editing, G.M.v.d.V., T.T. and A.S.T.

Competing interests
The authors declare no competing interests.

Additional information
Extended data is available for this paper at
https://doi.org/10.1038/s42256-022-00568-3.

Supplementary information The online version
contains supplementary material available at
https://doi.org/10.1038/s42256-022-00568-3.

Correspondence and requests for materials should be addressed to
Gido M. van de Ven.

Peer review information Nature Machine Intelligence thanks
Thomas Miconi and the other, anonymous, reviewer(s) for their
contribution to the peer review of this work.

Reprints and permissions information is available at
www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format,
as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2022

http://www.nature.com/natmachintell
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/1312.6114
https://doi.org/10.5281/zenodo.7189378
https://doi.org/10.1038/s42256-022-00568-3
https://doi.org/10.1038/s42256-022-00568-3
https://doi.org/10.1038/s42256-022-00568-3
https://doi.org/10.1038/s42256-022-00568-3
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Nature Machine Intelligence

Article https://doi.org/10.1038/s42256-022-00568-3

Extended Data Fig. 1 | Comparison of methods using stored data with
different buffer sizes. Shown is the average test accuracy (as %, over all contexts)
of different methods that use stored data on Split MNIST (a) and on Split
CIFAR-100 (b) as a function of the number of examples per class that is allowed to
be stored in memory. Due to its high computational costs, we were not able to run
FROMP on Split CIFAR-100, or on Split MNIST with a memory budget above 1,000

samples per class. Displayed are the means over 5 repetitions, shaded areas are ± 1
SEM. ER: exact replay, A-GEM: averaged gradient episodic memory, FROMP:
functional regularization of the memorable past, iCaRL: incremental classifier
and representation learning, None: sequential training in the standard way, Joint:
training on all data at the same time.

http://www.nature.com/natmachintell

	Three types of incremental learning

	Three continual learning scenarios

	Intuitive descriptions and each scenario’s challenges

	Formalization in a restricted, ‘academic’ setting

	Generalization to more flexible settings

	Empirical comparison

	Compared methods

	Set-up

	Results

	Discussion

	Methods

	Context sets

	Base neural network architecture

	Output layer

	Data stream

	Loss function and optimization

	Memory buffer and generative models

	Baselines

	Approaches using context-specific components

	Separate Networks
	XdG

	Parameter regularization methods

	EWC
	SI

	Functional regularization methods

	LwF
	FROMP

	Replay-based methods

	ER
	A-GEM
	DGR
	BI-R

	Template-based classification methods

	Generative classifier
	iCaRL

	Acknowledgements

	Fig. 1 Decision tree for the three continual learning scenarios.
	Fig. 2 Split MNIST according to the three scenarios.
	Fig. 3 Schematic illustrations of different continual learning strategies.
	Extended Data Fig. 1 Comparison of methods using stored data with different buffer sizes.
	Table 1 Overview of the three continual learning scenarios.
	Table 2 Results on Split MNIST.
	Table 3 Results on Split CIFAR-100.

