
A Feasibility Study on Non-destructive Classification of Frozen Atlantic salmon (Salmo salar) 1 

Fillets Based on Temperature History at the Logistics using NIR spectroscopy 2 

 3 
1,2Bezuayehu Gutema Asefa, 2Chanjun Sun, 2Robbe Van Beers, 2Wouter Saeys, 3Stefan Ruyters 4 

 5 

Author Affiliation(s) 6 
1Food Science and Nutrition Research Department, National Fishery and Aquatic Life Research 7 

Center (NFALRC), Ethiopian Institute of Agricultural Research (EIAR), Sebeta, Ethiopia. 8 
2Department of Biosystems (BIOSYST), Division of Mechatronics, Biostatistics and Sensors 9 

(MeBioS), University of Leuven (KU Leuven), Kasteelpark Arenberg 30, 3001, Leuven, Belgium. 10 
3Xpectrum, Guldensporenpark 100 Blok K, 9820 Merelbeke, Belgium. 11 

 12 

Contact information for Corresponding Author  13 

National Fishery and Aquatic Life Research Center, Jimma Road, POBox: 64, Sebeta, Ethiopia  14 

 15 

Email address: bezuayehug7@gmail.com 16 

 17 

Previous address(es)  18 

 19 

Word count of text: 20 

5,996 21 

 22 

Short version of title (running head) fish quality classification using NIRS 23 

 24 

Choice of journal/topic  25 

 26 

Journal of Food Science: Integrated Food Science 27 

 28 

 29 

 30 

-PAGE BREAK-  31 

mailto:bezuayehug7@gmail.com


ABSTRACT: Temperature fluctuation commonly occurs in the cold chain leading to complete or 32 

partial thawing and re-freezing of frozen products resulting in a multi-frozen product. Such 33 

oscillation of temperature could cause significant quality reduction compared to single frozen 34 

products. This study was designed to differentiate frozen Atlantic salmon fillets based on the 35 

level of temperature fluctuation. Near-infrared spectroscopy (NIRS) coupled with chemometrics 36 

was used to classify the frozen fillets stored at no fluctuation (NF), low fluctuation (LF), high 37 

fluctuation (HF) and very high fluctuation (VF) temperature. Using spectral profiles obtained at 38 

both frozen and thawed states, fillets were classified based on the level of temperature 39 

fluctuation by partial least squares discriminant analysis (PLS-DA). The thawed samples showed 40 

better classification accuracy (71 %) than frozen samples (66 %) in a four-class model. 41 

Considering the small variation within the first two (NF, LF) and the last two (HF, VF) groups, a 42 

two-class classification model was developed using thawed samples, and the obtained model 43 

correctly classified the two groups (NF, LF) and (HF, VF) with 100 % classification accuracy. 44 

Protein and water-related changes were found important to distinguish the fillets. Based on the 45 

finding, the four-class prediction model is found insufficient to be used for nondestructive 46 

determination of temperature history of frozen fillets. However, the two-class prediction model 47 

with further external validation can be applied to determine the level of temperature 48 

fluctuation particularly using fillets scanned at thawed state. 49 

 50 

Practical Application: NIR spectroscopy can be used to evaluate the degree of temperature 51 

fluctuation and thus related quality loss throughout the logistics of frozen Atlantic salmon 52 



fillets. Researchers, food control authorities and the retail industry could be the primary 53 

beneficiaries of this research output. -PAGE BREAK-54 



1. Introduction 55 

Fish and fishery products are extremely susceptible to deterioration. Hence, an extension of 56 

shelf life is compulsory to avail fish for consumers in various parts of the world. To extend the 57 

shelf life of these products, cold chain has been serving as an excellent choice for more than a 58 

century. Cold chain is a temperature-controlled supply chain, using freezing and refrigeration 59 

technologies to maintain the products in a specific temperature range during production, 60 

storage, transportation, sales and consumption. However, it is not always practical to maintain 61 

a defined range of temperature at all steps of the cold chain, leading to temperature 62 

fluctuations (Mercier et al., 2017). Temperature fluctuation (TF) often occurs in cold chain, 63 

resulting in complete or partial thawing and re-freezing of frozen products (Gutierrez et al., 64 

2017; Syamaladevi et al., 2011). Considerable losses in textural quality, nutritional value, and 65 

functional properties of various agro-food products have been reported due to temperature 66 

fluctuation. Even if the degree of fluctuation is too low to cause complete thawing, significant 67 

differences were observed in the size of ice crystals in frozen products, which might 68 

consequently lead to loss of quality attributes (Gutierrez et al., 2017; Stiles et al., 2013; 69 

Syamaladevi et al., 2011). 70 

Several studies indicated the occurrence of significant temperature abuse during cold transport 71 

of fish and fish products. In a study on the air and sea transportation of fish, temperatures 72 

higher than 0 °C ± 1 °C were recorded (Martinsdottir et al., 2010). The temperature abuse was 73 

observed in 35% and 18% of the transportation time, respectively for air and sea 74 

transportations. In another study, temperature fluctuation above 5 °C was recorded for 17% 75 

and 36% of total time during air and sea transportation respectively (Mai et al., 2012). Besides 76 



during transportation, temperature increase up to 10 °C was reported while truck loading and 77 

unloading operations (Mercier et al., 2017). 78 

Several aspects of fish quality are known to degrade as a result of cold chain breakage 79 

throughout the logistics. Research on the impact of fluctuating temperature and constant 80 

temperature on lipid composition of fish fillet showed high free fatty acid and peroxide values 81 

for the fluctuating temperature regimes, while the lowest free fatty acids and peroxide value 82 

were observed on the super freezing (Gormley, 2019). In other studies, increased freeze-thaw 83 

cycles showed membrane disintegration, disruption of muscle cells, and an increase in 84 

exudation of fluid (Benjakul & Bauer, 2000; R. Gormley et al., 2002; Hamm, 1979; Rayeni, 2016). 85 

Furthermore, reduction in water holding capacity, reduction in protein solubility, and loss of 86 

salt soluble protein were reported (Benjakul & Bauer, 2000). Therefore, multiple freezing-87 

thawing cycles caused by temperature abuses demonstrated detrimental effects on muscle 88 

tissues via damage to cell membranes and organelles leading to significant effects on quality 89 

attributes of fish muscle. 90 

Considering the detrimental role of temperature fluctuation during frozen fish logistics, finding 91 

a method to predict the temperature fluctuation history of the frozen product is worthful. 92 

Several methods have been tested to evaluate quality related changes in fish. Enzymatic, 93 

chemical, microbiological and sensory analysis are among the applicable and useful analytical 94 

methods. These methods have been applied to differentiate fish based on freeze-thaw cycles 95 

(Davis, 1982; Fernández-Segovia et al., 2012; Howell et al., 1996; Kim et al., 1987, 1987; Li et al., 96 

2018; Nott et al., 1999). Recent analytical techniques that use metabolomics have also allowed 97 

the successful classification of fresh and frozen/thawed fish samples (Leduc et al., 2012; 98 



Massaro et al., 2021; Stella et al., 2022).  However, these methods are destructive, time-99 

consuming, expensive and require expert knowledge, which limits their practical application. 100 

Since recent decades, traditional methods of fish quality analysis have been replaced by 101 

spectroscopic-based techniques due to the advantages of fast and non-invasive analysis, 102 

simultaneous determination of numerous quality parameters, and applicability for online 103 

measurements (Duflos et al., 2002; Karoui et al., 2017; Hassoun, 2021). Among the 104 

spectroscopic techniques, hyperspectral imaging, nuclear magnetic resonance and near-105 

infrared spectroscopy have been investigated to distinguish between fresh and frozen-thawed 106 

fish (Hassoun et al., 2020). NIR spectroscopy is a well-established method in both research and 107 

food industrial applications (Wang et al., 2018). It relies on measuring the absorption of 108 

photons in the near-infrared range by the vibrational modes of C-H, O-H, and N-H bonds (Prieto 109 

et al., 2017). Measurement of the electromagnetic radiation absorbed by those molecular 110 

bonds gives a unique spectral fingerprint that contains information related to the physical and 111 

chemical properties of a sample. Several researchers have applied Vis/NIR spectroscopy-based 112 

non-destructive techniques to distinguish between fresh and frozen-thawed fish (Fasolato et 113 

al., 2012; Sivertsen et al., 2011; Uddin & Okazaki, 2004; Wang et al., 2018). Since temperature 114 

fluctuation often occurs in the frozen fish supply chain, analytical methods capable of 115 

distinguishing fillets based on the level of temperature fluctuation are required. However, 116 

existing studies in this regard have considered complete freeze-thaw cycles, which are not 117 

common in the frozen fish supply chain (Fasolato et al., 2012; Sivertsen et al., 2011; Uddin & 118 

Okazaki, 2004; Wang et al., 2018). It is hypothesized here that near-infrared spectroscopy, 119 

which showed successful classification between fresh and frozen-thawed fish could also be 120 



used to distinguish frozen fillets which have been subjected to minor temperature fluctuations. 121 

Therefore, this study was designed to evaluate the potential of near-infrared spectroscopy for 122 

the classification of frozen Atlantic salmon (Salmo salar) fillets subjected to minor temperature 123 

fluctuations. 124 

2. Materials and Methods 125 

2.1 Samples 126 

Frozen Atlantic salmon (Salmo salar) fillets supplied by a local retailer (Colruyt Group) were 127 

used for the experiment. The fillets were generally rectangular with approximate sizes of 10 to 128 

12 cm in length, 4 to 5 cm in width, and 2 to 3 cm in height. The fillet samples were individually 129 

vacuum-packed and supplied avoiding the possibility of temperature fluctuation. The samples 130 

were transferred into a freezer set at -18 °C for 24 hours until the start of the storage 131 

experiment.  132 

2.2 Frozen Storage Experiment 133 

The storage experiment mimicked four purposely selected levels of temperature fluctuation 134 

that represent actual conditions in frozen Atlantic salmon logistics. The storage conditions 135 

simulated under the scope of this study included four conditions that represent temperature 136 

fluctuation during loading, transportation, loading and transportation, and no fluctuation (ideal) 137 

conditions. The experiment involved four groups of 20 fillets in which group one, no fluctuation 138 

(NF) samples were stored at -18 °C for 18 days representing an ideal condition. Samples in the 139 

second group, low fluctuation (LF) represented a bad loading condition. Samples in this group 140 

were stored at 18 °C for 3 hours at the beginning of the storage experiment, resulting in partial 141 

thawing on the surface. After 3 hours, the samples were transferred to a freezer set at -18 °C 142 



until the 18th day of the experiment. Samples in the third group, high fluctuation (HF), 143 

represented a bad transportation condition and were stored at -12 °C for 8 hours followed by -144 

18 °C for 16 hours every 24 hours, till the end of the experiment period. The last group, very 145 

high fluctuation (VF), represented a condition in which both the loading and transportation are 146 

bad. Fillets in this group were stored at 18 °C for 3 hours at the start of the storage experiment. 147 

Then, the fillets were stored at -12 °C for 8 hours followed by -18 °C for 16 hours every 24 hours 148 

for 18 days.  149 

2.3 Reference Analysis (drip loss, pH and space between muscle fibres) 150 

Drip loss was measured by calculating the weight difference before and after the storage 151 

experiment. The final weight of the samples was taken after draining the fillet thawed 152 

overnight at 4 °C. 153 

𝐷𝑟𝑖𝑝 𝑙𝑜𝑠𝑠 (%) = (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 –  𝐹𝑖𝑛𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡) ÷ (𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝑤𝑒𝑖𝑔ℎ𝑡) × 100 154 

Measurement of pH was performed using a benchtop pH meter (Hanna Instruments, USA) by 155 

directly inserting the electrode into the fillet (Thorarinsdottir et al., 2002). A duplicate 156 

measurement was done on each fillet. Determining the space between muscle fibres was 157 

performed using sub-samples sectioned at 20 µm thickness using a microtome-cryostat 158 

(Microm HM 560 Cryostat, Thermo Fisher Scientific, Waltham, MA, USA) in an optimum cutting 159 

temperature environment, where the temperature of the medium was maintained at -27 °C. An 160 

inverted light microscope (VWR international, USA) equipped with Visicam 5.0 digital camera 161 

(VWR, Belgium) was used to acquire microscopic images. The images were recorded and 162 

processed using ImageJ software (National Institutes of Health, USA).  The gap between muscle 163 

fibres was calculated using the inbuilt tool in the software. 164 



2.4 NIRS Measurement 165 

Diffuse reflectance measurements in the 800 to 2500 nm range were performed using a Bruker 166 

optics multipurpose analyzer (MPA; Bruker Optics, Germany) by placing the fillets on the entry 167 

port of the integrating sphere. Spectral acquisition and control of the instrument were 168 

performed using OPUS software (v. 6.5, Bruker Optics, Ettlingen, Germany). For each 169 

measurement, the spectrum was averaged over 32 scans. 170 

All fillet samples were scanned at the end of the 18-day storage experiment in their frozen 171 

condition. Scanning of fillets at thawed condition was done on 16 fillets from each group after 172 

24 hours of thawing at 4 °C. The packaging material was removed and the surface of fillet 173 

samples was directly scanned at two different positions by placing the fillet on the device.    174 

2.5 Data Analysis Tool 175 

Statistical analyses of the reference quality measurements were performed using JMP software 176 

(JMP, Version 13; SAS Institute Inc.). Spectral analysis was performed using PLS Toolbox 177 

(Eigenvector Research, Inc., version 8.6).   178 

2.6 Development of Classification Model 179 

2.6.1 Principal Component Analysis (PCA) 180 

Principal component analysis (PCA) was used to determine the main characteristics of the 181 

spectra and highlight the relations among the absorbance values at different wavelengths. 182 

Potential spectral outliers were detected by studying score plots using Hotelling’s T2 and Q 183 

residuals statistic.  184 

2.6.2 Spectral Data Preprocessing  185 



In order to improve the informativeness of the spectral data, several data preprocessing 186 

techniques were tested either individually or in combination with each other.  Standard normal 187 

variate (SNV), detrend (DT) and Savitzky-Golay (second derivative) were among the selected 188 

data pretreatments based on the classification performance. For details on preprocessing 189 

methods the reader is referred to (Martens & Stark, 1991; Thennadil & Martin, 2005; Saeys et 190 

al., 2019). 191 

2.6.3 Partial Least Squares Discriminant Analysis (PLS-DA) 192 

The whole data matrix was split into a calibration set (70%) and a validation set (30%) using the 193 

Kennard-Stone method. Venetian blinds cross-validation with 10 splits was applied to the 194 

calibration data to optimize the number of latent variables during PLS-DA model development. 195 

During the development of the model, the calibration data (Y) represented the class 196 

membership using ones and zeros and then paired with the training matrix (X) (Barker & 197 

Rayens, 2003; Saeys et al., 2019). The point at which the lowest number of false positives and 198 

false negatives were achieved was selected as a threshold. Once the calibration model was 199 

trained, independent validation data were used to test the model and a classification output 200 

was generated. 201 

2.6.4 Performance Evaluation 202 

The overall performance of the individual models, in combination with the various pre-203 

processing techniques, was validated by calculating the classification accuracy (Equation 3.1), 204 

false-positive rate (Equation 3.2), and false-negative rate (Equation 3.3). The efficacy of the 205 

overall model was described by the classification accuracy. A false positive occurred when a 206 

negative response (incorrect class) was incorrectly classified as a positive response (correct 207 



class) and a false negative was when a positive response (correct class) was incorrectly 208 

classified as a negative response (incorrect class). Consequently, the false-positive rate 209 

describes the occurrence of misclassifications of an incorrect class in the model as a correct 210 

class, while the false negative rate describes the occurrence of misclassifications of a correct 211 

class to another incorrect class in the model (Payne, 2019):- 212 

Classification accuracy (%) =(((TP+TN))/(TP+TN+FP+FN)) × 100%  Equation 3.1  213 

False positive rate (%) =(((FP))/(TP+TN+FP+FN)) × 100%   Equation 3.2 214 

False negative rate (%) =(((FN))/(TP+TN+FP+FN)) × 100%   Equation 3.3 215 

Misclassification rate (%) =(((FP+FN))/(TP+TN+FP+FN)) × 100%  Equation 3.4 216 

Where; 217 

True Positives (TP) = Positive response correctly classified as a positive response; True 218 

Negatives (TN) = Negative response correctly classified as a negative response; False Positives 219 

(FP) = Negative response incorrectly classified as a positive response; False Negative (FN) = 220 

Positive response incorrectly classified as a negative response. 221 

3. Results and Discussion 222 

3.1 Effect of Temperature Fluctuation on Quality of Frozen Atlantic salmon 223 

Table 3.1, reproduced from another part of a similar study, indicates changes in quality related 224 

parameters (drip loss, pH and space between muscle fibres) of fillets stored at varying levels of 225 

temperature fluctuation (Bezuayehu, 2021). All quality attributes of fillets stored at the highest 226 

level of temperature fluctuation (VF) were significantly affected (p<0.05) compared to fillets 227 

stored at the lowest level of temperature fluctuation (NF). 228 



Table 3. 1 Mean ± standard deviation values of reference quality parameters: drip loss (%), pH 229 

and space between fibers (%).  230 

 231 

 232 

 233 

 234 

Drip loss and the space between muscle fibres increased with increasing levels of temperature 235 

fluctuation, while the pH of fillets decreased with increasing levels of temperature fluctuation. 236 

The relation between the obtained results from the three quality indicators confirmed the 237 

reduction of quality as a result of higher temperature fluctuation. Changes in drip loss and 238 

space between muscle fibres were more intense in HF and VF groups compared to LF and the 239 

control group. The difference within the two lowest temperature fluctuation groups (NF and 240 

LF), and the two highest temperature fluctuation groups (HF and VF) were insignificant for all 241 

quality attributes except for the space between muscle fibres, where NF and LF differ 242 

considerably. This can be attributed to the small variation in the levels of temperature 243 

fluctuation between the NF and LF, and HF and VF groups.  244 

3.2. Spectral Interpretation 245 

In Figure 3.1, the mean spectra of each group of fillet samples scanned at frozen (a) and thawed 246 

(b) conditions are illustrated. High overall reflectance values were observed in frozen fillets 247 

compared to thawed fillets. A similar result was reported on multi-frozen-thawed tilapia (Wang 248 

Group Drip loss (%) pH Space between muscle 

fibres (%) 

Average ± SD Average ± SD Average ± SD 

NF 2.85 ± 0.43b 6.12 ± 0.05a 26.55 ± 8.77c 

LF 2.86 ± 0.42b 6.10 ± 0.06a 37.31 ± 6.47b 

HF 3.62 ± 0.51a 6.08 ± 0.07ab 50.37 ± 4.55a 

VF 3.81 ± 1.02a 6.04 ± 0.06b 52.12 ± 2.81a 

All values are mean ± SD for measured quality attributes. Values in the same column with different superscripts are 
significantly different (p<0.05) 



et al., 2018). The high overall reflectance could be due to water migration which occurs during 249 

freezing or variation in the water status in frozen and thawed samples (Wang et al., 2018). In a 250 

study on the effect of a freeze-thaw cycle in Cuttlefish muscle, migration of water from the 251 

inside to the outside of fish muscle bundles was observed (Ying and Jing 2021). Scanning of the 252 

fillet at their frozen state was therefore easily influenced by the increased water content at the 253 

surface of the fillet muscle, thereby showing high overall reflectance.  High absorption was 254 

observed around 980 nm, 1210 nm, 1450 nm and 1950 nm. The dominating absorption peak 255 

appearing at 980 nm is attributed to the water content (second overtone O-H stretching), while 256 

the peak at 1450 nm originated from the first overtones of O-H stretching. The combination 257 

tone O-H stretch forms the peak around 1950 nm (He et al., 2014b). This indicates that water is 258 

a major absorbing constituent affecting the spectral characteristics of salmon flesh in the NIR 259 

region because of the high-water content of the flesh (He et al., 2014b). The absorption peak 260 

around 1210 nm can be attributed to C-H stretching, which is related to the presence of fat 261 

(Fernández-Segovia et al., 2012; He et al., 2014a). From the overall spectra and all the dominant 262 

absorption peaks of samples scanned at a frozen state (Fig 3.1. a), it can be seen that sample 263 

groups exposed to significant temperature fluctuation (HF and VF) had slightly higher 264 

absorption than the other groups (NF and LF). Samples scanned at thawed state demonstrated 265 

a similar profile of increased absorbance with an increasing level of temperature fluctuation 266 

across the entire region except for the wavelengths where water absorption peaks arise (Fig. 267 

3.1. b). On the contrary, the spectral profile at which water absorption peaks originate showed 268 

a decreased absorbance with an increasing level of temperature fluctuation. 269 

(a)                               (b) 270 



 271 

Figure 3.1. Average reflectance spectra of samples exposed to different temperature conditions 272 

measured at frozen state (a) and after thawing (b): No temperature fluctuation (NF), low 273 

fluctuation (LF), high fluctuation (HF) and very high fluctuation (VF) groups of fillets  274 

3.3 Principal Component Analysis (PCA) 275 

The spectral profiles were analyzed using PCA to evaluate the possibility of rapidly separating 276 

the different groups of samples. The general overview of the spectral groups was observed 277 

from the two datasets (frozen and thawed), plotted on a multivariate coordinate space where 278 

the dimensions were ordered according to decreasing explained variance (Fig. 3.2). The first 279 

two principal components explained more than 94% of the total variation among the samples in 280 

both frozen and thawed samples, indicating a good representation. The major peaks in the 281 

loadings plot (Fig. 3.3) correspond to the second and first overtone O-H stretching (980 and 282 

1450 nm, respectively), and the second overtone of C-H stretching (1210 nm). 283 

(a)        (b) 284 



 285 

Figure 3.2. Principal component analysis (PCA) score plots for the mean centered spectra of fillets 286 

scanned at frozen state (a) and fillets scanned at thawed state (b). 287 

 288 

Figure 3.3. PCA loadings of the first two PCs for samples scanned at thawed state. 289 

As observed in Fig. 3.2., particularly in thawed fillets (b), the four groups demonstrated 290 

grouping into two groups where NF and LF were closer to each other and HF was closer to the 291 

VF group. As observed in Fig. 3.2 (b), samples in thawed state showed better separation 292 

between the two groups compared to samples scanned in the frozen state (a). This could be 293 



due to the pronounced interference by specular reflectance in samples in frozen state. In 294 

addition, the difference in the state of water in the frozen and, the thawed fillets could affect 295 

the spectral characteristics, thereby influencing the separation between the groups. 296 

Furthermore, the variation in water content of fillets in the frozen state and thawed state may 297 

also affect the spectral characteristics.  298 

3.4 Four Class Classification of Frozen Fillets 299 

Several pre-processing methods including combinations of standard normal variate (SNV), 300 

detrend and Savitzky-Golay derivatives were tested to improve the classification performance. 301 

The best classification for samples in frozen state was obtained with a model using four latent 302 

variables based on spectra preprocessed with a Savitzky-Golay 2nd derivative (2nd order 303 

polynomial, 11 points). The PLS-DA model achieved 79% classification accuracy with 21% 304 

misclassification rate in calibration, 55% classification accuracy with 45% misclassification rate 305 

in cross-validation and 66% classification accuracy and misclassification rate of 34% on the 306 

validation dataset (Table 3.2). The PLS-DA model using samples scanned in frozen state yielded 307 

poor classification performance with an overall accuracy of 66 %. In addition, the overall 308 

classification accuracy was reduced from 79% on the calibration set to 66% on the validation set 309 

samples. The accuracy of classification reported in this study was lower compared to a related 310 

study on tilapia (Oreochromis) fillet which obtained more than 80% classification accuracy using 311 

samples scanned in frozen state (Wang et al., 2018). The difference could be due to the fact 312 

that in their study samples were completely thawed and frozen several times before analysis, 313 

which may have resulted in a more pronounced effect on the quality attributes of the fillets 314 



compared to the present experiment which tested temperature fluctuation without complete 315 

thawing of samples. 316 

Table 3.2. An overview of accuracies of the PLS-DA models with various pre-processing 317 

techniques applied to distinguish samples scanned at frozen state based on the level of 318 

temperature fluctuation 319 

 320 

3.5 Four Class Classification of Thawed Samples 321 

The spectral dataset collected from the thawed samples was pre-treated with several 322 

techniques to maximize the prediction performance of the PLS-DA model. SNV, detrend and 323 

Savitzky-Golay derivatives (second-order polynomial, 5, 7, 9 and 11 points) were applied to the 324 

absorbance spectra of the thawed samples. Table 3.3 summarizes the performance measures 325 

with the obtained results after a pre-processing using Log (1/R), SNV, detrend and Savitzky-326 

Golay second derivative (second-order polynomial, 7 points). Accordingly, the model yielded a 327 

correct classification rate of 80 %, 67 % and 71 % respectively on the calibration, cross-328 

validation and validation set samples. 329 

Pre-processing LV Calibration Cross-validation Validation 

CA (%) MR (%) CA (%) MR (%) CA (%) MR (%) 

SNV 5 68 32 59 41 59 41 

SNV + DT 5 67 33 58 42 59 41 

SNV + DT + SGD2(7) 4 85 15 53 47 64 36 

SGD2(11) 4 79 21 55 45 66 34 

SGD2(15) 7 83 17 60 40 58 42 

(SNV) Standard normal variate; (DT) Detrend; (SGDx(y)) Savitzky-Golay, (x) derivative order (y) number of window 
points; (CA) Classification accuracy, (MR) misclassification rate  



Table 3.3. Performance measures used to assess the four-class PLS-DA model based on thawed 330 

samples after pre-processing using 1/R, SNV, detrend and Salvitzky-Golay (second derivative, 331 

second-order polynomial, 7 points) 332 

 Class TPR FPR TNR FNR CA (%) MR (%) 

Calibration NF 0.78 0.13 0.87 0.22 82.16 17.84 

LF 0.55 0.09 0.90 0.44 72.97 27.03 

HF 0.89 0.11 0.88 0.11 88.68 11.32 

VF 0.56 0.05 0.94 0.44 75.35 24.65 

Cross 

validation 

NF 0.50 0.13 0.87 0.50 68.27 31.73 

LF 0.33 0.21 0.79 0.67 56.09 43.91 

HF 0.67 0.13 0.87 0.33 76.60 23.40 

VF 0.50 0.18 0.81 0.50 65.74 34.26 

Validation NF 0.78 0.15 0.85 0.22 81.20 18.80 

LF 0.33 0.08 0.92 0.67 62.82 37.18 

HF 0.89 0.23 0.77 0.11 82.94 17.06 

VF 0.25 0.11 0.89 0.75 56.94 43.06 

True positive ratio (TPR), false positive ratio (FPR), true negative ratio (TNR), false negative ratio (FNR), classification 333 

accuracy (CA), misclassification rate (MR)  334 

The PLS-DA score plot for the four groups of samples is given in (Fig. 3.4). In contrast to the 335 

model for samples scanned in frozen state, the PLS-DA score plot LV1 (58%) vs. LV2 (3.03%) for 336 

thawed samples demonstrates less overlap among the different classes, particularly between 337 

the first two classes (NF, LF) and the remaining two classes (HF, VF). As the score plot 338 

demonstrated, NF and LF were separated from HF and VF groups without any overlap. This 339 

could be due to the fact that the temperature fluctuations in the first two groups (NF and LF) 340 

did not cause a destructive change in the composition of fillets. In contrast, the HF and VF 341 



groups might have undergone significant changes during frozen storage which may have 342 

resulted in a change in the spectral profile of the fillets. 343 

 344 

Figure 3.4. PLS-DA score plot for the thawed fillets based on spectra pre-processed with log (1/R), 345 

SNV, detrend and Savitzky-Golay second derivative (second-order polynomial, 7 points). Legend: 346 

No fluctuation (NF), low fluctuation (LF) high fluctuation (HF) and very high fluctuation (VF) 347 

groups of thawed fillets. 348 

Compared to a classification result using spectra of fillets at their frozen state, the model based 349 

on thawed samples performed better and had a higher classification accuracy. This result is in 350 

agreement with the report of Shimamoto et al. (2001), who showed a more precise prediction 351 

for the fat content of mackerel using samples in thawed conditions suggesting a better 352 

observation of changes in fillet constituents in thawed state than at the frozen state. However, 353 

better classifications of once frozen-thawed from repeatedly frozen-thawed tilapia 354 

(Oreochromis) fillets were obtained under frozen conditions (Wang et al., 2018). This could be 355 

due to the fact that the previous researchers used fillets that were frozen in laboratory 356 



conditions and had flat surfaces. However, commercially frozen samples that had irregular 357 

surfaces were used in this experiment. This could have led to measurement-related variations 358 

despite the effort to reduce those variations, such as repeated scanning at different positions of 359 

the fillet. Spectral measurements of samples in frozen state might have affected the accuracy of 360 

the collected spectral data due to the fact that fillets with irregular surfaces cannot be scanned 361 

properly compared to fillets with a flat surface. Additionally, the frost on the surface of fillets 362 

measured in frozen conditions might have affected the light scattering conditions compared to 363 

samples that were measured in the thawed state.  In contrast, samples in thawed condition 364 

allowed relatively uniform scanning, which provided more accurate information about the 365 

composition-related changes that took place during frozen storage. One of the compositional 366 

changes could be a difference in water content which is brought by the effect of different levels 367 

of temperature fluctuation. In the samples scanned at thawed state, the HF and VF groups 368 

might contain lower moisture than NF and LF groups, thereby resulting in easy classification 369 

based on the difference in moisture content. Although measurement of moisture content was 370 

not performed, it can be derived from the increased drip loss value that the moisture content in 371 

HF and VF groups fillets was reduced compared to that of NF and LF groups.  372 

Since the spectral features of the fillets in the first two groups and the other two groups were 373 

closer to each other, the classification of fillets into four different classes demonstrated 374 

insufficient performance (71 % of classification accuracy). From the reference analyses, it could 375 

be noted that variation in quality related changes (pH, drip loss, space between muscle fibres) 376 

within the first (NF, LF) and the last (HF, VF) two groups were found insignificant (p>0.05), while 377 

the difference between the first and the last two groups was found significant (p<0.05). 378 



Moreover, the fact that temperature fluctuation is not totally avoidable in the cold chain, a 379 

two-class classification model would provide a robust class prediction into the good (NF & LF) 380 

that could represent ideally transported and/or stored fillets with a minimum level of 381 

temperature fluctuation; and the bad (HF & VF) which represent potential temperature 382 

fluctuation leading to a significant level of quality degradation.  383 

3.6 Two-Class Classification of Thawed Samples 384 

NF and LF group samples were modeled as one class while HF and VF group samples were 385 

modeled as the other class after pre-processing the spectra using a previously selected 386 

combination of spectral pre-treatment techniques: - SNV, detrend and Savitzky-Golay second 387 

derivative (second-order polynomial, 7 points).  This resulted in an overall classification 388 

accuracy of 100% (calibration), 93.27% (cross-validation) and 100 % (validation), indicating the 389 

effectiveness of the model to classify fillets based on the level of temperature fluctuation (Table 390 

3.4).  391 

Table 3.4. Overview of accuracies of two-class PLS-DA model using thawed samples 392 

Pre-processing LV Calibration Cross-validation Validation  

CA (%) MR (%) CA (%) MR (%) CA (%) MR (%) 

SNV, DT, SGD2 (7) 3 100 0 93.2 6.7 100 0 

(SNV) standard normal variate; (DT) detrend; (SGDx(y)) Savitzky-Golay, (x) derivative order (y) number of window 
points; (CA) classification accuracy, (MR) misclassification rate 



 393 

Figure 3.5. PLS-DA calibration and prediction score plot for spectra of thawed samples pre-394 

processed with SNV, detrend and Savitzky-Golay second derivative (second-order polynomial, 7 395 

points). Red indicates (NF & LF) group and green indicates (HF & VF) group. The plot indicates the 396 

calibration samples on the left side & the validation samples on the right side. 397 

This model appeared to be the best performing in overall classification accuracies compared to 398 

the two models discussed above, and the two-class classification model using frozen samples, 399 

which yielded 83 % overall accuracy (Table 3.5). The PLS-DA prediction score plot (Fig. 3.5) 400 

demonstrates that all fillets from both (NF & LF) and (HF & VF) groups were correctly classified. 401 

Table 3.5 402 

4. Conclusions and Recommendations  403 

Classification of fillets according to the level of temperature fluctuation was performed based 404 

on their NIR spectra acquired in frozen and thawed state. The four-class classifier based on the 405 

spectra of thawed fillets outperformed that on the spectra of frozen samples with a 406 

classification accuracy of 70.9% compared to 66%, respectively. The classification model failed 407 

to distinguish the fillets stored at no fluctuation (NF) from fillets stored at low fluctuation 408 

condition (LF), and fillets stored at high fluctuation (HF) from very high fluctuation (VF). An 409 



alternative two-class classification model provided more efficient classification with 100% 410 

accuracy on the spectra of thawed samples subjected to a combination of SNV, detrend and 411 

Savitzky-Golay 2nd derivative (2nd order polynomial, 7 points) pre-processing. This two-class 412 

classification model based on spectra of thawed fillets can be used to determine the level of 413 

temperature fluctuation after further external validation involving a larger number of samples. 414 

Future research is recommended to obtain more insight into the changes in the optical 415 

properties of fish muscle. Particular focus should be given to the factors affecting the optical 416 

properties during storage under fluctuating temperatures because this would allow to further 417 

optimize the NIR-based prediction models. 418 
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Nomenclature 428 

CA   Classification Accuracy 429 

CV   Cross-Validation  430 



DT   Detrend  431 

FP   False Positive 432 

FN   False Negative 433 

HF   High Fluctuation 434 

KS   Kennard Stone 435 

LF   Low Fluctuation 436 

LV   Latent Variable 437 

MR   Misclassification Rare  438 

MSC   Multiplicative Scattering Correlation  439 

NIR   Near Infrared 440 

NIRS   Near Infrared Spectroscopy 441 

NF   No Fluctuation 442 

PC   Principal Component 443 

PCA   Principal Component Analysis 444 

PLS-DA   Partial Least Squares Discriminant Analysis  445 

RMSE   Root Mean Square Error 446 

RMSECV  Root Mean Square Error of Cross-Validation 447 

RMSEP   Root Mean Square Error of Prediction 448 

SG    Savitzky-Golay 449 

SNV   Standard Normal Variate  450 

TN   True Negative 451 

TP   True Positive 452 



VF   Very high Fluctuation 453 
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