
Journal Pre-proof

On-machine workpiece straightness profile measurement using a hybrid Fourier 3-
sensor method

Pu Huang, Shengyu Shi, Jin Xie, Han Haitjema, Zengyuan Niu, Quanpeng He, Kuo
Lu

PII: S0141-6359(22)00219-7

DOI: https://doi.org/10.1016/j.precisioneng.2022.10.002

Reference: PRE 7618

To appear in: Precision Engineering

Received Date: 9 March 2022

Revised Date: 12 July 2022

Accepted Date: 8 October 2022

Please cite this article as: Huang P, Shi S, Xie J, Haitjema H, Niu Z, He Q, Lu K, On-machine workpiece
straightness profile measurement using a hybrid Fourier 3-sensor method, Precision Engineering (2022),
doi: https://doi.org/10.1016/j.precisioneng.2022.10.002.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition
of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of
record. This version will undergo additional copyediting, typesetting and review before it is published
in its final form, but we are providing this version to give early visibility of the article. Please note that,
during the production process, errors may be discovered which could affect the content, and all legal
disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc.

https://doi.org/10.1016/j.precisioneng.2022.10.002
https://doi.org/10.1016/j.precisioneng.2022.10.002


1 

 

On-machine workpiece straightness profile 1 

measurement using a hybrid Fourier 3-sensor method 2 

Authors: Pu Huang1, Shengyu Shi, 1, Jin Xie, 1, Han Haitjema2, Zengyuan Niu3, Quanpeng He1, Kuo 3 

Lu1 4 

1. School of Mechanical and Automobile Engineering, South China University of Technology, 5 

Guangzhou, 510640, P.R. China 6 

2. Manufacturing Metrology Section, Manufacturing, Processes and Systems (MaPS), Department 7 

of Mechanical Engineering, KU Leuven, 3001 Leuven, Belgium 8 

3. Jiangsu JITRI High Value Manufacturing Co. Ltd., Kunshan, 215335, P.R. China  9 

 10 

Email addresses: shisy@scut.edu.cn (S. Shi); jinxie@scut.edu.cn (Jin Xie) 11 

 12 

Declarations of interest 13 

None 14 

                                                        

 Corresponding author. Tel.: 0086 (020) 87114578; Fax: 0086 (020) 87112503 

 

 

Jo
urn

al 
Pre-

pro
of

mailto:jinxie@scut.edu.cn


2 

 

Abstract 1 

To compensate for the straightness error of the slide of a machine tool efficiently and precisely, on-2 

machine self-calibrating measurement of the manufacturing error is critical. The Fourier 3-sensor 3 

(F3S) method proposed by Fung is promising in measuring the straightness profile of a workpiece 4 

accurately on a machine. However, it still suffers from two main challenges: the height difference 5 

between the second and the third probes and the stochastic uncertainty, both of which can 6 

significantly decrease the measurement precision. In this paper, we counter these two challenges, 7 

respectively, and propose the solutions accordingly. First of all, by resorting to the Laplace 8 

transform, an algorithm for the F3S method is proposed. Second, the adverse effect of the height 9 

difference between the second and the third probes is demonstrated. An approach is presented for 10 

estimating the height difference, and compensating for this. Third, to alleviate the stochastic 11 

uncertainty, a hybrid F3S method is developed: several F3S measurements are first performed 12 

under different probe spacings; then, the optimal Fourier coefficients of the straightness profile are 13 

individually selected from the candidate estimates in accordance to the determinant of the transfer 14 

matrix. Finally, practical straightness profile measurements were performed, respectively, on a 15 

grinding machine by adopting the hybrid F3S method and on a Taylor Hobson surface profiler. The 16 

results show that compared with the conventional F3S method, the hybrid F3S method reduced 17 

the measurement uncertainty significantly, and the straightness profiles estimated by the hybrid 18 

method and by the surface profiler were consistent with each other.  19 

Keywords: Straightness measurement, On-machine self-calibrating measurement, Hybrid Fourier 20 

3-sensor method, Height difference, Measurement uncertainty  21 
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1. Introduction 1 

Almost perfect flat/straight surfaces are required for various components, such as silicon 2 

wafers [1], optical mirrors [2], guideways [3, 4], etc., as the straightness determines the 3 

performance of the components, as well as the systems in which these are used. To fabricate the 4 

workpieces satisfying the tight flatness/straightness tolerance, ultra-precision machining tools are 5 

fundamental. However, as the demand for higher performance of the product grows continuously, 6 

the readily achievable accuracy is limited relatively, especially due to the error motion of 7 

rotary/slide axes of the machine tools, which will be mapped onto the surface topography of the 8 

manufactured parts [5], as demonstrated in Fig. 1. 9 

(a)

Error motion of X-axis

mapping

Plane straightness of a grinding workpiece

(b)

Grinding wheel

 10 

Fig. 1. Error motion of tools, (a) in a turning process, the error motion of the Z-axis in the X 11 

direction determines the cylinder straightness of the machined parts and (b) in a grinding 12 

process, the straightness error motion of the linear axis will be mapped onto the manufactured 13 

surface. 14 

Error compensation machining, during which the machining deviation of the workpiece from 15 
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the designed nominal shape will be evaluated and then fed back to the NC controller, is considered 1 

a universally applicable and cost-effective approach in diminishing the machining error [6-9]. 2 

For compensation machining, precise measurement of surface machining error is imperative 3 

and critical. The strategies for measuring the surface form error can generally be categorized into 4 

two groups: (a) on-machine measurements that are carried out on the machining tools where the 5 

workpieces are manufactured and (b) off-machine measurements that are made by a stand-alone 6 

profilometer [8]. Compared with the off-machine measurements, the on-machine measurements 7 

can be performed soon after the manufacturing process (or even while the machining process is 8 

taking place), without the requirement to move the workpiece from the machining tool to the 9 

measuring instrument. Accordingly, the compensation machining can also be conducted 10 

immediately afterward the inspection, without the need to return the workpiece to the machining 11 

tools from the measuring instruments. Adoption of the on-machine measurement can shorten the 12 

whole process flow of compensation machining: repeated assembly and disassembly processes, 13 

along with tedious calibration of the initial position of the workpiece after its movements, are 14 

avoided. Thus, the efficiency is raised significantly. Meanwhile, the accuracy of both the 15 

measurement and the compensation could also be enhanced.  16 

However, during the on-machine measurement, the straightness/roundness error of the 17 

manufactured workpiece is at the same level as the error motions of slide/rotary axes of the 18 

machine tools, which will be superposed into the measurement result and are major sources of the 19 

measurement error [8]. Therefore, the error motion of the machine tool axes cannot be ignored 20 

and error separation techniques, also termed self-calibrating techniques, should be employed to 21 

reduce their adverse effect.  22 
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This paper will investigate the ultra-precision on-machine measurement of straightness 1 

profiles, especially focusing on self-calibrating measurement techniques. 2 

The concept of the self-calibrating straightness measurement was originally proposed by 3 

Whitehouse in 1978 [10]. Since then, this technique has been intensively studied from different 4 

perspectives, considering for example, the measuring setup (implementation), the algorithm, and 5 

the measurement uncertainty. In the early 1980s, Tozawa et al. [11, 12] presented the sequential-6 

two-points (S-2P) method, where two distance sensors are attached on and move together with 7 

the slide table to measure the interval variation between the slide guideway and the workpiece 8 

surface. Then, the slide error motion could be canceled by computing the difference between the 9 

two sensor outputs. Finally, the profile of the workpiece could be recovered by an iterative 10 

accumulation of the differential output. A remarkable advantage of the S-2P method is that the 11 

straightness of both the slide and the workpiece can be estimated simultaneously. However, at least 12 

three problems were also observed associated with the S-2P method:  13 

(1) Apart from straightness error motion, the slide also has yaw/pitching error motion, which 14 

contributes to the probe reading as well. To separate both types of error motion, Elster proposed 15 

the traceable multi-sensor (TMS) method, where an additional autocollimator was adopted to 16 

directly detect the angular error motion [13]; in 1986, Tanaka [14] extended the S-2P to present 17 

the sequential-three-points method (S-3P), which can separate the influences from not only the 18 

straightness error motion but also the yaw error motion of the slide.  19 

(2) In Ref. [14], Tanaka proved that a height difference of the two sensors (zero-difference) in 20 

the sensing direction makes a linear increment term in the measurement result. This difference 21 

could be reduced either by manually aligning the two sensors or post-processing the collected 22 
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signals [14]. In Ref. [15], Gao proved that in the S-3P, the height differences between the three 1 

probes would also introduce a parabolic error term in the profile evaluation result. To solve this 2 

issue, he presented a scanning multi-probe system, where 6 probes are employed [15]. This 3 

problem was also solved by Dr. Elster, where an additional autocollimator was adopted [16].  4 

(3) Besides, in the original S-2P/S-3P straightness measurements, the sampling interval equals 5 

the separation distance between the two sensors, which implies that the sampled data points can 6 

be too sparse to characterize the workpiece profile accurately, especially for the high-order 7 

undulations. To overcome this limit, Kiyono and Gao put forward the generalized 2-point method 8 

(G-2P) [17, 18] and the generalized 3-point method (G-3P) [19] where the sampling interval is 9 

much smaller than the spacing between the two sensors, and accordingly, the algorithm to estimate 10 

the workpiece profile is replaced by integration of the differential output of the two sensors with 11 

steps equaling the sampling interval. However, the generalized methods could only give an 12 

approximate estimation for the workpiece profile.  13 

Besides, in 1996, Li [20] presented a different algorithm by resorting to the discrete Fourier 14 

transform to solve the sequential two-point/three-point straightness measurement. In his 15 

algorithm, the sampling interval was no longer limited to the probe spacing and can be as small as 16 

possible. This means that the tangential resolution of the estimated profile could be significantly 17 

increased. However, Li’s algorithm requires that the straightness profile should recur at a regular 18 

interval of the testing length, which, unfortunately, is not always the case. Hence, when the second 19 

probe moves out of the measuring section, a non-target profile was inspected and an unexpected 20 

discrepancy could result in the estimation.  21 

To overcome this issue, Fung [21] described a novel treatment where a third probe is utilized 22 
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to rectify the second probe signal: when the second probe moves out of the measuring area, its data 1 

acquisition will be suspended and the third probe, which is separated with a distance of the 2 

measuring length from the second probe, will continue the data reading to supplement/rectify the 3 

second signal. Consequently, the joint signal becomes a summation of the slide error motion and 4 

the targeted workpiece profile. This revised two-probe method, also named the Fourier 3-sensor 5 

(F3S) method [21] is later extended to the Fourier 5-sensor (F5S) method after considering the 6 

yaw error motion of the slide [22, 23]. 7 

After employing the Fourier-based algorithm, it is no longer required that the tips of the first 8 

and the second probes should be at the same height. But it is required that the tips of the second 9 

and the third probes should be at the same height. Otherwise, the joint signal will be erroneous 10 

and the estimation result will be incorrect. One of the targets of this paper is to unveil the effect of 11 

the height difference of the probes on the measurement result. Based on this, a solution will be 12 

proposed.  13 

In theory, the profile of the workpiece can be perfectly estimated without systematic calculating 14 

error after adopting Fung’s measuring setup and the Fourier-based algorithm, which practically 15 

had also been successfully used for roundness measurements [24]. However, like the roundness 16 

measurements [25-27], the F3S straightness measurements suffer from remarkable uncertainty as 17 

well, which may come from the stochastic probe noise and the installation deviation of the sensors. 18 

Therefore, to achieve the highest precision of straightness profile measurement, another target of 19 

this paper is to analyze the measurement uncertainty of the F3S method. Based on this, a solution 20 

will be proposed.  21 

The rest of this paper is organized as follows. In Section 2, by resorting to the Laplace transform, 22 
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an algorithm of the F3S method will be described. In Section 3, the adverse effect of the height 1 

difference between the second and the third probes will be analyzed; and then, a solution of data 2 

preprocessing will be proposed for removing this effect. In Section 4, a hybrid algorithm in the 3 

harmonic domain is described aiming at measurement precision self-calibrating. In Section 5 and 4 

6, practical straightness measurements are carried out on a grinding machine. The conclusion is 5 

drawn in Section 7. 6 

2. Principle of the F3S method 7 

2.1 Laplace-transform-based algorithm of the F3S method  8 

In the original Fourier-based 2-Sensor (F2S) method [20], two displacement sensors/probes 𝑃1 9 

and 𝑃2, separated by a spacing of 𝑑, are employed and mounted on a linear moving slide to measure 10 

the workpiece profile, as shown in Fig. 2. 11 

d
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L
L

Displacement probes
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Z

X

M2M1

f(θ)

g(θ)

m
1
(θ

)

m
2
(θ

)

m
3
(θ

)

 12 

Fig. 2. Schematic diagram of Fourier 2-sensor/3-sensor method. 13 

Thus, when the first probe 𝑃1 moves from 𝑀1 to 𝑀2, the reading of the two probes, 𝑚1(𝜃) and 14 

𝑚2(𝜃), can be written as: 15 

𝑚1(𝜃) = 𝐴1 + 𝑓(𝜃) + 𝑔(𝜃),  (0 ≤ 𝜃 < 2𝜋)          (1) 16 

𝑚2(𝜃) = 𝐴2 + 𝑓 (𝜃 +
2𝜋𝑑

𝐿
) + 𝑔(𝜃), (0 ≤ 𝜃 < 2𝜋)          (2) 17 

Jo
urn

al 
Pre-

pro
of



9 

 

respectively. Here, 𝑔(𝜃) stands for the straightness error motion of the slide; 𝑓(𝜃) stands for the 1 

straightness error of the workpiece profile; the region between 𝑀1  and 𝑀2  is the measurement 2 

section, and its length equals 𝐿. 𝜃 is the equivalent angular position of the probe 𝑃1, calculated from 3 

𝜃 =
2𝜋𝑥

𝐿
; 𝑥 is the actual position of 𝑃1 along the X-axis. 𝐴1 and 𝐴2 are the initial outputs of 𝑃1 and 𝑃2, 4 

which can be numerically removed as they do not affect the estimation result. 5 

Clearly, the readings 𝑚1 and 𝑚2 are both the summation of the slide error motion 𝑔(𝜃) and the 6 

workpiece profile 𝑓(𝜃), which, however, contains a phase shift caused by the probe position. Then, 7 

to calculate 𝑓(𝜃), four steps are still required as follows: 8 

Step 1. Calculate the difference between 𝑚1(𝜃) and 𝑚2(𝜃) to eliminate the slide error motion 9 

𝑔(𝜃):  10 

𝑚(𝜃) = 𝑚1(𝜃) − 𝑚2(𝜃) = 𝑓(𝜃) − 𝑓(𝜃 +
2𝜋𝑑

𝐿
)         (3) 11 

Here, 𝑚(𝜃) is usually called the weighted function.  12 

Step 2. Apply the Laplace transform to Eq. (3):  13 

𝐹(𝑠) =
1

1−𝑒
2𝜋𝑑

𝐿 𝑠
𝑀(𝑠)              (4) 14 

Here, 𝐹(𝑠) and 𝑀(𝑠) are the Laplace transform of 𝑓(𝜃) and 𝑚(𝜃), respectively. 15 

Step 3. Substitute 𝑠 = 𝑗𝜔 into Eq. (4):  16 

𝐹(𝑗𝜔) =
1

1−𝑒
𝑗

2𝜋𝑑
𝐿 𝜔

𝑀(𝑗𝜔)               (5) 17 

In this way, the Fourier coefficients of the workpiece profile 𝐹(𝑗𝜔) can be evaluated. Here, 𝑀(𝑗𝜔) 18 

are the Fourier coefficients of 𝑚(𝜃), which can be computed by applying the Fourier transform to 19 

𝑚(𝜃). 𝜔 is the harmonic order, which equals …, -2, -1, 0, 1, 2, …  20 

Step 4. Apply the inverse Fourier transform to 𝐹(𝑗𝜔):  21 

𝑓(𝜃) = 𝐹−1[𝐹(𝑗𝜔)]               (6) 22 
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In this way, the workpiece profile 𝑓(𝜃) is finally estimated. 1 

We can find that by resorting to the Laplace transform, the workpiece profile can be 2 

conveniently recovered from the superposed signals to separate the slide error motion. However, 3 

the F2S method is accurate only if the workpiece profile is periodic with a length of 𝐿 [20] 4 

𝑓(𝜃) = 𝑓(𝜃 + 2𝜋),               (7) 5 

or at least  6 

𝑓(𝜃) = 𝑓(𝜃 + 2𝜋),   (0 < 𝜃 <
2𝜋𝑑

𝐿
).           (8) 7 

Otherwise, the Laplace transform of 𝑓 (𝜃 +
2𝜋𝑑

𝐿
) , (0 < 𝜃 < 2𝜋) , contained in the second probe 8 

signal 𝑚2(𝜃), is not equal to 𝑒
2𝜋𝑑

𝐿
𝑠𝐹(𝑠). 9 

To solve this issue, Fung presented the F3S method [21], which employs a third probe 𝑃3  to 10 

rectify the second probe signal. In his method, 𝑃3  is separated from 𝑃2  by a spacing of 𝐿 , as 11 

indicated by the blue sensor in Fig. 2. And, when the second probe 𝑃2  moves out of the 12 

measurement section, its data acquisition will be suspended and the third probe 𝑃3 will continue 13 

the data reading to supplement the second signal. Thus, the rectified/joint signal 𝑚𝑟2(𝜃) can be 14 

mathematically formulated as follows: 15 

𝑚𝑟2(𝜃) = {
𝑚2(𝜃) = 𝐴2 + 𝑓 (𝜃 +

2𝜋𝑑

𝐿
) + 𝑔(𝜃), (0 ≤ 𝜃＜

2𝜋𝑑

𝐿
− 2𝜋)

𝑚3(𝜃) = 𝐴3 + 𝑓 (𝜃 +
2𝜋𝑑

𝐿
− 2𝜋) + 𝑔(𝜃), (

2𝜋𝑑

𝐿
− 2𝜋 ≤ 𝜃＜2𝜋)

    (9) 16 

Here, 𝐴3 is the initial output of 𝑃3. 17 

In the joint signal 𝑚𝑟2(𝜃), the workpiece profile component can be appropriately obtained by 18 

circle-shifting the workpiece profile 𝑓(𝜃) by a phase of 
2𝜋𝑑

𝐿
. Hence, its Laplace transform is properly 19 

equal to 𝑒
2𝜋𝑑

𝐿
𝑠𝐹(𝑠) . Theoretically, after replacing the 𝑚2(𝜃)  by the 𝑚𝑟2(𝜃)  in Eq. (3-6), the 20 

workpiece profile can be accurately estimated.   21 
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2.2 Simulation of the F3S method to measure a non-periodical profile 1 

For a demonstration of the applicability of the F3S method in measuring a non-periodical 2 

profile, a numerical simulation was carried out. Both the workpiece profile and the slide error 3 

motion contain harmonics of 1~30 order, which denotes that there are 1~30 undulations within 4 

the length 𝐿. In addition, to construct a non-periodical feature, a step (as highlighted by the yellow 5 

bar in Fig. 3), as well as a slope component is added to the workpiece profile. 6 

Measurement section

 7 

Fig. 3. Actual workpiece profile and slide error motion. 8 

The mathematical expression of the workpiece profile and the slide error motion are 9 

detailed in Eq. (10-11): 10 

𝑓(𝜃)̅̅ ̅̅ ̅̅ = {
∑ 7𝑒−0.12𝜔 cos(𝜔𝜃 + 𝜑𝜔𝑓) + 0.2𝜃 , (0 ≤ 𝜃 <

21𝜋

10
)𝑁

𝜔=1

∑ 7𝑒−0.12𝜔 cos(𝜔𝜃 + 𝜑𝜔𝑓) + 0.2𝜃 + 40, (
21𝜋

10
≤ 𝜃 < 3𝜋)𝑁

𝜔=1

     (10) 11 

𝑔(𝜃)̅̅ ̅̅ ̅̅ = ∑ 5𝑒−0.08𝜔 cos(𝜔𝜃 + 𝜑𝜔𝑔) , (0 ≤ 𝜃 <
3𝜋

2
)𝑁

𝜔=1         (11) 12 

Here, 𝑓(𝜃)̅̅ ̅̅ ̅̅   and g(𝜃)̅̅ ̅̅ ̅̅   denote the actual workpiece profile and the actual slide error motion, 13 

respectively; 𝜑𝜔𝑓  and 𝜑𝜔𝑔  are arbitrary phases of the 𝜔
𝑡ℎ  order harmonic; N, which equals 30 14 

orders in this paper, is the cut-off order. The measurement section is from 0 to 100 mm, namely, 15 

the measurement length 𝐿 = 100 mm. Hence, the probe signal 𝑚1(𝜃), 𝑚2(𝜃), 𝑚3(𝜃), and the joint 16 

signal 𝑚𝑟2(𝜃) can be constructed.  17 

Fig. 4 depicts the estimation results of the workpiece profiles by both the F2S and the F3S 18 
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methods, where the probe spacing d was 11.40 mm; also, the trend term was removed for a clearer 1 

comparison. Clearly, the workpiece profile in both the spatial (Fig. 4a) and the harmonic domains 2 

(Fig. 4b) can almost be perfectly estimated by the F3S method while the F2S method suffers from 3 

an obvious deviation, illustrating the feasibility of the F3S method in measuring a non-periodical 4 

profile.  5 

(a) (b)
 6 

Fig. 4. Estimated results of the F3S method and the F2S method (a) in the spatial and(b) harmonic 7 

domains. 8 

3. Effect of the height difference between probes 9 

3.1 Effect of height difference between probes 10 

In subsection 2.1, we employ the signal 𝑚3(𝜃)  to rectify the signal 𝑚2(𝜃) , to construct an 11 

integrated periodical signal, i.e. the joint signal 𝑚𝑟2(𝜃). However, in practice, there is always an 12 

installation error, i.e. a height difference αℎ between the second and third probes, as illustrated in 13 

Fig. 5(a). Under this condition, if we still merge 𝑚3(𝜃) and 𝑚2(𝜃) directly, the constructed 𝑚𝑟2(𝜃) 14 

will be erroneous. Ideally (without height difference), the third probe signal should be as the green 15 

dashed line 𝑚3

′
(𝜃), but in practice, due to the height difference, the red line 𝑚3(𝜃) is sampled and 16 

merged into the joint signal 𝑚2(𝜃), as shown in Fig. 5 (b). Consequently, a significant error will be 17 

introduced in the measurement result.  18 
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Fig. 5. The effect of height difference of the probes, (a) demonstration of the height difference, 2 

and (b) demonstration of the resulting error in the joint signal 𝑚𝑟2(𝜃). 3 

3.2 Cancellation of the adverse effect of probe height difference  4 

To ensure the accuracy of the F3S measurement, the height difference must be compensated. In 5 

general, the height difference can be reduced by adjusting the probes carefully through inspecting 6 

a reference plane. This process, however, is time-consuming, and sometimes cannot be accurate 7 

enough, as a perfect reference plane is always unachievable. Hence, in this section, we propose a 8 

numerical method to cancel the adverse influence of the height difference. 9 

In practical measurements, there are possibly two conditions regarding the positioning of the 10 

workpiece and the guideway: parallel to each other or not.  11 

Condition 1: the guideway and the workpiece are parallel to each other  12 

Under this condition, 𝑔(0) = 𝑔(2𝜋) = 0 and 𝑓(0) = 𝑓(2𝜋) = 0. At the joint point, the readings 13 

of the second and the third probes are given by:  14 

𝑚2 (2𝜋 −
2𝜋𝑑

𝐿
) = 𝐴2 + 𝑓(2𝜋) + 𝑔(2𝜋 −

2𝜋𝑑

𝐿
)          (12) 15 

𝑚3 (2𝜋 −
2𝜋𝑑

𝐿
) = 𝐴3 + 𝑓(0) + 𝑔(2𝜋 −

2𝜋𝑑

𝐿
)          (13) 16 

Since 𝑓(0) = 𝑓(2𝜋) = 0, the height difference between the second and the third probe can be given 17 

by the difference of the two probe readings at the joint point:  18 
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αℎ = 𝐴2 − 𝐴3 = 𝑚2 (2𝜋 −
2𝜋𝑑

𝐿
) − 𝑚3 (2𝜋 −

2𝜋𝑑

𝐿
)         (14)  1 

Hence, the influence of height difference in 𝑚3(𝜃) can be easily canceled by the following equation: 2 

𝑚3
′ (𝜃) = 𝑚3(𝜃) + αℎ = 𝑚3(𝜃) + 𝑚2 (2𝜋 −

2𝜋𝑑

𝐿
) − 𝑚3 (2𝜋 −

2𝜋𝑑

𝐿
)     (15) 3 

Thus, a correct joint signal 𝑚𝑟2(𝜃) can be constructed by jointing 𝑚3
′ (𝜃) to 𝑚2(𝜃).  4 

Condition 2: the guideway and the workpiece are not parallel to each other 5 

In practice, the guideway and the workpiece are usually not parallel to each other. Under this 6 

condition, 𝑔(0) = 𝑔(2𝜋) = 0 and 𝑓(0) = 0 ≠ 𝑓(2𝜋) = 2𝜋𝑘. Here, we assume that the direction of 7 

the guideway is the reference direction; 𝑘  stands for the slope of the workpiece relative to the 8 

guideway, which causes a linear increment term to all the probe signals.  9 

Under this assumption, readings of the second and the third probes at the joint point are:  10 

𝑚2 (2𝜋 −
2𝜋𝑑

𝐿
) = 𝐴2 + 𝑓(2𝜋) + 𝑔 (2𝜋 −

2𝜋𝑑

𝐿
) = 𝐴2 + 2𝜋𝑘 + 𝑔 (2𝜋 −

2𝜋𝑑

𝐿
)    (16) 11 

𝑚3 (2𝜋 −
2𝜋𝑑

𝐿
) = 𝐴3 + 𝑓(0) + 𝑔(2𝜋 −

2𝜋𝑑

𝐿
)          (17) 12 

From Eq. (16-17), we can derive that the height difference between the second and the third probe 13 

is given by  14 

αℎ = 𝐴2 − 𝐴3 = 𝑚2 (2𝜋 −
2𝜋𝑑

𝐿
) − 𝑚3 (2𝜋 −

2𝜋𝑑

𝐿
) − 2𝜋𝑘       (18) 15 

Since 𝑚1(𝜃) = 𝐴1 + 𝑓(𝜃) + 𝑔(𝜃) , 𝑔(0) = 𝑔(2𝜋) = 0 , and 𝑓(0) = 0 ≠ 𝑓(2𝜋) = 2𝜋𝑘 , we can 16 

further prove that the 2𝜋𝑘  can be estimated by the difference between 𝑚1(2𝜋)  and 𝑚1(0) , as 17 

follows:  18 

𝑚1(2𝜋) − 𝑚1(0) = [𝐴1 + 𝑓(2𝜋) + 𝑔(2𝜋)] − [𝐴1 + 𝑓(0) + 𝑔(0)] = 𝑓(2𝜋) − 𝑓(0) = 2𝜋𝑘 (19) 19 

Therefore, the height difference in 𝑚3(𝜃) can be compensated by: 20 

𝑚3
′ (𝜃) = 𝑚3(𝜃) + αℎ = 𝑚3(𝜃) + 𝑚2 (2𝜋 −

2𝜋𝑑

𝐿
) − 𝑚3 (2𝜋 −

2𝜋𝑑

𝐿
) − 2𝜋𝑘 = 𝑚3(𝜃) + 𝑚2 (2𝜋 −21 

2𝜋𝑑

𝐿
) − 𝑚3 (2𝜋 −

2𝜋𝑑

𝐿
) − 𝑚1(2𝜋) + 𝑚1(0)          (20) 22 
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Please note that Eq. (20) is a general equation to compensate for the height difference in the third 1 

probe signal. 2 

3.3 A simulation to compensate for the height difference 3 

To verify the effectiveness of the approach in compensating for the height difference, a 4 

simulation was carried out. 𝑓(𝜃)̅̅ ̅̅ ̅̅  and 𝑔(𝜃)̅̅ ̅̅ ̅̅  defined in subsection 2.2 were still used here; 𝑑 equaled 5 

34.10 mm; the height difference between 𝑃2 and 𝑃3 was 50 μm. 6 

Fig. 6(a) and 6(b) show the signals before and after the compensation, respectively. In Fig. 6(a), 7 

a step of 30 μm can be observed in the joint signal 𝑚𝑟2(𝜃) as highlighted by yellow bars while it 8 

was cancelled after compensation as shown in Fig. 6(b).  9 

(a) (b)

Step

 10 

Fig. 6 Signals of 𝑚1(𝜃) and 𝑚𝑟2(𝜃), before (a) and after (b) the compensation of the height 11 

difference. 12 

The estimation results of the profile are shown in Fig. 7. For a clearer comparison, the trend 13 

terms in the estimated profiles and the actual ones were removed. A large discrepancy can be 14 

observed before the compensation: more than 15 μm in the spatial domain (Fig. 7 (a)) and about 4 15 

μm in the harmonic domains (Fig. 7 (b)). But, after compensation, the discrepancy was almost 16 

completely eliminated.  17 
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(a) (b)
 1 

Fig. 7. The measurement results before and after compensation of the probes height difference 2 

(a) the spatial domain and (b) harmonic deviation.  3 

To quantify the overall measurement accuracy, three criteria are defined here: the overall 4 

measurement deviation 𝑑𝑠𝑝, the overall harmonic deviation 𝐷ℎ, and the harmonic deviation 𝑑ℎ. 5 

𝑑𝑠𝑝 =
1

𝑁𝑠
∑ |𝑓𝑒𝑠(𝑘) − 𝑓(𝑘)̅̅ ̅̅ ̅̅ |

𝑁𝑠
𝑘=1              (21) 6 

Here, 𝑓𝑒𝑠(𝑘) and 𝑓(𝑘)̅̅ ̅̅ ̅̅  are the estimated workpiece profile and the actual one, respectively. Ns is the 7 

total number of sampling points.  8 

𝐷ℎ =
1

𝑁
∑ ||𝐹𝑒𝑠(𝑗𝜔)| − |𝐹(𝑗𝜔)̅̅ ̅̅ ̅̅ ̅̅ ||𝑁

𝜔=1             (22) 9 

Here, 𝐹𝑒𝑠(𝑗𝜔) and 𝐹(𝑗𝜔)̅̅ ̅̅ ̅̅ ̅̅  are the harmonic coefficients of 𝑓𝑒𝑠(𝑘) and 𝑓(𝑘)̅̅ ̅̅ ̅̅ , respectively.  10 

𝑑ℎ(𝜔) = ||𝐹𝑒𝑠(𝑗𝜔)| − |𝐹(𝑗𝜔)̅̅ ̅̅ ̅̅ ̅̅ ||            (23)   11 

Referring to these definitions, we can find that through the compensation, the overall 12 

measurement deviation 𝑑𝑠𝑝  was reduced from 6.63 μm to 0.66 μm, i.e. by 90%, and the overall 13 

harmonic deviation 𝐷ℎ was reduced from 0.64 μm to 0.06 μm, thus also by 90%.  14 

4. Harmonic hybridization to minimize the stochastic uncertainty 15 

4.1 The algorithm of the hybrid F3S method 16 

After compensating for the height difference of the probes, the measurement deviation can be 17 

greatly reduced. However, the probe outputs are still inevitably influenced by stochastic errors. 18 
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These random deviations can propagate to the measurement result. Shi [24] pointed out that in 1 

roundness measurements, when the determinant of transfer matrix |W(ω)| equals zero, the 2 

harmonic is suppressed and infinite harmonic deviation may occur in the result. When |W(ω)| is 3 

close to zero, the harmonic is sensitive to noise and a small stochastic disturbance can cause a large 4 

harmonic deviation. Analogously, the F3S straightness measurements may suffer from notable 5 

stochastic errors due to the suppressed and sensitive harmonics. Hence, to reduce the stochastic 6 

errors, and thus, to enhance the measurement precision, a hybrid F3S method is conceived here, 7 

which requires 4 steps as follows: 8 

Step 1. Perform several F3S measurements. 9 

Performing 𝑛 candidate F3S measurements by choosing 𝑛 different d, and n groups of Fourier 10 

coefficients of the workpiece profile are assessed. The the 𝜔𝑡ℎ Fourier coefficient of the 𝑖𝑡ℎ group 11 

is expressed as 𝐹(𝑗𝜔)𝑖. 12 

Step 2. Calculate the |𝑊(𝜔)|. 13 

For Eq. (5), we obtain the transfer function from 𝐹(𝑗𝜔) to 𝑀(𝑗𝜔): 14 

𝑇(𝑗𝜔) = 1 − 𝑒𝑗
2𝜋𝑑

𝐿
𝜔               (24) 15 

Then, the transfer matrix 𝑊(𝜔) can be computed via the Euler formula:  16 

𝑊(𝜔) = (
1 − 𝑐𝑜𝑠

2𝜋𝑑

𝐿
𝜔 −𝑠𝑖𝑛

2𝜋𝑑

𝐿
𝜔

𝑠𝑖𝑛
2𝜋𝑑

𝐿
𝜔 1 − 𝑐𝑜𝑠

2𝜋𝑑

𝐿
𝜔

)          (25) 17 

Thus, the determinant of transfer matrix |𝑊(𝜔)| can be computed: 18 

|𝑊(𝜔)| = |
1 − 𝑐𝑜𝑠

2𝜋𝑑

𝐿
𝜔 −𝑠𝑖𝑛

2𝜋𝑑

𝐿
𝜔

𝑠𝑖𝑛
2𝜋𝑑

𝐿
𝜔 1 − 𝑐𝑜𝑠

2𝜋𝑑

𝐿
𝜔

|          (26) 19 

Eq. (26) shows that the 𝑑  determines the |𝑊(𝜔)| , namely, determines the sensitivity of the 20 

individual harmonics to the noise. 21 
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When performing 𝑛 candidate F3S measurements by choosing different 𝑑, 𝑛 groups of |𝑊(𝜔)| 1 

are achieved. The 𝜔th determinant of transfer matrix of the ith F3S measurement is described as 2 

|𝑊(𝜔)|𝑖 .  3 

Step 3. Pick up the optimal Fourier coefficients. 4 

For the same measurement section of the workpiece profile, the Fourier coefficients of the 5 

assessed harmonics are the same. However, when choosing different 𝑑, |𝑊(𝜔)| is different. With 6 

this also the harmonics are influenced to varying degrees. Thus, there is a possibility to pick 7 

optimal Fourier coefficients from the 𝑛 candidate assessments by the F3S method. 8 

The Fourier coefficients 𝐹(𝑗𝜔)𝑖 are selected as the optimal ones corresponding to the largest 9 

determinant of the transfer matrix from the 𝑛 candidate assessments by the F3S method: 10 

𝐹𝑜𝑝𝑡(𝑗𝜔) = 𝐹(𝑗𝜔)𝑖 (𝑖 = argmax(|𝑊(𝜔)|𝑖))          (27) 11 

Here, argmax an operation that finds the argument 𝑖 that gives the maximum value from |𝑊(𝜔)|𝑖. 12 

Step 4. Compute the workpiece profile with the optimal Fourier coefficients. 13 

Calculate the workpiece profile with the optimal Fourier coefficients 𝐹𝑜𝑝𝑡(𝑗𝜔) by applying the 14 

Inverse Fourier transform. 15 

𝑓(𝜃) = 𝐹−1[𝐹𝑜𝑝𝑡(𝑗𝜔)]              (28) 16 

4.2 A simulation of the hybrid F3S method 17 

A simulation of the hybrid F3S method was conducted to confirm its robustness to stochastic 18 

errors. To achieve this target, first, three F3S measurements were simulated, where 𝑑 were 48.50 19 

mm, 34.10 mm, and 78.60 mm, respectively. During the simulations, a stochastic signal noise of 2 20 

μm RMS was added to the signals 𝑚1(𝜃) and 𝑚𝑟2(𝜃) to simulate the stochastic errors. Thus, three 21 

sets of Fourier coefficients were estimated. 22 
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Then, by substituting the three values of 𝑑 into Eq. (26), three sets of |𝑊(𝜔)| were obtained 1 

(see Fig. 8). We can find that some |𝑊(𝜔)| at a few harmonics are significantly smaller than that at 2 

other harmonics of the same F3S measurement, for instance, the 2𝑛𝑑, 4𝑡ℎ and 29𝑡ℎ orders when 𝑑 3 

= 48.50 mm, the 3𝑟𝑑 , 6𝑡ℎ , and 9𝑡ℎ  orders under 𝑑  = 34.10 mm, and the 5𝑡ℎ , 9𝑡ℎ  14𝑡ℎ , and 28𝑡ℎ 4 

orders under 𝑑 = 78.60 mm. We can conclude that these harmonics are sensitive and will imply 5 

significant harmonic uncertainties.  6 

 7 

Fig. 8. The determinant of transfer matrix |𝑊(𝜔)|. 8 

Third, according to |𝑊(𝜔)|, the optimal Fourier coefficients were selected from the three sets 9 

of measurement. From Fig. 8, we can find that |𝑊(𝜔)| in the hybrid method as indicated by the 10 

black point always have the largest value. This suggests that the sensitive harmonics can be 11 

successfully avoided.  12 

The estimated workpiece profiles were plotted in Fig. 9(a) and the harmonic deviations were 13 

also displayed in Fig. 9(b). From Fig. 9(b), we can find that some sensitive harmonics, which lead 14 

to large deviations, exist in the conventional F3S method, for instance, the 2𝑛𝑑 and the 4𝑡ℎ orders 15 

when 𝑑  = 48.50 mm, the 3𝑟𝑑  and the 6𝑡ℎ  orders when 𝑑  = 34.10 mm, and the 14𝑡ℎ  and the 28𝑡ℎ 16 

orders when 𝑑  = 78.60 mm. These harmonics were included in the ones of the smaller |𝑊(𝜔)| 17 

shown in Fig. 8. After employing the hybrid method, the sensitive harmonics have all been 18 

Jo
urn

al 
Pre-

pro
of



20 

 

eliminated and the measurement deviations reduced significantly. Quantitatively, the overall 1 

measurement deviation 𝑑𝑠𝑝 was reduced by up to 8.5 μm (91%); the overall harmonic deviation 2 

𝐷ℎ was reduced by 0.71 μm (89%).  3 

(a) (b)

 4 

Fig. 9. Results of the hybrid F3S method and the conventional F3S method (a) the estimated 5 

profiles, and (b) the harmonic deviations. 6 

Table 1 7 

The overall deviation 𝑑𝑠𝑝 and 𝐷ℎ before and after utilizing the hybrid method.  8 

Overall deviation d / mm F3S  Hybrid F3S 

𝑑𝑠𝑝 / μm 

48.50 0.8495 

0.8204 34.10 1.2708 

78.60 9.2918 

𝐷ℎ / μm 

48.50 0.1145 

0.0884 34.10 0.1953 

78.60 0.7984 

5. Experimental setup 9 

To verify the applicability in practice of the F3S and the hybrid F3S methods developed above, 10 

a graphite workpiece with a length of 150 mm was first machined on a grinding machine of 11 
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Takashima Multi Pro Ⅳ, and then, measured on the same machine. Three capacitive displacement 1 

probes, as indicated by 𝑃1 , 𝑃2 , and 𝑃3  in Fig. 10, were mounted on the slide table by a specially 2 

designed fixture to detect the distance variation. The fixture has five mounting holes respectively 3 

at the positions of 0 mm, 34.10 mm, 48.50 mm, 78.60 mm, and 100 mm. The second and the third 4 

probes are always installed at the positions of 0 mm and 100 mm, respectively, while the first probe 5 

could be arbitrarily installed at the rest positions. This means that the measurement length L 6 

always equals 100 mm, while the measurement distance d can be varied depending on the 7 

mounting position of 𝑃1.  8 

During measurements, the feed rate 𝑣 was kept constant at 5 mm/s along the X-axis. A NI 9125 9 

digitizer was adopted to collect the distance signals with a sampling frequency of 1000 Hz . To 10 

investigate the repeatability of the measurement, 100 repeated measurements were performed 11 

under each condition. 12 

Calibrator

NI digitizer

Workpiece

X

Z

v

P1 P2P3

 13 

Fig. 10. Physical pictures of the experimental setup. 14 

To verify the accuracy of the on-machine measurement, the workpiece profile was also 15 
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measured off-line on a surface profilometry (Taylor surf CLI 1000, AMETEK, Inc., USA), as displayed 1 

in Fig. 11. In this instrument, inductive gauging was adopted, which possesses a measurement 2 

range of 2.5 mm and a resolution of 40 nm. Also, the slide straightness of the scanning axis is stated 3 

to be ±1 μm. The scanning speed v1 was 500 μm/s and the sampling frequency was 1000 Hz, giving 4 

a sampling distance of 0.5 µm.  5 

ν1

Z

X
Taylor surf CLI 1000

Workpiece

 6 

Fig. 11. The physical picture of the off-line measurement. 7 

6. Results 8 

6.1 Experiment of compensation of the probe height difference  9 

Fig. 12 shows the signals before and after the compensation of the probe height difference. 10 

Distinctly, before the compensation, a step of 33.7 μm occurred at the joint point of 65.90 mm in 11 

the joint signal 𝑚𝑟2 (in this example, 𝑑 = 34.10 mm), as highlighted by yellow bars. The step has 12 

been completely removed after the compensation.  13 

(a) (b)

Step

 14 

Fig. 12. The experimental signals of the probes, before (a) and after (b) the compensation. 15 
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The estimated profiles were plotted in Fig. 13. The profile obtained in the off-line measurement 1 

was also exhibited as a reference. It can be observed that in the spatial domain, the maximal 2 

measurement deviation has been reduced from 27 μm to 10 μm by the compensation.  3 

 4 

Fig. 13 Comparison of the workpiece profiles estimated by the F3S method before and after the 5 

compensation of the probe height difference.  6 

To quantify the overall deviation, the 100 measured profiles were averaged and substituted into 7 

Eqs. (21) and (22). It was found that after the compensation, the overall measurement deviation 8 

𝑑𝑠𝑝  was reduced from 9.2 μm to 3.9 μm (58%); the overall harmonic deviation 𝐷ℎ  was reduced 9 

from 1.1 μm to 0.5 μm  (55%), suggesting the effectiveness of the developed algorithm to 10 

compensate for the height difference.  11 

6.2 Experiments of the hybrid F3S method 12 

Fig. 14 shows the results of the F3S measurements when 𝑑 = 48.50 mm, 34.10 mm, and 78.60 13 

mm. From Fig. 14 (a), certain degrees of fluctuated deviations, which is up to 10 μm, can be 14 

observed. From the harmonic domain in Fig. 14 (b), we can clearly find that most of the harmonics 15 

estimated by the F3S measurements agreed well with that obtained in the off-line measurement, 16 

except for a few harmonics, such as (1) 2𝑛𝑑  order when 𝑑 = 48.50  mm; (2) 3𝑟𝑑 , 6𝑡ℎ  , and 12𝑡ℎ 17 

orders when 𝑑 = 34.10  mm; and (3) 5𝑡ℎ  and 19𝑡ℎ  orders when 𝑑 = 78.60  mm, as highlighted by 18 
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blue bars. This suggests that the measurement deviation of the F3S measurements mainly arises 1 

from quite a few harmonics, which might be susceptible to error sources. For example, when 𝑑 =2 

78.60 mm, the measurement error mainly comes from the 5𝑡ℎ and the 19𝑡ℎ order harmonics. 3 

(a) (b)
 4 

Fig. 14 Results of the F3S measurements: (a) the estimated profiles and (b) their spectrum.  5 

The determinant of transfer matrix |𝑊(𝜔)| was also computed and plotted in Fig. 15. We can 6 

find that the |𝑊(𝜔)|  at a few harmonics were significantly closer to zero than that at other 7 

harmonics, for instance: (1) the 2𝑛𝑑, 4𝑡ℎ, and 29𝑡ℎ orders when 𝑑 = 48.50 mm, (2) the 3𝑟𝑑, 6𝑡ℎ, 9𝑡ℎ, 8 

12𝑡ℎ, 15𝑡ℎ, and 18𝑡ℎ orders when 𝑑 = 34.10 mm, (3) the 5𝑡ℎ, 14𝑡ℎ, 19𝑡ℎ and 24𝑡ℎ orders when 𝑑 =9 

78.60 mm. This shows that the sensitive harmonics could be quite well detected by |𝑊(𝜔)|. The 10 

most robust/optimal Fourier coefficients could be picked out individually from the three sets of 11 

the Fourier coefficient estimates according to |𝑊(𝜔)|. The selected optimal Fourier coefficients are 12 

also called the hybrid Fourier coefficients. 13 

 14 

Fig. 15. The determinant of transfer matrix |𝑊(𝜔)|.  15 
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Finally, the straightness profile was computed from the hybrid Fourier coefficients of average 1 

value and shown in Fig. 16. We can find that the result matches quite well with the off-line 2 

measurement result in both the spatial and harmonic domain.  3 

(a) (b)
 4 

Fig. 16. Result of the hybrid F3S measurement: (a) the estimated profile and (b) the spectrum.  5 

Fig. 17 shows the harmonic deviations obtained in the hybrid measurement and the 6 

conventional F3S measurements. We can find that when the hybrid method was adopted, minimal 7 

deviations could be achieved for almost all the harmonics. Moreover, the sensitive harmonics, 8 

which cause significant deviations, could be completely eliminated. This suggests that 9 

hybridization of the harmonic estimate could significantly enhance the robustness of the 10 

straightness profile measurement.  11 

 12 

Fig. 17. The harmonic deviations of the hybrid F3S method and the F3S method. 13 

After applying the hybrid F3S method, the measurement deviation was significantly reduced. 14 

Even compared with the optimal F3S method, the measurement deviation 𝑑𝑠𝑝 reduced from 2.5 μm 15 

to 1.1 μm (56%), and the overall harmonic deviation 𝐷ℎ was reduced from 0.27 μm to 0.17 μm 16 
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(37%), as shown in Table. 2. 1 

Table 2 2 

The overall deviation 𝑑𝑠𝑝 and 𝐷ℎ of experimental measurements. 3 

overall deviation 𝑑 / mm F3S Hybrid F3S 

𝑑𝑠𝑝 / μm 

48.50 2.5 

1.1 34.10 3.9 

78.60 4.8 

𝐷ℎ / μm 

48.50 0.27 

0.17 34.10 0.50 

78.60 0.52 

In this paper, a criterion 𝑈𝑠𝑝 is defined to estimate the repeatability of the measurement results, 4 

i.e. the random uncertainty: 5 

𝑈𝑠𝑝 = √
1

𝑀𝑁𝑠
∑ ∑ (𝑓𝑚(𝑘) − 𝑓𝑚𝑒𝑎𝑛(𝑘))2𝑀

𝑚=1
𝑁𝑠
𝑘=1         (29) 6 

Here, 𝑓𝑚𝑒𝑎𝑛(𝑘)  denotes the mean profile curve, given by 𝑓𝑚𝑒𝑎𝑛(𝑘) =
1

𝑀
∑ 𝑓m(𝑘)𝑀

𝑚=1 ;  𝑓𝑚(𝑘) 7 

denotes the profile estimated in 𝑀 repeated measurement; 𝑀 equals 100. 8 

Referring to Eq. (29), the random uncertainty in the conventional F3S measurements was 9 

calculated: 0.13 μm when 𝑑 = 48.50  mm, 0.28 μm when 𝑑 = 34.10  mm, and 0.21 μm when 𝑑 =10 

78.60  mm, respectively. Also, the random uncertainty after adopting the hybrid method was 11 

computed to be 0.09 μm. This suggests that compared with the conventional F3S method, the 12 

hybrid F3S method can effectively reduce the random uncertainty greatly, or in other words, 13 

improve the reproducibility of the measurement results. 14 

7. Conclusion 15 

(1) The adverse effect of the height difference between the second and the third probes on the 16 

F3S measurement is clarified; subsequently, a numerical approach to estimate, as well as to 17 
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compensate for the height difference is proposed; the availability of the proposed method is 1 

numerically and experimentally verified.  2 

(2) To alleviate the stochastic uncertainty, a hybrid F3S method is proposed: first, several sets 3 

of the Fourier coefficients of the straightness profile are obtained by performing the F3S 4 

measurements several times under different probe spacing; then, the optimal Fourier coefficients 5 

are picked out individually from the candidate estimates according to the determinant of the 6 

transfer matrix. The robustness of the hybrid F3S method to stochastic errors is confirmed 7 

numerically and experimentally. 8 

(3) Practical straightness profile measurements were performed, respectively, on a grinding 9 

machine by adopting the hybrid F3S method and on a Taylor Hobson surface profiler. The results 10 

show that compared with the conventional F3S method, the hybrid F3S method reduced the 11 

measurement uncertainty considerably, and the straightness profile estimated by the hybrid 12 

method agreed well with the result off-line measured on the surface profiler. 13 
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Highlights: 

1. Fourier 3-sensor method, resorting to Laplace transform, is proposed 

2. Numerical solution to remove height difference between probes is proposed. 

3. Hybrid Fourier 3-sensor method is proposed to improve measurement uncertainty. 

4. Workpiece profile is measured by a Taylor surf CLI 1000 as a reference. 
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