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Abstract

The growing availability of high-dimensional data sets offers behavioral scientists an unprecedented opportunity to integrate
the information hidden in the novel types of data (e.g., genetic data, social media data, and GPS tracks, etc.,) and thereby
obtain a more detailed and comprehensive view towards their research questions. In the context of clustering, analyzing the
large volume of variables could potentially result in an accurate estimation or a novel discovery of underlying subgroups.
However, a unique challenge is that the high-dimensional data sets likely involve a significant amount of irrelevant variables.
These irrelevant variables do not contribute to the separation of clusters and they may mask cluster partitions. The current
paper addresses this challenge by introducing a new clustering algorithm, called Cardinality K-means or CKM, and by
proposing a novel model selection strategy. CKM is able to perform simultaneous clustering and variable selection with
high stability. In two simulation studies and an empirical demonstration with genetic data, CKM consistently outperformed
competing methods in terms of recovering cluster partitions and identifying signaling variables. Meanwhile, our novel model
selection strategy determines the number of clusters based on a subset of variables that are most likely to be signaling
variables. Through a simulation study, this strategy was found to result in a more accurate estimation of the number of
clusters compared to the conventional strategy that utilizes the full set of variables. Our proposed CKM algorithm, together
with the novel model selection strategy, has been implemented in a freely accessible R package.
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Introduction

Recent technological developments have made it fairly easy
to collect a large number of variables within a single study in
social and behavioral sciences. Examples include exami-
nations of genetic influences in organizational psychology
(e.g., Chi et al., 2016; Arvey et al., 2016), personality psy-
chology (e.g., Davis et al., 2019) and social psychology
(e.g., Feldman et al., 2016); studies on neuroscientific foun-
dations of behaviors in management (e.g., Waldman et al.,
2019) and psychiatry research (e.g., Sun et al., 2009); research
aiming to predict personality from social media footprints
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(e.g., Park et al., 2015); questionnaire-based studies that
simply collected a comprehensive set of variables (e.g., Joel
et al., 2017); as well as a combination of all these types of
data (e.g., Bzdok & Meyer-Lindenberg, 2018).

A noteworthy advantage of data sets including many varia-
bles is that they provide a detailed and comprehensive view.
Here, the definition of “many variables” is rather subjective
and depends largely on the field of research. In behavioral
sciences, one can think of data sets with more than 100 varia-
bles (Groeneveld & Rumsfeld, 2016). These types of data
sets become increasingly common due to the fact that novel
types of data sources are more and more often collected.
Some special examples are so-called “high-dimensional” data
sets where the number of variables exceeds the number of
observations. In the context of cluster analysis — where the
intent is to group observations in such a way that those in the
same subgroup are similar to each other — using data with
many variables will likely result in a more accurate estimation
of subgroups and (or) a discovery of novel subgroups. In one
of the very few reported attempts to cluster datasets with many
variables, Mothi et al. (2019) combined clinical measures,
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laboratory measures, and measures derived from MRI scans
of psychotic patients to form a combined data set, on which
they conducted a cluster analysis and identified three sub-
types of psychoses. Evidently, clustering high-dimensional
data sets grants researchers an unprecedented opportunity to
clarify and deepen our understanding of the heterogeneity
in various social phenomena.

Although research that exploits data sets with many vari-
ables to identify subgroups is promising, it also comes with
challenges. One of the most compelling challenges, as stressed
by a number of scholars (e.g., Yarkoni and Westfall, 2017;
Waldherr et al., 2017; Bzdok & Meyer-Lindenberg, 2018), is
that these data sets may comprise a large amount of “irrelevant
variables” (Fowlkes & Mallows, 1983). They are variables
that do not separate clusters well and therefore do not define
cluster structure. These irrelevant variables may hinder sub-
group discovery by masking the cluster structure under
investigation (Steinley & Brusco, 2008b). Therefore, a clus-
ter analysis should effectively recover the cluster structure
while simultaneously filtering out irrelevant variables.

The variable selection problem in cluster analysis is not
a new topic and has been extensively studied since the
1980s. For example, Steinley and Brusco (2008b) have
compared the performance of eight different procedures to
address this problem. These approaches — most notably the
Variable Selection in K-Means (i.e., VS-KM; Brusco &
Cradit 2001), model-based variable selection (Raftery &
Dean, 2006), the Clustering Objects on Subsets of Attributes
(i.e., COSA; Friedman & Meulman 2004) and the relative
clusterability weighting method (Steinley & Brusco, 2008a)
— are well designed and have been extensively validated.
However, these methods are computationally prohibitive
in the presence of many variables, as the computational
demand grows exponentially with the number of variables.
For example, Steinley and Brusco (2008a) proposed to test
all subsets of variables that pass the initial screening, where
the theoretical maximum number of tests can be as high as
27 — 1 (with J indicating the number of variables in the
data set). Raftery and Dean (2006) and Brusco and Cradit
(2001) have both proposed a forward-searching strategy that
starts with an initial pair of two signaling variables and,
after searching all remaining variables, adds other signaling
variables one by one. This strategy, too, becomes very
inefficient when there are more than 100 variables.

Other methods are available, however, that are able to
simultaneously perform variable selection and clustering, with
reasonable computational time for large data sets with many
variables. They are, for example, Sparse k-means (SKM;
Witten & Tibshirani 2010) and Sparse Alternate Sum (SAS;
Arias-Castro & Pu 2017). Importantly, these methods have
been verified in several simulation studies to entail a
better performance than competing approaches, such as the
aforementioned COSA (Witten & Tibshirani, 2010).
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One of the important contributions of the current study
is to present a novel method, which we named Cardinality
k-means or CKM, for simultaneous variable selection and
clustering (see Yamashita & Adachi 2020 for another appli-
cation of the cardinality constraint on clustering). CKM essen-
tially exploits the fact that principal component analysis
(PCA) offers reasonable starting partitions to the k-means
algorithm (hereafter called KM; Ding & He 2004; Xu et al.
2015), especially in high-dimensional data sets. Based on
this connection, CKM approximates clustering solutions
through sparse principal component analysis (SPCA; Shen
& Huang 2008) and, based on the initial results of SPCA,
continuously updates partitions until convergence is reached.
Here, the algorithm is considered to converge when all obser-
vations remain in the same cluster after another iteration of
cluster updates. The “Methods” section illustrates how CKM
theoretically relates to SKM and SAS, while the “Simulation
studies” section reports how their performance compared.

As another important contribution, this study tackles the
problem of selecting the correct number of clusters in the
presence of (many) irrelevant variables. To date, despite calls
to research this problem (e.g., Steinley & Brusco, 2008b,
2011), to the best of our knowledge, only Brudvig et al.
(2019) has empirically addressed this issue. Brudvig et al.
(2019) argued convincingly that the selection of the number
of clusters is a central issue, and, perhaps more importantly,
pointing out that the common practice of selecting the
number of clusters using all variables may be misleading,
as the irrelevant variables could mask the cluster separation,
resulting in an erroneous estimation of the number of
clusters. Building on Steinley and Brusco (2008a), the
authors have proposed a new index to simultaneously
select the number of signaling variables and the number
of clusters. Unfortunately, the calculation of this index is
prone to computational difficulties when dealing with data
sets with a large number of variables. In the current study,
we aim to expand this line of research in two ways: 1) we
propose a novel strategy to select the number of clusters that
might be more suitable in the presence of a large proportion
of irrelevant variables and 2) within the framework of
our novel strategy, we compare several methods to select
the number of clusters in a simulation study. The novel
strategy is based on the idea of extracting a “stable” set
of variables that are deemed to be signaling variables
given any number of clusters. To evaluate the novel model
selection strategy we obtained the accuracy of the novel and
competing model selection strategies for various clustering
methods and with various test statistics.

The paper is organized as follows. We present the CKM
model and the accompanying algorithm in Section “Methods”,
where we also discuss the novel strategy to determine the
number of clusters and several methods related to CKM. Three
simulation studies are presented in Section “Simulation
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studies”. In the first two simulation studies, CKM is
validated and compared with SKM and SAS across various
conditions; while both the number of irrelevant variables
and the number of clusters are treated as known information
in the first simulation, only the latter is treated as known in
the second. In the third simulation study, we illustrate the
relative performance of the novel model selection strategy
that utilizes the stable set of variables as opposed to the stra-
tegy that utilizes the full set of variables. We then proceed to
illustrate the usage of CKM on a large data set that consists
of over forty thousand variables in Section “Application”.
Finally, in Section “General discussion”, we discuss
the practical implication of CKM and the novel model
selection strategy, address their limitations, and propose
future research directions. to promote the method, we
implemented CKM in a user-friendly R package “CKM”
(available at https://github.com/syuanuvt/CKM).

Methods

To develop CKM, we rely on results proven in Ding and He
(2004) and Xu et al. (2015). They have shown how principal
component analysis (PCA) can be used to obtain the subspace
in which the clusters reside. A key advantage of this propo-
sal, as discussed and illustrated in Xu et al. (2015), is the
stability of the clusters obtained and an improved accuracy
in recovering the clusters, given that the clustering process
mainly operates on the reduced (i.e., low-dimensional) space.
In the current paper, we develop CKM that builds upon these
results in the context of sparse PCA (i.e., Shen and Huang,
2008; Adachi & Trendafilov, 2016) for effective variable
selection. First, we discuss the assumed clustering model
(i.e., the KM model) and how it links up to PCA. Then,
we illustrate our novel idea of incorporating sparseness
in a PCA-like framework to filter out irrelevant variables
in the KM model. After that, we introduce an efficient
algorithm designed for CKM, followed by an overview
and comparison with related methods. Last, We formally
introduce our novel strategy to determine the number of
clusters in the presence of many irrelevant variables.

Model specification
A PCA approach to solve the KM problem

Prior to our discussion of CKM, we briefly show the
connection between KM and PCA. That PCA can be
effectively used to find the subspace in which the clusters
reside was first shown in Ding and He (2004) and later in
Xu et al. (2015). Interested readers are referred to those
articles for detailed derivations and proofs of the main
results reported here.

For a variable-wise standardized data matrix X (i.e., each
variable is mean-centered and re-scaled to unit variance)
with N subjects and J variables (and x; denotes the
response vector of subject i where i € 1,2,..,N), we
assume a total number of K clusters to be present in the
data. We define an indicator vector ¢ in such a way that
c(i) represents the cluster assignment of observation i and
c (k) comprises the indices of all Ny subjects in cluster k.
The objective of KM is given in

K
. 2
argmine E E [Ix; —mygl|5

k=1 iEC_l(k) (1)

1
withmy; = — E X;,
Ni =
iec™ (k)

where ||| |% refers to the squared Euclidean norm (for x =
(X1, x2, ..., XJ), ||X||% = x12 + x22 + ... +x3).

Because the optimization problem in Eq. 1 is a discrete
one, typically an alternating algorithm with multiple starts is
employed where each starting indicator vector is generated
randomly and updated until convergence. From the multiple
converged solutions, the best one is retained as the final solu-
tion; however, there is no guarantee this solution is optimal.

The major contribution of Ding and He (2004) and later
Xu et al. (2015) is the proof of the equivalence between
PCA and a continuous relaxation of KM and henceforth
the proposal of solving KM with the help of PCA. To see
this, they first introduced a partition matrix H (N x K) to
specify the correspondence between subjects and clusters.
More specifically, the element /;y, located at the i’ h row and
the k™ column of H, is constructed as follows,
o — { liec (k)

K=V10i¢c k)

This specification results in H having orthogonal columns.

Moreover, H is directly linked with my, according to

1
m; = ——hX 3)
Nk k
where hy, denotes the k" column of H.
Combine Egs. 3 and 1, and perform some algebraic
operations (detailed in Appendix A), we arrive at

argmaxyg 7rH'XX'H

tHH=1 he{0 1} @
s.t. =1Ig, hix € {——=, —}.
! ' Ni /N

Equation 4 can be viewed as another way to formulate
the objective of KM.

Instead of directly solving Eq. 4, Ding and He (2004)
proposed to first address a more convenient problem by
releasing the constraint that Ah, « should be either O or TN
To do so, they introduced H as the continuous relaxation
of H that satisfies H = HR where R is a rotation matrix

(@)
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subject to RR" = Ig. Also, to illustrate more explicitly the
connection of Eq. 4 and PCA, Z = X’ is brought in. Then,
Eq. 4 could be rephrased in

argmaxg TrH'Z'ZH

5)
s.t. HH = Ig,

which is the PCA formulation yet formulated on the trans-
posed data. A solution is attained when H equals the first
K left eigenvectors of Z'Z that correspond to the K largest
eigenvalues. Xu et al. (2015) proposed to estimate the
partition matrix H from this K-dimensional representation
of the data with a two-step approach: (1) obtain an initial
partition by subjecting H to a multi-start KM algorithm; (2)
use the partition resulting from the first step as a rational
start for a KM analysis of the original data X.

We note that the objective in Eq. 5 can also be written as

argming ,||X — HP'|3

©)
st. HH = Ig,

where P serves as the loading matrix and the expression can
be seen as the least-squares formulation of PCA (for more
details, the reader is referred to Guerra-Urzola et al. 2021).
In Eq. 6, if the " row in P contains all zero elements, the
1" variable does not contribute to cluster separation and is
therefore viewed as an irrelevant variable. Therefore, the
contribution of the variables can be obtained by controlling
P, e.g., by regularizing the variable contributions such that
variables that are not associated to cluster separation are
associated with only zero loadings. This forms the basis for
the development of CKM, as described below.

A sparse PCA approach to solve KM in the presence
of irrelevant variables

Let us reconsider the cluster analysis of X and assume that,
out of all J variables, a total of V variables are irrelevant
variables that do not separate clusters. The remaining (J —
V) variables are therefore signaling variables. The vector
g contains the indices of all V irrelevant variables, while
X, and X_g denote the subset of the original data set
that involve only the irrelevant and signaling variables,
respectively. In light of Egs. 1 and 3, we define the objective
of KM in the presence of V irrelevant variables:

K
argming o (|Xgl13+ Y > Y (xij — myy)?
k=1jec— (k) j¢g (7)

1
with Mij = — Xij,
Ni Zl:
iee (k)
where x;; and my; are the individual score of subject i

and the mean score of cluster k on variable j, respectively.
The objective represented by Eq. 7 is to minimize the
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total within-cluster sum of squares (also called within-SS)
across all observations and variables. The first term, ||Xg]],
summarizes the within-SS over all irrelevant variables. To
see this, note that a variable is considered irrelevant if its
cluster-specific centroids are assumed equal; hence, these
centroids are further equal to the grand mean (i.e., 0, since
all variables are column-wise centered). The second term of
Eq. 7 calculates the within-SS over all signaling variables.
Note that g is added as a parameter over which Eq. 7 is
optimized.

For the second part of Eq. 7, with a set of operations
similar to those listed in Appendix A and B, we obtain an
equivalent problem

argmaxy ¢ 7rH'X_,X_,'H

tHH=1 he{0 1} ®
s‘ . = K b k By 9

" VNN

where g contains V irrelevant variables and X_, denotes
the subset of the original data set that only contain signaling
variables. In the next section, we propose a set of procedures
to determine V. Again, H, the continuous relaxation of H,
can be used to replace H in Eq. 8, resulting in

argmaxy gTrI:I’X_gX_g’I:I

©
s.t. HH = Ig.

Furthermore, in the same vein as Eq. 6, Eq. 9 can be re-
framed as a minimization problem. Adding the first part of
Eq. 7, we obtain an optimization problem

argming /X — I:IP’||%
(10)

J
st HH =1Ix, Y [row(P); = 0] =V,
j=1

where row(P) ; indicates the j h row of the loading matrix
P and [.] refers to the Iverson bracket: [Q] = 1 if Q is
true and [Q] = 0 if Q is false. Equation 10 can be solved
with a modification of the SPCA algorithm introduced by
Adachi and Trendafilov (2016). Similar to the proposal in
Xu et al. (2015), a KM analysis is then performed on ﬁ,
resulting in an initial partition, ¢y, that is used for computing
the final solution of the CKM analysis. Furthermore, the
SPCA analysis produces an initial set of irrelevant variables
g by selecting variables whose K loadings all equal zero.
Subsequently, following a similar strategy as SKM and
SAS, and as detailed in the next section, ¢ and g are updated
iteratively to solve Eq. 7.!

IWe have also tested direct use of ¢ and g as the partition of the
samples and set of irrelevant variables, respectively. This procedure
gave unsatisfactory results.
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Algorithm

In this section, we present the details of the algorithm for
CKM with the number of clusters K and irrelevant variables
V assumed to be known. The discussion on how to select
K and V is deferred to Section “Model selection”. In
essence, the algorithm consists of two parts. First, the sparse
PCA problem defined by Eq. 10 is solved with a modified
version of Unpenalized Sparse Loading PCA (USLPCA;
Adachi and Trendafilov 2016). The modified version revises
the structure of the imposed cardinality constraint so that
the algorithm returns a selection of variables across all
components (instead of per component). This optimization
procedure is used because it has proven to be one of
the most efficient algorithms to solve the SPCA problem
with loading matrices subject to a cardinality constraint.
Therefore, the result of this modified procedure is an
accurate and efficient solution to the optimization problem
presented in Eq. 10. From this procedure, the initial set of
irrelevant variables gy is obtained. Furthermore, the initial
indicator vector c¢o is obtained by performing a multi-
start KM analysis on the component scores estimated from
SPCA. In the second part, we solve the sparse KM problem
defined in Eq. 7 by updating ¢ and g iteratively. Both
USLPCA and the sparse KM procedure are of an alternating
least squares type and, in practice, they both converge to a
local optimum. The full algorithm is presented in the form
of pseudocode in Algorithm 1. In Appendix C, we show the
derivation behind the optimization of H.

Here are four remarks on Algorithm 1. First, we solve the
sparse PCA problem formulated in Eq. 10 with one rational
start based on the singular value decomposition of X.
This choice was made because this step is computationally
demanding, and, in our experiments, increasing the number
of starts only marginally improved the performance of
the algorithm. Second, a (standard) KM analysis with
ten random starts is proposed to obtain the initial cluster
partition from the matrix X _, with the initial set of
signaling variables (i.e., g) obtained from SPCA. Third,
if cluster recovery, but not computational efficiency, is of
concern, then an additional KM analysis with ten starts
can be conducted on the subset of the data set with the
selected signaling variables only. The loss value from this
additional analysis can then be compared to the original
loss value and a final solution can be determined that
minimizes this loss value. Fourth, to update the index
vector of the irrelevant variables g, we propose to maximize
(Zf:1 Ziec*l(k) Zj¢g(xi2j — (xjj — mkj)z), conditional
on c. This can be conveniently solved by selecting the
V variables corresponding to the V largest values of

K
Dokt 2iee (k) (xizj = (xij = mgj)?).

Algorithm 1 The CKM algorithm.

: the data matrix X(N x J), the number of
clusters K, the number of irrelevant variables
V, the convergence criteria € and the maximal
number of iterations ifer;

Output: the set of irrelevant variables g and the

indicator vector ¢

Initialize H = Ug and P = Vg X ¢ where Uk Sk Vi
is the rank-k truncated SVD solution of X

Initialize the current number of iterations izer = 0
Initialize L = AL = ||X — HP'||3

while AL > € and iter < iter;,, do

Update H = VU where U and V are obtained
from the SVD solution of P’X’

Update P with two steps: (1) P = X’H and (2) set
the V rows of P the smallest sum-of-squares to
Zero

Update AL = L — ||X — HP'|]

Input

end

Initialize g with the indices of the rows having only
zero loadings in X_g

Initialize c as the result of a KM analysis with multiple
starts on H

Initialize L = AL = argmin, 4(||Xg||3 +

Zf:l Ziec*l(k) Zj¢g(xi./ - mkj)Z)

while AL > € do

Update g, conditional on ¢, by maximizing

Zf:l Ziec*l(k) Zj¢g(xi2j — (xij — mkj)Z)
Update ¢, conditional on g, by a KM analysis on
X_¢ with the current ¢ as the (single) informative
start

Update AL =

K
L —(IXgll3 + Yo Xiee 1 2o g (i — mi)?)

end

Related methods

As discussed in the introduction, other algorithms that
are developed from KM have been proposed to perform
cluster analysis in the presence of a large number of
variables. These methods could be generally classified
into three types: dimension reduction, subspace clustering
and variable selection. Our proposed CKM falls into the
category of variable selection methods. Therefore, in the
current paper, we only consider other methods from this
category. Readers who might be interested in a broad review
of all existing methods are referred to review articles and
textbooks, for example Bouveyron and Brunet-Saumard
(2014) and Bouveyron et al. (2019).

@ Springer
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Sparse K-means (Witten & Tibshirani, 2010) was built
upon the weighted k-means framework (Tseng, 2007) where
a weight is assigned to each variable to quantify the relative
importance of the variable. The objective function of SKM
can be formulated in

J K
2 2
argmaxc ., o, Z w; Z Z (xij — (xij —myj)7)

Jj=1 k=1jec=1(k)
2
stow; >0, [lwll; < 1, [|wll1 <

an

where w; denotes the weight associated with the variable
J, Wl = Z]J‘:1 |w;| refers to the /; norm, and s is the
hyper-parameter that is determined during model tuning.

As illustrated in Eq. 11, to achieve variable selection,
SKM includes a constraint with an /; norm and a constraint
with an /; norm on the weights. The former enforces some
of the weights to become exactly zero, indicating that the
corresponding variables of these weights do not contribute
to the clusters. The latter prevents putting all the weights on
only one or a small set of variables for which the separation
of the clusters is the largest. To solve Eq. 11, an alternating
algorithm is developed that updates the weights and the
cluster assignments iteratively. Typically, a set of equal
weights is used to initialize the algorithm.

When tested on simulated data, SKM enjoyed a clear
advantage over KM in terms of the accuracy of cluster
recoveries, for data sets with a large proportion of irrelevant
variables. However, it performed slightly worse than KM
when the vast majority of variables were signaling variables.

Inspired by SKM, Arias-Castro and Pu (2017) proposed
SAS, which applies a similar model as SKM, except for the
fact that SAS uses binary weights w;: w; = 1 indicates
that the j’" variable is included in determining the cluster
structure while w; = 0 indicates that it is excluded.
Similar to SKM, an alternating estimation procedure has
been proposed that updates the weights and the cluster
assignments iteratively; the authors suggested to initialize
the procedure with multiple sets of randomly selected
variables.? In simulation studies, compared to SKM, SAS
took considerably less time to achieve better performance
in terms of cluster recovery in most scenarios. However,
its edge over SKM in cluster recovery vanished when a
vast majority of variables were irrelevant variables. We
argue this is probably because the initial set of signaling
variables generated is often far from the underlying model.
CKM, on the other hand, uses initial values that stem
from a sparse SPCA analysis of the original data; as a
result, the starting set of signaling variables should be

2They also reported other suggestions for initialization; yet these
different of initialization all lead to similar results.
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much closer to the underlying model. Therefore, we expect
CKM to outperform SAS especially when the data set
under consideration involves a large proportion of irrelevant
variables.

Model selection

One of our contributions in the current study is to propose
a novel procedure to select K while taking the presence
of irrelevant variables into account; in the current section,
we introduce this procedure in details. Despite the fact that
numerous criteria and procedures have been proposed to
select K in deterministic clustering algorithms in general
(some of the best-performing algorithms include Tibshirani
et al., 2001 and Wang, 2010; see Steinley, 2006 for a
comprehensive review), it is still largely unclear how the
selection of the number of clusters should be done for
these methods in the presence of irrelevant variables. In
previous studies, common practice was to apply a specific
criterion on the full data set, as if irrelevant variables
did not influence the selection of the optimal number of
clusters. We argue, however, this procedure will likely result
in selecting a wrong number of clusters when a majority
of variables are irrelevant and may therefore hamper an
accurate recovery of the clusters. Therefore, we propose a
novel strategy that filters out irrelevant variables as much
as possible before selecting K. The procedure applies a
three-step procedure, as follows. In the first step, for each
possible number of clusters K (K = 1,2,...,Ku4x), the
optimal number of irrelevant variables Vg as well as the
subset of signaling variables sk are determined. Second,
a set of variables — called the stable set or Sgpie — are
obtained that are considered as signaling variables over
different values of K. In the third step, the optimal value
of K (denoted by K,,,) is determined while the associated
Vi and s — computed during the first step — are retrieved
as the optimal value of V and the optimal set of signaling
variables, respectively.

We now first introduce the procedure to select Vi
and sk with a pre-determined value of K. The procedure
is based on the Gap statistic (Tibshirani et al., 2001),
which has demonstrated good performance in selecting
the number of clusters in previous studies (e.g., Arias-
Castro and Pu, 2017). More specifically, for each possible
value of the number of irrelevant variables V (V =
1,2,...,J — 2), a CKM analysis is conducted on X. Note,
we recommend including at least two signaling variables to
avoid identification problems. From the analysis, the set of
signaling variables sk (V) is selected and its corresponding
between-cluster sum of squares is calculated as O(V).
Then, B random data sets are generated based on the subset
sx (V) by independently permuting the observations within
each variable. For each of the permuted data sets, a KM
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analysis is conducted, from which the between-cluster sum
of squares is recorded as Op(V). Consequently, the Gap
statistic is defined in

S P log Op(V)
sl T

The intuition is that, as the permuted data contain no
clusters, a larger value of Gap(V) indicates a more salient
cluster structure. Therefore, the value of V that maximizes
Gap(V) is selected. The corresponding set of signaling
variables is consequently picked up as sk .

As the set of estimated irrelevant variables at each value
of K likely differs, we identify a set of variables — the
stable set of variables ;45 — that are consistently selected
as signaling variables regardless of the value of K. More
formally, Ss;4p1e 1S calculated as follows: Sg;qp1e = ﬂllg'":f‘zx SK,
where N denotes the operation of extracting the intersection
over all vectors. The resulting subset of variables Sgqp7e
hence consists of signaling variables that were consistently
identified as relevant for each and every value of K.

Once the stable set of signaling variables is determined,
existing criteria to determine K can be used. Given the
promising performance of the Gap statistic in recovering
the true number of clusters in previous research, the Gap
statistic is set as the default criterion in the implementation
of our model selection procedure. However, other popular
indices such as the KL index (Krzanowski & Lai, 1988) and
the Dindex (Lebart et al., 1995) are interesting alternatives.
In Simulation Study 3 described below, we assessed the
performance of these criteria in terms of the accuracy in
recovering the true number of clusters K across various
conditions.

Last, to make the selection of V more precise, an
additional step is recommended. This additional step
determines the value of V from a set of candidates that are
located around the selected V resulting from the previous
step based on the Gap statistic. With respect to the size
of the set of candidates, according to our experience, a
set of ten alternative values is generally sufficient for the
task. Specifically, the between-cluster sum-of-squares is
calculated for each candidate value and an elbow point is
determined to be the optimal value of V.3

A potential risk of deriving the stable set of variables
in this way is that too many variables have been left out.
Nevertheless, our experience in analyzing simulated and
empirical data sets is that as long as K, is set at a
reasonable value, the identified sg;qp7. always contains an
adequate set of variables for selecting K.

Gap(V) =log O(V) — (12)

3 Alternatively, this optimal value can be found automatically by
identifying the global or local maximum of scree rations (please see an
illustration in De Roover et al., 2012; also see a detailed description of
the automation procedure in the CKM tutorial available on Github).

Algorithm 2 summarizes the proposed model selection
procedure that consists of the selection of the number of
clusters K, and the set of signaling variables.

Algorithm 2 Proposed procedure to determine V and K .

: the data matrix X, the maximal number of
clusters K 4y , the number of permutation
samples B

Output: the optimal number of clusters K ,;, the

optimal number of irrelevant variables V., ,

and the selected set of signaling variables s,

for K = 2 to K,;;u; do

forV=1toJ —2do
Run Algorithm 1 with K and V. Denote the

resulting between-cluster sum of squares by
O(V) and the set of signaling variables by
sk (V)

Obtain the subset of X that contains only the
signaling variables

forb=1to B do
Randomly permute the values of each

variable in the above subset
Run KM on the permuted data set,
resulting in Op(V)

end

Compute Gap(V) :

Gap(V) = log O(V) — L=l OuV)

Input

end

Set Vi equal to the V that maximizes Gap(V) ,
while sg denotes the corresponding set of
signaling variables

end

max

Obtain Sg;qple: Ssrabie =N 222 SK
Use a criterion (e.g., the Gap statistic) to determine the
number of clusters base on the subset of X (i.e., only
those variables whose indices are in Sg;gpie)
Update Vyp; = VE o - Update s,y = SK ot
NOTE: The following step is an optional step, and it is
only recommended when K, is large (e.g., > 20).
forV=Vy —5toV =V, +5do
Run Algorithm 1 with K, and V, and obtain
O(V) and sk, (V).
end
Determine the elbow point on the resulted sets of
O(V), and update V. Update s,p; = SK ot (Veopr).

When the number of variables J is small, it is feasible
to search the full grid (i.e., from 1 to J — 2) in selecting
Vop: - However, this approach is computationally prohibitive
with a large J (e.g., J > 100). Thus, in these cases, an
adaptive grid search algorithm that progressively zooms
in on smaller areas in the solution space is employed
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that effectively reduces the computational demand while
maintaining reasonable accuracy. More specifically, this
“zoom-in” strategy is an iterative procedure that gradually
narrows the search space for the number of signaling
variables until it converges to a single number. The
algorithm starts with ten evenly spaced numbers (a; < az <

. < ajo), where a; takes the smallest possible value and
ajo takes the largest possible value. For each of these ten
candidate numbers of signaling variables a CKM solution is
obtained and the optimal number is selected with the Gap
statistic. The algorithm then zooms into [a¢;—1+ 1, aj+1 — 1]
(both sides included) and creates ten new evenly spaced
numbers. This step is repeated until convergence.

Simulation studies

To evaluate the performance of CKM and of the proposed
model selection strategy, three simulation studies were
carried out. In the first two simulation studies, we compared
the performance of CKM in recovering the clusters and the
status of the variables (signaling versus irrelevant) with that
of SAS and of SKM. The two simulation studies differed
in the amount of prior information: while both K (i.e., the
number of clusters) and V (i.e., the number of irrelevant
variables) were assumed to be known in simulation study
1, only the true value of K was provided in simulation
study 2. In addition to SAS and SKM, in simulation study
2, CKM was also compared to KM. In simulation study
3, our proposed strategy that relies on the stable set of
signaling variables for selecting the number of clusters and
identifying the set of signaling variables was compared to
the alternative — and widely applied — selection strategy that
selects K based on the full set of variables.

All of the analyses were carried out in the statistical
software R. We used our self-developed package “CKM”
for the CKM algorithm, the package “stats” for the KM
algorithm, and the package “sparcl” for the SKM algorithm.
The SAS algorithm was available from standalone functions
that were extracted from the GitHub page (see Arias-Castro
& Pu, 2017). When running CKM, SAS, and SKM in
Simulation 2 and 3, one hyper-parameter must be tuned
for each method to select the optimal number of signaling
variables. For CKM, we have elaborated the procedure to
tune the cardinality constraint in the “Model selection”
section. The procedure to tune the hyper-parameter for SAS
is similar to that for CKM: according to Arias-Castro and Pu
(2017), here too the optimal number of signaling variables is
determined by maximizing the Gap statistic calculated from
Eq. 12. For SKM, the tuning parameter s, associated with
the /1 norm, should be decided for each of the simulations.
s is tuned from a grid consisting of 200 evenly spaced
values ranging from 1.001 to 10. For Simulation 1 where
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the number of irrelevant variables V' is known prior to
data analysis, we first determine the number of irrelevant
variables Vj for each value sp on the grid. Then, the tuning
parameter s is selected such that its corresponding V) equals
V. In case multiple V equal V, the average value of their
associated so is used. For Simulations 2 and 3 where V
is determined during data analysis, the optimal value is
selected that results in the simplest model (i.e., the model
with the fewest number of signaling variables) with a Gap
statistic less than 1SE away from the maximum. In other
words, the tuning procedure for SKM follows the well-
known 1SE rule, as proposed in Witten and Tibshirani
(2010).* In the above tuning process, the Gap statistic must
be computed for each candidate value; here, we set the
number of permutation samples to 20 for all analyses.

Simulation study 1

In this simulation study we compared the accuracy of CKM
in recovering the clusters and signaling variables with SAS
and SKM; where the values of K and V were set at pre-
defined values. To facilitate a systematic comparison with
other studies, we adopted, as closely as possible, the data
generation procedure from Witten and Tibshirani (2010) and
Arias-Castro and Pu (2017). More specifically, the simu-
lation was designed as follows: (1) the number of clusters
K was either 3, 5, or 30; (2) the number of observations
per cluster was 50; (3) the number of irrelevant variables V
took one of the following four values: 5, 50, 250, and 1000;
(4) the number of signaling variables (i.e., J — V) was 50
and (5) the distance of centroids for each variable between
neighboring clusters Au equaled one of the following four
values: 0.6, 0.7, 0.8, 1. A fully crossed design was used,
resultingin 3 x 1 x 4 x 1 x 4 = 48 conditions.

To generate the data, each observation was assigned to
one of the K clusters such that all clusters were of equal
size. Then, irrelevant variables were generated by drawing
from the standard normal distribution. The responses on the
signaling variables were sampled independently for each
cluster from a normal distribution with a cluster-specific
mean and a standard deviation of 1. The cluster-specific
mean values were determined such that the grand mean
calculated over all clusters was 0 while differences in
neighboring clusters were fixed at Au. For example, when
A equaled 0.6, the cluster-specific mean values of the
three clusters for each variable were respectively -0.6, 0, and
0.6. Obviously, a smaller Au corresponds to closer cluster
centroids, and thus results in a more difficult task to recover
the clusters.

4Note that, for SKM, we also tried in a small-scale simulation to
determine the hyper parameter by maximizing the Gap statistic;
however, the results of the simulation were more in favor of the
selection with the 1SE rule.
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For each condition, 40 data sets were generated.
Therefore, a total of 1920 data sets were generated and
analyzed by CKM, SAS, and SKM. Note that, SKM
was eventually dropped for the data sets generated in the
conditions with 30 clusters because of its slow computation.

Following Chipman and Tibshirani (2006), Witten and
Tibshirani (2010), and Arias-Castro and Pu (2017), we used
classification error (CE) as the evaluation criterion of cluster
recovery. By reporting CE, we hope to provide future research
with a consistent point of comparison, which is partic-
ularly beneficial for studies where different methods are
synchronized and (or) compared. CE indicates the similarity
between the true cluster assignment c¢ye and the assign-
ment ces¢ resulting from a particular clustering algorithm. To
illustrate, we introduce the following notation: 1(; ;»y equals
1 when observations i and i’ belong to the same cluster and
0 when they do not. Then, CE is defined as follows,

CE = Zi>i/ |1ctrue(ivi/) _ 1Cest(i>i/)|

, 13
NN —-1)/2 (13)
where N is the total number of observations.
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CE in Eq. 13 takes values between 0 and 1; CE = 0
indicates a perfect agreement between Cyrye and ceg¢ While
higher values indicate larger classification error and thus
less agreement between these two partitions.

Furthermore, to quantify how well an algorithm retrieved
the signaling variables, we computed the proportion of true
signaling variables that were successfully identified by the
algorithm relative to the total number of signaling variables
(e.g.,if 40 of the 50 signaling variables have been identified,
the success rate will be 80%). Hence, a larger proportion
suggests a better performance of the algorithm in detecting
the signaling variables.

The relative performance of CKM, SAS, and SKM in
recovering the clusters are visualized in Fig. 1. Figure la
and b shows that, when K equaled 3 or 5, CKM and
SAS recovered the clusters equally well (for both methods,
average CE = .012 when K = 3; average CE = .014 when
K = 5) and both better than SKM (average CE = .025 when
K = 3; average CE = .021 when K = 5). Furthermore,
CKM (average CE = .092) outperformed SAS (average CE
=.109) when K = 30 (see Fig. lc; note that, as discussed
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Fig.1 A comparison of different clustering methods for cluster recovery when both the number of clusters K and signaling variables V are given.

Panel A: K = 3; Panel B: K = 5; Panel C: K = 30
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earlier, SKM was dropped in these conditions), i.e., in the
presence of a more complex cluster structure.

Next, we examined how well the three methods were able
to identify the set of signaling variables. We found that the
task of identifying the set of signaling variables proved to
be relatively easy given the true values of both S and K:
all three methods were able to identify the set of signaling
variables with a success rate of at least 99%.

Simulation study 2

Our objective in Simulation 2 was to further examine the
relative performance of CKM, compared to SAS and SKM,
in recovering clusters and the status of variables when
only K was given; hence, V as well as the subset of
signaling variables had to be determined by the algorithm.
Furthermore, we have also added (standard) KM - the
most commonly used algorithm that does not allow for
variable selection — to the comparison and evaluated the
relative performance of all four methods in terms of cluster
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recovery. The settings and the data generation procedure
were identical to those used in Simulation 1.

In Simulation 2, again a total of 48 conditions were
manipulated with 40 data sets each. This resulted in a
total of 1920 data sets. We assessed the performance
of the four clustering algorithms primarily based on the
recovery of clusters (indicated by CE) and the number of
variables identified as signaling variables. In addition, we
also recorded and compared the average running time for
each of the methods.

Figure 2a and b visualize the extent of cluster recovery by
the different methods, when K equaled 3 and 5, respectively.
Because the two subplots present a similar pattern of the
relative performance of the four methods (CKM, SAS,
SKM, and KM), we discuss the combined results here.
Averaged over all conditions, CKM was the winner with an
average CE of .013, followed by SAS (average CE = .016)
and SKM (average CE = .023). KM, on average, produced
cluster partitions with a CE equaling .10. With regard to the
effect of Ap, the largest advantage of CKM (average CE
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Fig. 2 A comparison of different clustering methods for cluster recovery when only the number of clusters K is given. Panel A: K = 3;

Panel B: K = 5; Panel C: K = 30
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= .035) over the other four algorithms (for SAS, average
CE = .045; for SKM, average CE = .057; for KM, average
CE = .16) was found when Au = .6 (i.e., the smallest
distance of centroids between neighboring clusters). We
also examined how well these methods recovered clusters
with respect to the different numbers of irrelevant variables
(i.e., V). In accordance with our expectation, the three
methods performing simultaneous variable selection and
clustering (i.e., CKM, SAS, and SKM; for CKM, average
CE = .014; for SAS, average CE = .021; for SKM, average
CE = .024) recovered the clusters considerably better than
KM (average CE = .26) in the presence of an exceedingly
large proportion of irrelevant variables (i.e., V = 1000).
Last, in accordance with our expectation, the performance
advantage of CKM over SAS and KM in terms of cluster
recovery was greatest when K = 30 (see Fig. 2c; for
CKM, average CE = .08, for SAS, average CE = .30, for
KM, average CE = .70). This again illustrates that CKM is
particularly powerful to deal with complex cluster structure.
When K = 30 and V = 1000, the difference in cluster
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recovery from the three methods is striking: the average CEs
for CKM, SAS, and KM were .09, .28, and .77, respectively.

We further evaluated how well the algorithms identified
the set of 50 signaling variables when the correct number
of irrelevant variables (i.e., V) was not given. Since KM
is not able to explicitly single out signaling variables, the
comparison only concerns CKM, SAS, and SKM — note
that the true value was always 50. The results, plotted in
Fig. 3, shows that CKM was the best performing method
in terms of successful variable selection, since the number
of variables selected by CKM was consistently close to 50,
even with V. = 1000. In contrast, with a larger number
of irrelevant variables (i.e., V = 250 or 1000), both SAS
and SKM experienced difficulty to recover the exact 50
signaling variables. Expressed in numbers, while CKM
recovered the exact 50 variables in 92.7% of the cases; for
SAS and SKM, this percentage of successful recoveries was
only 62.9% and 30%, respectively.

Last, we examined the average execution time for each
of the clustering methods (here, we only consider K = 3
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Fig. 3 A comparison of different clustering methods for variable selection when only the number of clusters K is given. Panel A: K = 3;

Panel B: K = 5; Panel C: K = 30
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and K = 5, because these are the typical scenarios
behavioral researchers commonly encounter). With an
average execution time of .16 s and 4.28 s, respectively,
KM and SAS were the two fastest algorithms. CKM ranked
third among all four methods, taking an average of 43.5 s
to analyze a data set. In our opinion, its speed is acceptable
for most empirical studies. SKM, with an average of 293.6
s, was a lot slower than the other three algorithms.

Simulation study 3

Our major objective in Simulation Study 3 was to evalu-
ate and compare different model selection procedures for
deterministic clustering algorithms that perform simultane-
ous clustering and variable selection (e.g., CKM, SAS, and
SKM). To achieve this, we examined the relative accuracy
of selecting K with regard to (1) the set of variables used
(i.e., either relying on a stable set of variables that were
selected consistently across all possible numbers of clusters
or the full set of variables), and (2) the selection criteria for
determining the number of clusters.

A key interest in the current comparison was to compare
our novel strategy that pre-selected a stable set of variables
(see the previous section) with the traditional strategy
that involved all variables. Our expectation was that, with
a relatively large proportion of irrelevant variables, the
traditional strategy considered too much noisy information
and therefore resulted in less accurate selection compared to
our novel strategy. Besides, we have also implemented and
tested another strategy — called the local selection strategy.
This strategy first selects V conditional upon each possible
value of K with the Gap (V) statistic and then selects K that
maximizes the associated Gap (V) statistic. However, in all
conditions, this strategy consistently selected the smallest
value of K (i.e., 2). Because of the poor performance of this
strategy, we do not report its results any further in the paper
study.

In the current study, we considered some of the most
popular model selection criteria, namely the “KL Index”
(Krzanowski & Lai, 1988), the “DIndex”(Lebart et al.,
1995), and two versions of the Gap statistic (Tibshirani
et al., 2001), and examined which selection criteria
determined K with the highest accuracy. Specifically, in the
current study, the following two Gap-based criteria were
investigated: 1) selecting K that corresponded to the global
maximum of the Gap statistic, called “globalGap”; and 2)
choosing K that was associated to the first local maximal
value of the Gap statistic, called “firstGap”. While the first
one was proposed in Tibshirani et al. (2001), the second one
was introduced in Maechler et al. (2012) in developing the
well-known R package “Cluster”.

Furthermore, in the current study, to evaluate the
generalizability with respect to the preferred selection
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strategy and selection criterion, we replicated our findings
with both CKM and SAS (SKM was not involved because,
as illustrated above, it was relatively slow compared to
CKM and SAS).

To summarize, in Simulation Study 3, we tested the
accuracy of selecting K with respect to three factors: (1)
the selection strategy (i.e., the proposed strategy that utilizes
a stable set of variables versus and a strategy that utilizes
the full set of variables), (2) the selection criterion (i.e.,
“globalGap” v.s. “firstGap” v.s. “KL Index” v.s. “DIndex”),
and (3) the clustering algorithm (i.e., CKM v.s. SAS).

A number of factors in the data generation process were
systematically manipulated. These were largely identical
to those of the first two simulation studies, yet, with
the following exception. Namely, the varying number of
clusters K was one of three values: 3, 5, or 15. Again, in
total 3 x 4 x 4 = 48 conditions were manipulated. For
each of the conditions, again 40 replicate data sets were
generated, leading to a total of 1920 data sets. For each data
set, K was selected among models with 2 up to 10 clusters
clusters when K = 3 or K = 5 and among models with 11
up to 19 clusters when K = 15.% Specifically, three model
selection strategies (i.e., utilizing the stable set of variables
obtained from (1) CKM, or (2) SAS, and (3) utilizing the full
set of variables) combined with four model selection criteria
(i.e., (I)“globalGap”, (2) “firstGap”, (3)“KL Index”, and (4)
“DIndex”) were employed to analyze each of the data sets.
That is, for each data set, we applied a total of 12 different
ways for selecting the number of clusters K .

Table 1 presents the results of Simulation Study 3. Most
importantly, the novel selection strategy for selecting the
number of clusters that relies on the stable set of variables
led to an equal or higher success rate in selecting the true
number of clusters, across all criteria and conditions, and
both for CKM and for SAS, in comparison with using the
full set of variables. This advantage was especially pertinent
in the presence of a large proportion of irrelevant variables
(i.e., when V = 250 or V = 1000) where these irrelevant
variables likely hampered the recovery of cluster structure
and (or) in the presence of a large number of clusters
(i.e., when K = 15). By first filtering out the irrelevant
variables and only retaining the signaling variables that
clearly separate the clusters, the stable set of variables
offered a more defined structure for model selection, even
in the presence of a large amount of clusters. In fact, the
proposed model selection strategy, when coupled with the
selection criteria “globalGap” or “firstGap” and the CKM
or SAS algorithm, achieved a remarkable 100% recovery in
all conditions examined.

SWhile the range for selecting K was limited by the scope of the
simulations, we encourage applied researchers to consider a wide
range of candidate values.
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Table 1 Percentage of correct recovery of the number of clusters for 12 different strategies to determine the number of clusters

K \'% Full set of Variables Stable set obtained with SAS Stable set obtained with CKM
p fp KL Dindex gp fp KL Dindex 2p fp KL Dindex
3 5 100% 100% 87.5%  94.4% 100% 100%  91.3%  100% 100%  100%  87.5%  100%
50 663% 969% 67.5% 100% 100%  100%  90.6%  100% 100% 100%  88.8%  100%
3 250 32.5% 75% 6.3% 61.3% 100% 100%  99.4%  82.5% 100%  100%  83.8%  100%
1000 6.3% 70.6% 0% 31.3% 100% 100%  99.4%  82.5% 100%  100%  83.8%  100%
5 5 58.1% 60.6% 81.9% 96.9% 100% 100%  88.1%  97.5% 100%  100%  75.6%  97.5%
50 73.1% 95.6% 0% 19.4% 100% 100%  81.3%  93.8% 100% 100% 81.3%  93.8%
5 250 27.5% 51.9% 0% 0% 100% 100%  56.9%  80.6% 100%  100%  79.4%  91.3%
1000 0% 0% 0% 0% 100% 100%  85.6%  89.4% 100% 100%  85.6%  90%
15 5 0% 0% 194% 0% 100% 100% 13.1% 48.1% 100%  100%  0.6% 7.5%
50 0% 0% 40.6%  40.6% 100% 100%  12.5%  26.3% 100% 100% 0% 6.3%
15 250 0% 0% 0% 0% 100% 100%  12.5%  26.3% 100% 100% 0% 6.3%
1000 0% 0% 0% 0% 100% 100% 16.9%  10.6% 100% 100% 0% 5%

Note: Stable set refers to the proposed approach where only the stable set of signaling variables are used for selecting the number of clusters; full
set refers to the conventional approach where all variables are used. gp = “globalGap”, fp = “firstGap” (see the text for detailed explanation of the

two statistics)

Summary of the simulation studies

In three simulation studies we evaluated (1) the relative
performance of CKM with respect to SAS, SKM and KM
in cluster recovery and the selection of signaling variables
with (“Simulation study 1) and without (Simulation study
2) a pre-determined number of irrelevant variables, and (2)
the accuracy of selecting the number of clusters for all
possible combinations of three variable selection strategies
and four indices for determining the number of clusters. Our
main findings were as follows: first, compared to the three
competing methods — namely SAS, SKM and KM, CKM
was the winner in terms of cluster recovery across various
conditions, with or without model selection. Second, in
comparison to the other methods that are also capable of
identifying signaling variables (i.e., SAS and SKM), CKM
was the most accurate one when the number of irrelevant
variables was unknown and the cluster structure was
complex. Third, SAS enjoyed the shortest execution time
in comparison to CKM and SKM. Fourth, we found that,
across all conditions, the proposed model selection strategy
that utilizes the stable set of variables resulted in a better
accuracy in selecting the number of clusters compared to
the traditional strategy that utilizes the full set of variables.
Finally, the best model selection procedure consisted of the
combination of the proposed model selection strategy that
relies on the stable set of signaling variables and the index
“globalGap” or “firstGap”. In our simulation setup, this
procedure led to perfect performance of CKM and SAS.

Application

Here, we demonstrate the usefulness of CKM in analyzing
an empirical data set. We consider gene expression data
of 13 autistic subjects and 14 healthy subjects that are
publicly available from the gene expression omnibus
(GEO) with accession number GSE7329.° For each subject,
the transcription rates of 43,893 probes were analyzed.
Therefore, the data used in our analyses includes a total
of 27 rows (subjects) and 43893 columns (variables).
According to Nishimura et al. (2007), only a small number
of probes are associated to autism — in their research, the
authors selected a total of 293 probes for which the analysis
of variance (ANOVA) tests resulted in a false discovery rate
below a threshold of 5%.

Before the analysis, we have pre-processed the data set
such that each of the variables was mean-centered and
scaled to unit sum-of-squares. Our first set of analyses was
based on the full set of 43,893 variables. More specifically,
CKM, SAS and KM were applied to the entire data set
with K specified at 2 - to represent the autistic group and
the control group. We did not try out a larger number of

OThe full data set as well as the associated material could be extracted
from the following address: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE7329. While the original data set contained a total
of 30 subjects, we were informed that three of the subjects (with
series number GSM176615, GSM 176589 and GSM176586) were not
correctly stored in the data set and were therefore excluded from the
current analysis
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clusters considering the very small sample size. The three
methods (i.e., CKM, KM, and SAS) all resulted in the same
cluster partition: the first cluster contained the subjects with
the indices 5, 6, 9, 15, 16, and 27 while the second cluster
contained the remaining 21 subjects. Note that this partition
was different from the assumed partition separating the
patients (with the indices 1-14) and the control group
(with the indices 15-27). The disparity between the known
partition and the obtained partition is probably due to the
presence of other biological mechanisms. To support this
hypothesis, we further inspected the probes selected by the
algorithms. While CKM selected a total of 958 probes,
SAS selected 1238 probes. We used the free functional
annotation tool DAVID (Bioinformatics Resources Version
6.8; Huang et al. 2007) to explore if the set of signaling
variables identified by CKM indeed corresponds to any
meaningful biological processes. The annotation picked up
three groups of genes that were related to pathways that
play an important role in three different types of disease:
20 genes were involved in the pathway of Parkinson’s
Disease; 22 in the pathway of Alzheimer’s disease; 22
in the pathway of Huntington’s disease. Given that the
autistic subjects had a single gene Mendelian disorder
(either a 15q11-q13 duplication or a fragile X mutation)
and that the control subjects were composed of non-autistic
siblings, it is not unlikely that a grouping structure is
present in which autistic and control subjects are mixed.
Figure 4 offers a visualization of cluster-specific centroids
(after pre-processing) of all 958 signaling probes, with
the line linking the two centroids of the same variable
for the two clusters. Clearly, the two clusters showed
distinctive response patterns: while a group of variables
were associated with positive values in Cluster 1 and
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Fig.4 The cluster-specific centroids of the probes that were involved
in key disease-related pathways
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negative values in Cluster 2, the other group of variables
showed a directly opposite pattern. We stress that the current
analysis should only be regarded as an exploratory analysis
and further studies are needed to confirm the relevance of
the two obtained clusters and their distinct genetic profiles.

We then conducted a second set of analyses where we used
a subset of variables from the original data set. The subset
consisted of two types of variables: the 293 signaling variables
that have a significant difference in means between the autistic
group and the control group and 1707 variables that were
chosen randomly from the remaining variables (the new data
set thereby involved a total of 2000 variables). To determine
the signaling variables, we conducted a total of 43,893
sets of linear regressions that regressed the transcription
rate of each probe on the known partition of subjects with
or without autism, and chose the 293 variables with the
highest values of regression coefficients. Compared to the
previous cluster analysis, we were more certain that the
primary factor that divided all subjects was whether they
were autistic or not. Consequently, we were able to evaluate
the empirical performance of the clustering methods by
examining to what extent a method successfully recovered
the cluster partition and the set of signaling variables. CKM
completed the task perfectly as it identified the exact 293
variables that were pre-defined as signaling variables. SAS
also identified all of the 293 pre-defined signaling variables;
however, in addition to this, it also erroneously picked 23 of
the pre-defined irrelevant variables as if they were signaling
variables.

To summarize, although the pre-existing groups were not
recovered when the full data set was used, probably because
of the existence of other biological processes that divided
the subjects, the cluster structure was successfully recovered
by CKM in a chosen subset of the data (with a total of
2000 probes). In terms of the accuracy of variable selection,
in accordance with our findings in the simulation studies,
CKM clearly outperformed SAS as it recovered the subset
of signaling variables perfectly.

General discussion

Although behavioral sciences have a long tradition of oper-
ating in a “theory-driven way” and hence typically work
with a small number of carefully selected and designed
variables, they are now opening up its door to an interdisci-
plinary, data-rich approach where data sets involving many
variables are increasingly common (Gil de Zuniga & Diehl,
2017). The growing availability of these data sets and the
adoption of a data-driven approach could largely contribute
to exploratory research (Fan et al., 2014; Yuan et al., 2021).
In the context of cluster analysis, for example, the appli-
cation of data-driven approaches to high-dimensional data
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could potentially lead to the discovery of novel subgroups
that are not detectable from a traditional examination (Yuan
et al., 2019). Yet, a unique challenge of this approach per-
tains to retaining only crucial variables that truly separate
the clusters and filtering out irrelevant variables. Success-
fully identifying these signaling variables is beneficial to
the recovery as well as the interpretation of the underlying
clusters.

To address this challenge and facilitate data exploration
with high-dimensional data sets, several methods — for
example, Sparse k-means (SKM) and Sparse Alternate Sum
(SAS) — have been proposed that perform simultaneous
clustering and variable selection. In the current study, we
contributed to this line of research in two important ways.
First, we presented a novel method, called Cardinality K-
means, or CKM, that exploits the connection between PCA
and KM to obtain, in a computationally efficient way, good
starting values for a K-means (KM) procedure with variable
selection. Our specific contribution is to introduce a special
variant of the sparse principal component analysis (SPCA)
with a cardinality constraint on the number of variables. As
a result, CKM is a method that is similar to SAS, but with
a much better initiation of the parameter values. Through
extensive simulations that included a number of important
factors (e.g., the number of clusters, the proportion of
irrelevant variables, and the distance between the centroids
of adjacent clusters), we confirmed that CKM outperformed
the other clustering methods (i.e., SAS, SKM, and KM) in
terms of cluster recovery, especially in the presence of a
large number of irrelevant variables. Furthermore, among
the three methods with simultaneous variable selection (i.e.,
SAS, SKM, and CKM), CKM enjoyed the highest success
rate in the identification of signaling variables. Compared
to its predecessors SKM and SAS, CKM not only recovers
clusters better, but also offers a more structured and flexible
approach to simultaneous clustering and variable selection.
CKM uses the cardinality constraint, which offers at least
the following two advantages over the /; penalty used in
SKM. First, the application of the cardinality constraint
(but not the /; penalty) allows users to have exact control
over the number of signaling variables (Guerra-Urzola
et al., 2021). This option is particularly helpful when a
pre-specified number of signaling variables is desired in
certain applications. Second, the /; penalty has long been
criticized as suboptimal when the primary task is variable
selection, and in such tasks, regression analysis with an /;
penalty under-performed that with a cardinality constraint
(e.g., Bertsimas et al., 2016). Moreover, thanks to the
structured SPCA step, CKM can be easily extended to
account for different types of analyses, which is not possible
with SAS. For example, a researcher may want to find
a specific structure of four clusters in which irrelevant
variables only pertain to two clusters, while for the other two

clusters, all variables are considered signaling variables. To
accommodate this structure, in the first step where SPCA
is performed, the cardinality constraint can be imposed for
only two columns of the loading matrix. Furthermore, in
the second step where the model parameters of CKM are
iteratively updated, the loss function can be adjusted to
reflect this assumption.

Another important contribution to the literature is that we
proposed a novel model selection strategy to determine the
number of clusters K. The proposed strategy adopts a three-
step procedure that first applies a simultaneous clustering
and variable selection algorithm (e.g., CKM, SAS or SKM)
to identify the most stable set of variables, i.e., those
consistently identified as signaling variables given any of
the considered values of K, and then relies on this subset of
variables to select the optimal value of K. Through simula-
tion study 3, the proposed strategy — using either SAS or CKM
to extract the stable set of variables — recovered K more
accurately than the traditional strategy that selects K based
on the full set of variables. Furthermore, we also found
that, among the four evaluated model selection criteria (i.e.,
“globalGap”, “firstGap”, “KL Index”, and “DIndex”), the
two criteria developed from the Gap statistic (Tibshirani
etal., 2001) recovered K with the highest accuracy. Overall,
our study indicated that the preferred procedure of selecting
K consists of two steps: (1) apply either CKM or SAS
for each possible value of K and identify a stable set
of variables that are consistently estimated as signaling
variables; (2) determine K based on the stable set of
variables with either “globalGap” or “firstGap”.

To conclude, We strongly advocate the use of a
simultaneous variable selection and clustering approach
(e.g., CKM, SAS, and SKM) when the data contains a
large number of variables and (or) it is desirable to pick
up a subset of the most important variables — e.g., for the
purpose of data exploration. When choosing between CKM,
SAS, and SKM, according to the aforementioned results,
we recommend the application of CKM when the primary
objective is to recover the clusters and signaling variables as
much as possible. When speed is important (e.g., in dealing
with streaming data), however, SAS is the most desirable
method. Last, the selection of the number of clusters is
preferably based on a stable set of signaling variables that
partial out irrelevant variables as much as possible.

We see several interesting future directions for CKM.
First, in applications, the underlying cluster structure may
be more complex than those generated in the simulations.
Here, we discuss two scenarios that researchers may
encounter and briefly elaborate how CKM can be used in
both scenarios. Consider a hypothetical data set with 200
variables and six clusters. In the first scenario, there is
only one way of partitioning subjects and different subsets
of clusters are separated by different subsets of variables
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(e.g., the first 50 variables are relevant to Clusters 1-3 but
not to Cluster 4-6, the last 50 are relevant to Cluster 4—
6 but not to Cluster 1-3, and the other 100 variables are
completely irrelevant to all clusters). When dealing with this
data set, we expect CKM to successfully recover the six
clusters and select variables 1-50 and 151-200 as signaling
variables. After retrieving the full set of signaling variables,
users can then inspect the centroids of these variables
for the six clusters to discover which subsets of variables
are relevant to which subsets of clusters. In the second
scenario, completely different partitions (i.e., with hardly
any agreement between the two partitions) of the subjects
pertain to different subsets of variables. In our hypothetical
data set with 200 variables, all subjects may be partitioned
to six clusters in two different ways: the first partition is
driven by the first 50 variables, the second is driven by
the last 50 variables, and the remaining 100 variables are
once again irrelevant. To account for this scenario, users
of CKM can follow an iterative procedure: after each step
of identifying clusters and selecting signaling variables,
the algorithm proceeds to apply CKM to the designated
irrelevant variables. To prevent overfitting (i.e., finding
clusters and associated signaling variables that are caused
by noise only), after each step, theoretical knowledge can
be used to confirm the clusters while resampling methods —
e.g., bootstrapping and permutation test — can be applied to
examine the stability of these clusters. We encourage future
research to systematically examine the performance of these
strategies in various applications. Second, future studies
could investigate how different types of initialization affect
the results of CKM. A notable limitation of the current
simulation study is that, when initializing the alternating
procedure for estimating CKM solutions (i.e., Step 2), we
utilized only one rational start, estimated from a procedure
inspired by USLPCA, yet we did not consider a multi-start
procedure that employs multiple random starts. However,
we would also like to point out that, according to Xu et al.
(2015), a PCA-guided rational start likely yields comparable
performance as a multi-start procedure when estimating
KM results. Third, currently, CKM is only able to deal
with continuous data with no missing responses. In future
research, different imputation methods could be evaluated
and compared, resulting in a preferred pre-processing
scheme for a CKM analysis. Moreover, an extension of
CKM can be developed to tackle mixed types of data (i.e., a
combination of nominal, ordinal, and continuous variables).

Appendix A: An alternative formulation
of KM

In this section, our goal is to illustrate that the objective
function of a KM analysis could be re-formulated as
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argmaxy (7 rH'XX'H), subject to HH =
orthogonality constraint imposed on H.
First, we acknowledge that Eq. 1 could be re-written in
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The last part of the equation holds because of the
orthogonality of H.

Appendix B: The equivalence of the two
optimization formulations that concern KM
with irrelevant variables

In the current section, we discuss the equivalence between
Eqgs. 7 and 10.

We apply the equivalence of Eqs. 6 and 5 in Eq. 9 and
obtain

argmaxy gTrfI/ X X JH & argming p .

IX_g — HP |13
Therefore, Eq. 7 could be reformulated in

argming||Xg|[3 + argming , |IX_g — ﬁPLgII% < argming p||X — AP'||2

with P containing V roes of zero entries.

Appendix C: Proof for procedures to update
HandP

In the current section, we provide detail derivations to
support Algorithm 1. We first show the optimization
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problem argming ||X — HP'| |§ subject to H'H = I has the
solution

H=UuV

where U and V are obtained from the SVD of XP.
We rewrite the optimization in

h(H) = X - HP'||3
trPH AP’ + trX'X — 2trXPH’

= trPP’ + X'X — 2trH'XP.

Therefore, the minimization problem is equivalent to the
maximization problem of #rH'XP subject to H’H = I. Such
a maximization problem can be addressed with the Kristof
theorem (for a detailed description and proof of the Kristof
theorem, please refer to ten Berge 1993). More specifically,
we realize trH'XP could be rephrased in

trA'XP = trA'UDV’
= trVH'UD
= trGD,

where XP = UDV’ represents the SVD of XP.

Since G = V'H'U and all of V, H, U are sub-orthonormal
matrices (i.e., they can be completed to orthonormal
matrices), G is also a sub-orthonormal matrix. Therefore,
according to the Kristof Theorem, rrGD < ¢rD, and
the maxima is reached when VH'U = I Given the
orthonormality of both U and V, H = UV'.

Now consider the optimization problem argminp||X —
I:IP’||% subject to the constraint that V rows in loading
matrix P are exact zeros. The solution of P is obtained in
two steps: (1) calculate Py = X'H and (2) impose zeros on
the V rows of Py whose sum-of-squares are smallest.

We re-write the optimization problem in

h(P) = ||IX — HP'||3
= trX'’X + trPHAP — 2trPH'X
= Const. + trP'P — 2trPW

J K J K
= Const.+Zijk —2ZZijwjk

j=1k=1 j=1k=1
J K J K
_ )2 — 2
=22 P —wipt =)D wi
j=1k=1 j=1k=1
J K J K
_ N2 _ 2
=" (pjx —wjp)®) + Const. = Y " w,
j=1 k=1 j=1k=1
where Const. = ||X||§ is a constant and W = X'H. Note

that Z{: | Zf: | w?k is also a constant. Hereby, we derive
the solution to P.
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