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Short summary: 

The discovery of nuclear receptors and transporters has  contribute to the development of new 

drugs for the treatment of cholestatic liver diseases. Especially progress has been made in the 

second line therapy of PBC. These new drugs can be separated into compounds primarily 

targeting cholestasis, molecules targeting fibrogenesis and molecules with immune-mediated 

action. Finally, also drugs aimed at symptom relief ( pruritus and fatigue) are further under 

investigation.  Obeticholic acid is currently the only approved second line therapy for PBC. 

Drugs in the late phase of clinical development are the PPAR agonists,  NorUDCA  and the 

NOX 1&4 inhibitors. 

 

Key points:  

- Patients with PBC with an incomplete biochemical response to ursodesoxycholic acid 

are at risk for  major complications within 10 years of follow up. 

Jo
urn

al 
Pre-

pro
of



 
 

3 
 

- One of the reasons for the remarkable progress in the successful development of new 

drugs for PBC is the availability of well validated risk scores and endpoints for clinical 

trials which unfortunately are not yet well validated for PSC. 

- The target of most drugs in development focus on the anti-cholestatic effect. Preliminary 

data suggest that also drugs with an antifibrotic profile might be effective. The effect of 

drugs targeting the underlying immune-mediated pathogenesis are disappointing and 

most likely only effective in the early stages of the disease. 

- The most promising drugs in the late stage of development to treat PBC are PPAR 

agonists which also have a beneficial effect on pruritus. 

- Combination of bezafibrates and obeticholic acid in addition to ursodesoxycholic acid 

allow complete normalization of the markers of cholestasis in a substantial number of 

patients. 

 

Introduction  

Among the wide spectrum of chronic cholestatic liver diseases primary biliary cholangitis 

(PBC) and primary sclerosing cholangitis (PSC) are the most frequent. Although these immune-

mediated cholestatic liver diseases are rare and the number of liver transplants for PBC has 

fallen in recent years, cholestatic liver disease still represents a major indication for liver 

transplantation , which points out the need for more effective medical therapies (1,2,3). Despite 

our current shortcomings in fully understanding the pathogenesis of these diseases, several 

genetic and environmental factors have recently been identified both for PBC and PSC (4-8). 

As due to significant advances in our understanding the molecular mechanism of cholestasis 

and the regulation of bile acid (BA) homeostasis, several novel therapeutic targets have been 

successfully explored for cholestatic liver diseases (9). However, most of the therapeutic 

progress has been made in the treatment of PBC (9-11). Therefore we will use in this review 
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PBC as a roadmap to describe the progress in therapeutic breakthroughs for cholestatic liver 

diseases. PBC is a paradigm chronic cholestatic liver disease characterized by an inflammatory 

process targeting the interlobular bile ducts resulting in bile duct destruction and portal fibrosis 

that can progress to biliary cirrhosis (12).  Recently ‘the biliary HCO3- umbrella concept’ has 

been proposed: HCO3- protects against toxic bile acids and diminished secretion of HCO3- by 

the cholangiocytes may aggravate immune-mediated bile duct injury in patients with a genetic 

predisposition (13). 

One of the reasons for the remarkable progress in the successful development of new drugs for 

PBC is the availability of  well validated risk scores and endpoints that are utilized in clinical 

trials. For instance, serum alkaline phosphatase  (ALP) and bilirubin have been extensively 

validated for this purpose in large international cohorts of patients. A continuous relationship 

between ALP and bilirubin and long term outcome exists (14). In addition, this biochemical 

parameters offer  the possibility to select in an easy way patients in need of second line 

therapies. Indeed, incomplete biochemical response  to first line therapy with  ursodesoxycholic 

acid (UDCA),  results in major complications in about 30% of the patients after 10 years (15). 

Since most of the studies have used the same inclusion and exclusion criteria as well as 

endpoints (POISE criteria), it is also easier to compare the effect of different drugs . The primary 

end point in de POISE trial was an ALP level of < 1.67 times the upper limit of  normal range, 

with a reduction of at least 15% from baseline, and a normal total bilirubin level (16). However, 

as discussed later on in this review, we probably need to move to more stringent composite 

biochemical endpoints in trials. The most recent tools to select patients in need of second line 

therapy are  the Globe  and the UK-PBC  scores which are  continuous scoring systems (17,18). 

All these scores  (GLOBE, UK-PBC and also the Mayo risk score ) demonstrated comparable 

discriminating performance with regards to liver transplantation or death as well with  high 

prediction accuracy (19). For decades liver biopsy was the gold standard for diagnosis, to assess 
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stage of the disease and the effect of treatment. However, a biopsy is no longer required  for 

these purposes (20). Indeed PBC is the first cholestatic liver disease in which the value of 

elastography has been extensively investigated. Liver stiffness measurement by vibration-

controlled transient elastography appeared to  be  a major predictor of PBC outcome that should 

be combined with biochemical response as surrogate composite endpoints for future clinical 

trials (21-24). Unfortunately, the situation is different in  PSC. There is still no approved 

medical therapy and the endpoints for clinical trials are still under debate. However, irrespective 

of the drug used in PSC, patients with a  ALP value < 1.5 ULN have a better survival (25). An 

expert panel recently concluded that no sufficiently  validated endpoints have been defined yet 

to be used in clinical trials for PSC. Histology, ALP and elastography are  the most promising 

surrogate endpoints but need further validation and combining multiple endpoints seems 

advisable (26,27). 

I. New therapeutic targets for cholestatic liver diseases           

(preclinical data) 

 

Further progress in the treatment of PBC occurred since the discovery of nuclear (hormone) 

receptors (NRs). The NR superfamily is the largest group of transcriptional regulators and 

consists of 48 members in humans. NRs  act as ligand-activated transcription factors  which 

control a broad spectrum of genes involved in BA homeostasis, lipid and glucose metabolism, 

inflammation, cell proliferation, tissue repair and fibrosis  and are widely expressed in  

hepatocytes, cholangiocytes, HSCs, macrophages and other immune cells, which makes them 

attractive targets for the treatment of cholestatic disorders ( 28-30).  

Natural ligands include both endogenous and exogenous molecules such as hormones, fatty 

acids , BAs , other intermediary products of metabolism, drugs and toxins. NRs offer a feedback 

mechanism to maintain cellular homoeostasis (31,32). Since BAs are potentially cytotoxic and 
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proinflammatory at higher  concentrations, it is important to maintain their homoeostasis by 

controlling BA transport and metabolism . This is achieved through NRs such as the farnesoid 

X receptor (FXR), where BAs act as hormone-like signalling molecules binding (33-35). Other  

NRs of importance for cholestatic liver diseases are the peroxisome proliferator-activated 

receptors (PPARs) and pregnae X receptor and glucocorticoid receptor (GR) (36 ). 

NR not only influence hepatobiliary homoeostasis but also gut inflammation and microbiota  

which make them of interest for the treatment of PSC. The  interaction between BAs and 

intestinal microbiota  and changes in gut microbiota (dysbiosis) may play a role in the 

pathogenesis of  cholestasis  in PSC (37,38). Specific gut pathobionts may disrupt the intestinal 

epithelial barrier and initiate a hepatic T helper 17 cell immune response (39). Vancomycin is 

one of the most promising agents but the mode of action may be complex also including direct 

immunoregulatory effects (40). In addition, faecal microbiota transplantation from lean donors 

has shown first promising results in PSC (41). Importantly, gut microbiota may not only serve 

as a trigger of liver injury but may also have protective actions. As such total elimination of 

intestinal microbiome in germ-free mice has been shown to aggravate liver injury in mouse 

models of liver fibrosis and PSC ( 42). 

Overall,  drug therapy in cholestatic disorders is based on disease pathogenesis. Drug targets 

can be separated into molecules primarily  targeting  (1) cholestasis (the hepatocellular retention 

of endogenous BAs), (2) molecules targeting  fibrogenesis and (3) molecules with immune-

mediated action. On the other hand there are also (4) drugs aimed at symptom relief.  Indeed 

pruritus, fatigue and cognitive dysfunction are the most common complaints in patients with 

cholestatic liver disease. Pruritus appears to be particularly frequent in patients with PBC but 

may also become a significant problem in patients with PSC  and other  cholestatic conditions 

( 43 ). Current guidelines provide a treatment algorithm  in the management of pruritus but  

response rates less than 50% are common for most of the recommended drugs (20,44-
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47).Concerning central fatigue with cognitive dysfunction, this problem is currently  untreatable 

(48). 

The stage of the disease influences the  efficacy of some of the drugs used for  the treatment of 

cholestatic liver disease. In this regards, Peter L.M. Jansen et al.  developed the concept that 

cholestatic liver diseases, particularly PBC and PSC, have an ascending pathophysiology (49). 

Knowledge of this concept might allow one to use these drug in a more appropriate way. Indeed, 

the early lesions caused by immunological injury are in the “downstream” biliary tree which 

can lead to cholestasis. This causes BA –mediated toxic injury of the “upstream” liver 

parenchyma. High concentration of BAs are present in the canalicular network, bile ducts, and 

gallbladder. Leakage of bile from this network and ducts could be an important driver of 

toxicity. The liver has a great capacity to adapt to cholestasis by reducing uptake systems and 

BA synthesis while inducing (alternative) efflux systems ( adaptation phase). According to this 

concept Ileal BA transporter (IBAT) inhibitors that reduce intestinal bile salts absorption lower 

the BA load may be most efficient in this stage. The effectiveness of BA synthesis–suppressing 

drugs, such as  FXR agonists , is greatest when  adaptation is not yet established. Anti-

inflammatory agents are probably most effective in early disease. Finally, drugs that antagonize 

BA toxicity, such as ursodeoxycholic acid and nor-ursodeoxycholic acid, might be effective at 

all disease stages. 

An overview of the mechanism of action of anticholestatic drugs cholestatic drugs is given in 

figure 1. 

1. Improvement of cholestasis 

a. Targeting the Nuclear bile acid receptor / Farnesoid–X receptor  

Jo
urn

al 
Pre-

pro
of



 
 

8 
 

The intracellular BA receptor and key regulator of BA homoeostasis, the nuclear bile acid 

receptor farnesoid-X  (FXR) has become a central therapeutic target for cholestatic liver 

diseases (28-30). Moreover, FXR also modulates liver regeneration and inflammation (50). 

FXR is highly expressed in bile acid-handling tissues  predominantly in the liver, intestine, and 

kidney (51). Because of its role as a ligand-activated transcription factor, FXR activation  has 

pleiotropic effects in numerous biological processes in tissues where it is expressed. In this 

regards, FXR activation affects different pathways in the pathogenesis of PBC (52). 

Pharmacological activation of FXR reduces hepatocellular BA levels by stimulation of BA 

export while repressing BA uptake and synthesis (53). In addition, FXR has  anti-inflammatory 

effects, mainly due to the antagonizing effects of nuclear factor kappa B (NFκB) (54). 

Expression of FXR is  reduced by inflammation and in various cholestatic diseases such as in 

PBC which may at least in part be overcome by highly potent pharmacological FXR agonists 

which have higher affinity than endogenous BAs (55).  

The steroidal FXR agonists : Obeticholic acid ( OCA) was the first-in-class  steroidal FXR 

agonist (still maintaining its BA structure) and is a synthetic BA derivative from the natural bile 

acid chenodeoxycholic acid (56). OCA improves in humans hepatic BA excretion and reduces 

exposure of hepatocytes to cytotoxic BAs (57). In addition to restoration of BA homeostasis, 

activation of FXR also promotes HCO3- secretion in mice which in humans may  reinforce the 

HCO3- umbrella (58). FXR stimulation also reduces the inflammation in the liver and it has  

antifibrotic effects through  inhibition of fibrosis progression,  promotion of  fibrosis resolution 

and inhibition of hepatic stellate cell activity (59). In addition, OCA which acts as a local NO 

donor in the liver lowers portal hypertension in animals ( 60,61). Finally, it reduces gut 

permeability  in these animals  (62-64 ). 

 The Non-steroidal FXR agonists : an increasing number of non-steroidal FXR ligands with  

higher affinity for FXR have been developed (65). In contrast to steroidal FXR agonists, non-
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steroidal FXR ligands no longer have a BA structure and therefore, have different 

pharmacokinetic profiles, efficacy and safety profiles. Some of these agonists may operate as 

gut-preferential FXR ligands and have limited systemic exposure. However,  side effects such 

as dyslipidaemia and pruritus are still encountered and appear to be dose-dependent class effects 

of FXR-targeted strategies (66,67). Two compounds are in further clinical development 

explored in Phase 2: Cilofexor  and Tropifexor. 

The FXR downstream target : Fibroblast growth factor 19  

FXR stimulates the production of  intestinal fibroblast growth factor 19 ( FGF 19) in the 

terminal ileum, which after reaching the liver via the portal circulation and binding to 

FGFR4/ßKlotho receptor complex, inhibits hepatic BA synthesis through repression of the rate 

limiting enzyme CYP7A1 (68). In addition to its role in regulating BA homeostasis, FGF19 

also stimulates cell proliferation in the liver which raises  concerns regarding potential  hepatic 

carcinogenesis. FGF-19 overstimulation by FXR ligands and aberrant FGF19-FGFR4 

signalling has been identified in HCC (69). In contrast to the non-tumorigenic FGF19 mimetic 

M70/NGM282 improved liver injury in the Mdr2/Abcb4–/– mouse model of sclerosing 

cholangitis and protected Mdr2/Abcb4–/– and Fxr–/– mice from spontaneous hepatic fibrosis, 

cellular proliferation and HCC formation (70,71). 

Aldafermin  ( NGM 282) is an engineered analogue of human FGF19 and is 95.4% identical 

to FGF19. Aldafermin differs from wild-type FGF19 in the amino terminus, a key region of the 

protein involved in receptor interactions and signalling modulation . In aldafermin, a 5-amino 

acid deletion (P24-S28) coupled with the substitution of three amino acids at critical positions 

(A30S, G31S, H33L) enable biased FGFR4 signalling so that aldafermin retains the ability to 

potently repress CYP7A1 expression but no longer triggers activation of signal transducer and 

activator of transcription 3, a signalling pathway essential for FGF19-mediated 

hepatocarcinogenesis (72-74).By engaging both FGFR4 and FGFR1c pathways to reduce bile 
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acid toxicity aldafermin has demonstrated anti-inflammatory, and anti-fibrotic activities in 

multiple animal models. 

b. Targeting the peroxisome proliferator-activated receptors 

The peroxisome proliferator-activated receptors belong also to the same nuclear receptor family 

as FXR. PPAR’s act as transcriptional modifiers of bile formation and regulation of  

inflammation and fibrosis  (29). There are three isoforms: PPAR alpha,  gamma and delta. 

PPAR alpha is the predominant isoform in the liver. PPAR belong to the same nuclear receptor 

family as FXR. FXR and PPAR have a cross talk with other nuclear receptors. The three 

isoforms are expressed in different parenchymal and non-parenchymal liver cell compartments, 

making them highly attractive targets for therapy of cholestatic liver diseases. 

Fibrates such as bezafibrate and fenofibrate are agents that act as PPARs agonists and are 

registered for the treatment of for dyslipidaemia for decades.  Fibrates  suppress BA synthesis 

(CYP/A1) in the liver and increase phospholipid excretion (MDR3) into the bile  and have anti-

inflammatory effects (via suppression of NFκB signalling) (75). 

Bezafibrate is  a potent pan-PPAR agonist (76) while fenofibrate is a more selective PPAR 

alpha agonist (77). 

Seladelpar  is an oral, once-daily selective PPAR delta agonist. PPAR-delta is expressed not 

only in  hepatocytes but also in cholangiocytes, Kupffer cells an hepatic stellate cells. PPAR-

delta profoundly influences BA levels  and has effects on inflammation and fibrosis. PPAR-

delta-triggered mechanisms could promote cancer cell survival and cancer progression, which 

has raised concerns regarding their clinical development (78). Seladelpar decreases BA 

synthesis and prevents their toxic accumulation in hepatocytes. Seladelpar also decrease the 

synthesis of cholesterol and inhibits its dietary absorption which  results in a decrease of 

cholesterol available for the BA  synthesis. In addition seladelpar  has anti-inflammatory 
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effects. In contrast to the other PPAR’s a direct role for PPARγ in the regulation of BA 

metabolism has not yet been reported. 

Elafibranor, a PPAR agonists  with affinity for alpha/delta,  and Saroglitazar, a  PPAR 

agonists with affinity for alpha / gamma, are  under investigation. It has to be kept in mind that 

for some compounds of this class of drugs  cardiovascular and renal side effects have been 

reported (79).  

 

c. Targeting the glucocorticoid receptor 

The anti-inflammatory and immunosuppressive effects of budesonide are well  known and the 

drug is mainly used in the  context of overlap syndromes and non-cirrhotic autoimmune 

hepatitis .  However, it is a glucocorticoid receptor -ligand and   recent data indicate that it also 

may controls BA detoxification (via PXR) and HCO3- secretion (80).  

 

d. Other anti–cholestatic agents beyond NRs 

Nor-ursodeoxycholic acid (norUDCA), recently assigned the new international non-

proprietary name norucholic acid, is a side-chain- shortened derivate of UDCA and is resistant 

to side-chain conjugation with glycine and taurine (81). In contrast to UDCA, norUDCA 

undergoes cholehepatic shunting between cholangiocytes and hepatocytes, which results in the 

generation of a HCO3- – rich hypercholeresis and high intrahepatic enrichment (82). NorUDCA 

has shown anti-cholestatic, anti-inflammatory, immunomodulatory and anti-fibrotic actions in 

animal models and improves cholestatic liver and bile duct injury in the Mdr2/Abcb4–/– mouse 

model of sclerosing cholangitis (83-85). Since norUDCA reinforces the HCO3- umbrella, it 

may  be a therapeutic approach for several cholangiopathies with defective HCO3-–secretion 

Jo
urn

al 
Pre-

pro
of



 
 

12 
 

such as PBC.  Notably, norUDCA does not act via FXR or other NRs, making it an attractive 

combination partner for drugs targeting NRs. 

 

2. Fibrogenesis  

Lysyl oxidase-like 2 (LOXL2) contributes to fibrogenesis by cross-linkage of collagen and 

regulates bile duct permeability. Simtuzumab is a humanised monoclonal antibody against 

LOXL2. In patients with PSC increased serum levels of LOXL2 correlate with more advanced 

fibrosis and severity of portal hypertension (86,87). 

Setanaxib is an oral small molecule and a first-in-class selective inhibitor of the NADPH 

oxidase 1 & 4  isoforms ( NOX inhibitor). Activation of NOX enzymes is a key in  many 

multifactorial disease and the drug has been studied in phase 2 trials in  kidney fibrosis and 

idiopathic fibrosis. The compound has  demonstrated potential to downregulate markers of 

oxidative stress  ( anti- inflammatory effect) and prevent progression to liver fibrosis in in vitro 

and animal studies (88,89). 

3. Targeting the underlying (immune -mediated) pathogenesis  

Examples to these latter compounds are : Rituximab  a B-cell depleting monoclonal antibody 

targeting the CD20 antigen, RhuDex  a novel, orally bioavailable, low molecular weight 

modulator of T-lymphocyte co-stimulation , Cenicriviroc  a dual CCR2/CCR5 chemokine 

receptor antagonist and the CCL24 monoclonal antibody CM-101. Until today  no convincing 

clinical data have been reported .These  agents are most likely effective in the early stage of the 

disease. 

4. Symptom relief 
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Pruritus: the mechanisms underlying cholestatic pruritus are stil not clear. Retention of toxic 

hydrophobic BAs is postulated to play a key pathogenetic role. In this regards cholestyramine is 

the current first-line treatment option for cholestatic pruritus. However, in the past Colesevelam 

an anion-exchange resin with a 7-fold higher bile acid-binding capacity and fewer side effects than 

cholestyramine decreased serum BA levels but  was unable to demonstrate that it was more 

effective than a placebo in alleviating the severity of pruritus of cholestasis (90). Ileal bile acid 

transporter is an integral brush border membrane glycoprotein mainly expressed in the distal ileum. 

In cholestatic liver disease, ileal BA absorption is increased and inhibiting IBAT  may prevent 

inappropriate conservation of BAs and may improve pruritus (91). Mas-related G protein-coupled 

receptor X4 (MRGPRX4) is a newly identified receptor for BAs and bilirubin and demonstrated 

its likely role in cholestatic itch. Its discovery  provides a promising target for developing novel 

anti-itch treatments (92-94). 

Fatigue: over-activation of GABA-A receptors by neurosteroids play a role in cognitive 

dysfunction and fatigue (95). Golexanolone is a novel small molecule GABA-A receptor-

modulating steroid antagonist under development for the treatment of cognitive and vigilance 

disorders. It restores spatial learning and motor coordination in animal models of hepatic 

encephalopathy  and has been investigated for  hepatic encephalopathy (96). 

 

II. Medical treatment : established drugs and drugs in the 

late phase of clinical development in PBC and PSC 

 

PBC experience 

The first- line drug for PBC is ursodeoxycholic acid ( UDCA)  and  is effective in the majority 

of the patients with PBC (60-80% are biochemical responders). UDCA has a low cost and  is 
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well tolerated at a  standard dose of 13-15 mg/kg /d (97). Discontinuation due to digestive 

adverse events occurs in less than 5% of the patients (98).The earlier patients are treated, the 

higher the chances to achieve a response (99). UDCA improves cholestasis and underlying liver 

histology and it delays the development  of oesophageal varices. The drug reduces the risk of 

hepatocellular carcinoma and based on open label extension studies  it is accepted that it 

improves survival  and prevents the need of liver transplantation (100-103). 

Since the wide implementation of UDCA the need for liver transplantation for PBC in Europe 

has declined  despite the fact that the prevalence of PBC did not decrease (104). UDCA  also 

has a place after liver transplantation. Recurrence of  PBC following liver transplantation is 

reported in up to 46% of the patients and can be prevented by UDCA when treatment is started 

early (105). Around 30-40 % of PBC patients  have an incomplete response to UDCA which 

may result in disease progression during long term follow up (15). The strongest risk factor for 

an incomplete response to UDCA therapy are early age at diagnosis ( <45y)  and advanced 

stage at presentation (106,107). This observation has formed the rational for second line 

therapies in combination with UDCA. EASL clinical practice guidelines recommend a ALP 

level > 1.5 x ULN or abnormal levels of bilirubin as biochemical thresholds to initiate  second 

line therapy  (20 ).  Before considering to introduce second line therapy drugs, it remains 

important to exclude other reasons for a suboptimal response to UDCA such as: adherence, 

inappropriate UDCA dosage and co- administration of bile acid sequestrants  inhibiting uptake 

of UDCA. 

An overview of the established drugs approved for PBC therapy and those in advanced stages 

of clinical development is given in table 1. It is important to note that none of these drugs have 

been investigated in patients with advanced disease. 
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Nuclear receptor ligands which were the first  second line drugs for PBC, have also been widely 

investigated in the treatment of NASH. This valuable experience offers crucial information 

about dose and safety that can be extrapolated to the PBC population (30). 

Algorithm for the treatment of PBC is given in figure 2. 

 

FXR agonists: 

Obeticholic acid  is currently the only approved second line therapy for PBC. The starting dose 

is 5 mg with adjustment to 10 mg after 3-6 months if tolerable. Long-term clinical data have 

confirmed preclinical observations. Two prospective studies demonstrated that  OCA in 

patients with an incomplete response to UDCA or intolerance to UDCA improves cholestasis 

in a dose dependent manner (108). In the POISE trial comparing OCA to placebo a significant 

reduction of ALP and bilirubin after 1 year was observed  in 35 % and 8 %, respectively (16). 

OCA  treatment also significantly reduced serum levels of gamma GT. The rate of serious 

adverse events was 16% in the 5-10 mg group vs 4 % in the placebo group. Pruritus is the most 

common adverse event, it is dose related and  occurs especially in patients with pre-existing 

pruritus. There was no  effect after 1 year on non-invasive measures of liver fibrosis ( liver 

stiffness and Enhanced Liver Fibrosis score) . In paired biopsies in a small group of 17 patients 

included in the POISE trial  improvements or stabilization of histological disease features, 

including ductular injury, fibrosis, and collagen morphometry were  observed (109).  The effect 

of the drug on the biochemical markers  is sustained for at least 3 years (110). Real world data 

demonstrated  a discontinuation rate  between 12 and 17 % especially due to pruritus and 

confirmed the efficacy of the drug  on the biochemical surrogate markers of outcome (111-113 

). ‘Hard’ clinical endpoints still need to be demonstrated. On the other hand the  use of OCA 

has been associated with an increase in hepatic decompensation in patients with advanced liver 

disease. This led to a label change where it’s use is a contraindication in patients with 
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decompensated cirrhosis, a history of prior decompensation and in patients with compensated 

cirrhosis and evidence of portal hypertension (114,115).  

 

There are 2 non-OCA FXR agonists investigated. Cilofexor: a phase 2 study, only published 

as abstract (Kowdley KV et al 2019) , demonstrated that the drug given for 12 weeks improved 

biochemical parameters of cholestasis with pruritus as side effect . Tropifexor: a phase 2 study, 

also only published in abstract form thus far ( Schramm C et al 2018) , has  shown a dose-

dependent decrease in gamma GT  but no effect on ALP after 4 weeks of therapy again with 

pruritus as side effect. 

 

PPAR agonists:  

Ten randomized clinical trials including the BEZURSO trial  reported a positive effect of 

fibrates on cholestasis (116)). In the BEZURSO trial bezafibrate at dose of 400 mg /d improved 

ALP and bilirubin during a follow up of 2 years and a normalization of ALP and bilirubin was 

achieved in 31 % of patients vs 0% in the placebo group (117). There was also an  improvement 

of non-invasive markers of liver fibrosis ( liver stiffness values and the Enhanced Liver Fibrosis 

score). The drug was well tolerated and myalgia  was the most common side effect, that 

occurred in 20% of  the active group vs 10% in the placebo group. Serum creatinine increased  

in 5 % of patients at 2 years , a well-known class effect of fibrates with no long-term influence 

on renal function (118,119). Overall, a recent systematic review concluded that fibrates are safe 

and well tolerated in patients with PBC (120). In favour of the use of bezafibrates is the 

improvement of pruritus in some of the patients (121 ). In a large Japanese retrospective cohort 

study the combination of bezafibrate and UDCA improved transplant-free survival in a cohort 

in Japan ( 122). There are no data on safety in patients with advanced liver disease.  Evaluation 
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of paired liver biopsies in 31 patients after  5 years showed a significant decrease in liver 

damage as reflected by Ludwig and Ishak scores. Overall, regression of fibrosis was attained in 

48% of patients (123). 

Bezafibrate is currently not approved for the treatment of cholestatic liver diseases and thus 

used off-label when prescribed to patients with PBC (124). Moreover, bezafibrate is not 

available in the USA, where fenofibrate with a narrower PPARα-spectrum is available  and  has 

also demonstrated beneficial effects in smaller studies (125). An update from the AASLD in 

2021 mentioned that fibrates can be considered as off-label alternatives for patients with PBC 

and incomplete response to UDCA but are discouraged in patients with decompensated liver 

disease (115). 

Seladelpar has been explored in 4 clinical studies. The first phase 2 study which used dosages 

of 50 mg and 200 mg/day was terminated early after 41 subjects were enrolled since 3 patients 

developed grade 3 elevations in ALT levels that were reversible after cessation of the drug 

(126).The next phase 2 study which has only been  published in abstract ( Levy C et al 2020) ,  

used lower doses where 5 mg and the 10 mg consistently lowered ALP levels that was 

maintained over 52 weeks .  Interestingly, 31% of patients in the 10 mg dose group achieved 

normalization of ALP by week 12. In this study an decrease in ALT levels was seen over 12 

weeks The study also confirmed that ALT elevations are a dose-related phenomenon. In a 

subsequent phase 3 study using doses of 5 mg and 10 mg/day  Seladelpar  was well tolerated.  

However, this study was prematurely terminated shortly after completing enrolment ( n=265) 

due to histological observations suggestive of drug induced liver injury in a separate study for 

a different indication , namely NASH patients. Finally, this observation was not confirmed. The 

data from this phase 3  study were consistent with those in phase 2  After 3 months of therapy 

reductions in ALP were highly significant and Seladelpar 10 mg achieved normalization of 

ALP in 27.3% of the patients. Seladelpar improved pruritus and fatigue in a dose dependent 
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manner; no cases of severe myalgia were observed (127). A phase 3 confirmation trial  using 

10mg/day is ongoing.  

In a placebo controlled phase 2 study Elafibranor improved cholestasis after 12 weeks and  

also improves pruritus (128). A phase 3 study with 80 mg/day is ongoing . In an open label 

study Saroglitazar improved  biochemical markers of cholestasis after 16 weeks of therapy 

(129). 

Other drugs: 

FGF 19 mimetic: Aldafermin (NGM282)  improved ALP after 28 days. Gastrointestinal side 

effects such as diarrhoea, abdominal pain and nausea were seen but not pruritus (130). 

Interestingly, Aldafermin improved cholestatic liver enzymes in PBC but not in PSC ( 131). 

However, an improvement of non-invasive fibrosis markers was observed. 

Budesonide : Several small studies in the past showed promising results with Budenoside (132-

134). In the most recent study in patients at high risk of disease progression, Budenoside  at a 

dose of 9 mg with a reduction to 3 mg in case of normalization of  ALP values, in combination 

with UDCA, was associated with improved biochemical markers of cholestasis and 

improvement of the POISE score . However this combination  did not improve liver histology 

and was associated with a high dropout rate. The adverse events leading to premature 

discontinuation of the study occurred in  23 % vs 9 % for the placebo group (135). 

Setanaxib: A large, 24-week phase 2 trial was carried out exploring the possible effect of the 

drug on cholestasis , fibrogenesis and quality of life. Based on the positive results obtained in 

the  study a phase 2/3 study is in progress focusing on patients with PBC and fibrosis. 

Several trials investigating orally-administered, small-molecule IBAT inhibitors have been 

conducted in paediatric cholestasis with a few studies in adult patients with PBC (136,137).  

Linerixibat is an oral agent that is minimally absorbed  and  a selective inhibitor of human 
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IBAT (138). In a 14 day trial with 21 patients with PBC  Linerixibat  (GSK2330672) reduced 

pruritus and total serum BA concentrations compared with placebo and was generally well 

tolerated (139). Maralixabat (also known as lopixibat/ LUM001/SHP625) and odevixibat 

(A4250) have been successfully developed for the treatment of paediatric cholestatic liver 

diseases such as progressive familial intrahepatic cholestasis, Alagille syndrome and biliary 

atresia and have already received approval for some of these indications (140,141).In children 

with cholestatic diseases orally administered odevixibat was well tolerated, reduced serum bile 

acids, and improved pruritus and sleep disturbance (142). 

 In a phase 2 randomized controlled trial,  Rituximab over the 12-month study period  showed 

no evidence of effectiveness for the treatment of fatigue in PBC (143). Based on the findings 

that Golexanolone was well tolerated and improved cognitive performance in patients with 

hepatic encephalopathy, a phase 2 clinical trial was initiated to explore the effect of the drug in 

PBC patients suffering from central fatigue and cognitive dysfunction (96). 

 

Experience in PSC 

An overview of drugs in advanced development for  PSC  is give in Table 1.  

UDCA: the value of UDCA has been extensively investigated. Based on  published evidence, 

the role for UDCA at moderate/medium dose in slowing the progression of PSC-related liver 

disease is still unclear while high doses of UDCA is  harmful and should be avoided (144-147). 

Obeticholic acid was investigated  in a phase 2, randomized, double-blind, placebo-controlled, 

dose-finding study. In this AESOP study treatment with OCA 5-10 mg reduced ALP during an 

initial 24-week treatment period. The result was sustained during a further  2-year, long term 
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extension of the study. The most common side effect of obeticholic acid in the study was again 

pruritus (148). 

Cilofexor: in a 12-week, randomized, placebo-controlled study, cilofexor was well tolerated 

and led to significant improvements in liver biochemistries, markers of cholestasis and non-

invasive markers of liver fibrosis without aggravation of pruritus (149). The risk of progression 

of fibrosis in patients without cirrhosis is currently investigated in a phase 3 study. 

 

Aldafermin (NGM282) : in a 12 week double-blind, placebo-controlled phase 2 trial NGM282 

potently inhibited bile acid synthesis and decreased fibrosis markers, without significantly 

affecting ALP levels with gastrointestinal symptoms more frequent in the NGM282 treatment 

groups possibly reflecting the direct anti-inflammatory and antifibrotic action of the compound 

(150). 

 

Bezafibrate:  In a small retrospective study the combined UDCA with bezafibrate resulted in 

a significant biochemical improvement and pruritus decrease in PSC patients with incomplete 

response to UDCA and the drug is currently further investigated in  ongoing investigator 

initiated trials  (151). 

 

Seladelpar is investigated in an ongoing phase 2 trial. 

 

NorUDCA : a randomized controlled trial, including 38 centres from 12 European countries, 

evaluated the safety and efficacy of 3 doses of oral norUDCA (500 mg/d, 1,000 mg/d or 1,500 

mg/d) compared with placebo during 12 weeks. NorUDCA significantly reduced ALP values 

dose-dependently in all treatment arms. The safety profile was excellent and comparable to 

placebo (152). A phase 3 trial is ongoing. 
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Cenicriviroc  a dual antagonist of CCR2 and CCR5 was investigated in a single-arm, open-

label, exploratory study. After 24 weeks adults achieved a only modest reduction (median 18%) 

in the surrogate endpoint of ALP. The most frequent events were rash, fatigue, and dizziness 

(153). 

 

Simtuzumab (a monoclonal antibody directed against LOXL2) was investigated in a large 

placebo controlled trial in 234 patients. The primary efficacy endpoint was mean change in 

hepatic collagen content assessed by morphometry between baseline and week 96. Additional 

endpoints included change in Ishak fibrosis stage. Treatment with the LOXL2 inhibitor 

simtuzumab  did not provide clinical benefit in patients with PSC (154). 

 

Conclusions and future perspectives 

UDCA at a dose of 13-15 mg /kg is still the cornerstone for the treatment of PBC (Fig 2). In 

case of an incomplete response or intolerance, which is rare,  second line therapy should be 

initiated. Incomplete response  occurs especially in patients with an early age at diagnosis ( 

<45y)  and when diagnosed in advanced stages. An incomplete response is currently defined as 

ALP level > 1.5 x ULN or abnormal levels of bilirubin when a correct dose of UDCA (13 – 15 

mg/kg) is given for  at least 6 months. It is expected  that in the near future, when  several 

second line drugs  become available and combination therapy is possible, that complete 

normalization of markers of cholestasis including ALP will be achieved ( 155,156). In this 

regard, any decrease in bilirubin (even within the normal range) is associated with an 

improvement of outcome (157). These parameters are therapeutic goals in a phase 2 

combination study of OCA with bezafibrate which is ongoing.   
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The introduction of nuclear receptors has accelerated the development of second line therapies 

for PBC. The only approved second line therapy today is the steroidal nuclear receptor FXR 

agonist obeticholic acid where the dosage is limited by the occurrence of pruritus. It was hoped 

that treatment with non- steroidal FXR agonists such as cilofexor and tripifexor induces less 

pruritus. However, this evidence is lacking. In Europe another nuclear receptor bezafibrate, a 

pan-PPAR agonist , is frequently used as off label as second line therapy for PBC. Bezafibrate 

has the advantage that it also improves pruritus; however,  in some patients  myalgia may occur.  

Pruritus and fatigue are frequent and important symptoms of patients with PBC. In this regard, 

Seladelpar  and Elafibronar which both are  PPAR agonists, improved pruritus with no cases of 

severe myalgia, observed yet.  

In the near future the availability of several second line drugs will allow a more individualized 

approach using a personalized combination of drugs  based on whether the patient is in an early 

disease stage , whether there is fibrosis or if  the patient suffers from pruritus or severe fatigue.  

PBC is a rare disease and with the introduction of second line therapies in clinical practice the 

recruitment of PBC patients for future clinical trials will be  a challenge.  Placebo controlled 

trials will no longer be possible for this indication.  

In the case of PSC there is no approved treatment yet. The design of clinical trials is hampered 

by the absences of well-defined and validated endpoints. Several new drugs are explored 

including nuclear receptor agonists and norUDCA. 

Finally, medical treatment for patients with advanced  stages of both PBC and PSC is not 

available.  This remains an unmet need. 
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Abbreviations 

PBC: primary biliary cholangitis ; PSC: primary sclerosing cholangitis ; BA: bile acid ; ALP : 

alkaline phosphatase ; UDCA: ursodesoxycholic acid ; NR: nuclear (hormone) receptors; FXR: 

farnesoid X receptor; PPAR: peroxisome proliferator-activated receptor; GR: glucocorticoid 

receptor ; IBAT: Ileal BA transporter ; OCA: obeticholic acid ; FGF : fibroblast growth factor; 

norUDCA: Nor-ursodeoxycholic acid ; LOXL2 : Lysyl oxidase-like 2 ;  NOX : NADPH 

oxidase   
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Table 1. An overview of the established drugs approved for PBC  and those in advanced stages 
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Figures 

Figure 1: Mechanism of action of anticholestatic drugs.  

In attachment 

In hepatocytes (left panel), activation of FXR downregulates BA uptake via the 

Na+/taurocholate co-transporting polypeptide  (NTCP) and BA synthesis (via CYP7A1), while 

inducing bile salt export pump (BSEP), thus limiting hepatocellular BA load. CYP7A1 is also 

inhibited by FGF-19 (produced in the intestine, see below) as well as PPAR and . Both FXR 

and PPARα stimulate phospholipid secretion (via MDR3), thus counteracting intrinsic bile 

toxicity (right hepatocyte panel, centre). At the basolateral membrane organic solute transporter 

(OSTα/OSTβ), multidrug resistance-related protein (MRP) 3 and MRP4 facilitate alternative 

hepatic BA pump which is also in part induced by FXR (right hepatocyte panel). Drugs such as 

norUDCA undergo a cholehepatic shunting resulting in ductular HCO3-- secretion (‘HCO3-- 

umbrella’) and protecting cholangiocyte against BA toxicity (centre). In the intestine (lower left 

panel), BAs are normally taken up by the ileal BA transporter (IBAT) followed by efflux via 

OSTα/OSTβ. Intestinal FXR induces fibroblast growth factor (FGF) 19, which circulates via 

portal blood back to the liver and binds to its receptor FGFR4, subsequently inhibiting BA 

synthesis. IBAT inhibitors interfere with BA uptake in the terminal ileum, while FGF-19 

mimetics have metabolic effects but lack the pro-proliferative, potentially pro-carcinogenic 

effects of intrinsic FGF-19. Moreover, therapies targeting FXR and PPARs and novel BA 

derivatives such as norUDCA also have direct and indirect anti-inflammatory, 

immunomodulatory and anti-fibrotic effects in immune cells and hepatic stellate cells (lower 

right panel, see text for further details). Other therapeutic approaches directly target underlying 

immune pathogenesis and fibrogenesis (not shown, see text for details) 

 

Jo
urn

al 
Pre-

pro
of



 
 

25 
 

Figure 2: Algorithm for the treatment of PBC 

In attachment 
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Table 1. Approved  and drugs in advanced development for PBC and PSC with main results and side effects 
 

Compound PBC PSC 

Steroidal FXR agonists: 

- Obeticholic acid  

 

POISE trial (ref 16): 

On the market (conditional approval) 

 

Phase 2 (ref 148) : 

Reduction of ALP  after  24 wks , maintained for 2 yrs / pruritus 

Non-steroidal FXR agonists: 

- Cilofexor  

 

 

- Tripifexor  

 

 

Phase 2 (abstract): 

Improved cholestasis after 12 wks / pruritus 

 

Phase 2 (abstract): 

Improvement of GGT after 4 wks  / pruritus 

 

Phase 2 (ref 149): 

Improvement of cholestasis and non-invasive markers of fibrosis 

Phase 3 in progress 

_ 

 

PPAR agonists: 

- Bezafibrate  

 

 

-  Seladelpar  

 

 

 

-  Elafibranor  

 

 

 

-  Saroglitazar  

 

 

BEZURSO trial (ref 117): 

Off label in Europe/ myalgia 

 

Phase 2 (ref 126, abstract): 

Improvement of cholestasis maintained for 52 wks 

Phase 3 ongoing 

 

Phase 2 ( ref 128) : 

Improvement of cholestasis after 12 wks 

Phase 3 ongoing 

 

Open label ( ref 129): 

Improvement of cholestasis after 16 wks 

 

Small retrospective study (ref 151): 

Improvement of cholestasis and decrease in pruritus 

Phase 3 in progress 

 

Phase 2 ongoing 

 

 

_-_ 

 

 

_ 

 - 

 

FGF 19 mimetic: 

- Aldafermin  

 

 

Phase 2 ( ref 130) : 

Improvement of cholestasis after 28d/ gastrointestinal side effects  

 

Phase 2 (ref 150): 

Reduction of markers of fibrosis after 12 wks / gastrointestinal side effects 

NorUDCA  

 

Phase 2 initiated Phase 2 (ref 152): 

Dose dependent improvement of ALP after 12 wks 

Phase 3 ongoing 

CCR2/CCR agonist: 

- Cenicrivivoc  

 

 

_ 

 

Single arm open label study (ref 153): 

Modest reduction of ALP after 24 wks / rash, fatigue and dizziness 

LOX L2 inhibitor: 

- Simtuzumab  

 

_ 

 

Phase 2 ( ref 154): 

No clinical benefit 

NOX 1 & 4 inhibitor: 

- Senataxib  

 

Phase 2 : 

Improvement of cholestasis 

Phase 3 initiated 

 

_ 
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  Budenoside                           Investigator driven ( ref 135) 

Improvement of cholestasis/ no improvement of histology/ high dropout rate 

_ 
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First line therapy

Drugs under investigation: phase 3**

Established second line therapy**

• UDCA 13-15 mg/kg/d

• Combination of Obeticholic acid and 

Bezafibrate

• PPAR agonists 

- Seladelpar

- Elafibranor

• Obeticholic acid 5-10 mg/d

in function of tolerance and response rate

• Bezafibrate 400 mg/d (off label)

*    Currently based on ALP ≥ 1,67 x ULN and total bilirubin ≤ 2 x ULN
** Patients with cirrhosis are excluded

- Incomplete response* 

after 6-12 months

- Intolerance ( rare)

- Intolerance

- Inadequate responseJo
urn

al 
Pre-

pro
of


