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eInstitute for Risk and Uncertainty, University of Liverpool, Liverpool L69 7ZF, United Kingdom
fInternational Joint Research Center for Engineering Reliability and Stochastic Mechanics, Tongji University, Shanghai

200092, PR China

Abstract

This paper is concerned with approximating the scalar response of a complex computational model

subjected to multiple input interval variables. Such task is formulated as finding both the global

minimum and maximum of a computationally expensive black-box function over a prescribed

hyper-rectangle. On this basis, a novel non-intrusive method, called ‘triple-engine parallel

Bayesian global optimization’, is proposed. The method begins by assuming a Gaussian pro-

cess prior (which can also be interpreted as a surrogate model) over the response function.

The main contribution lies in developing a novel infill sampling criterion, i.e., triple-engine

pseudo expected improvement strategy, to identify multiple promising points for minimiza-

tion and/or maximization based on the past observations at each iteration. By doing so, these

identified points can be evaluated on the real response function in parallel. Besides, another

potential benefit is that both the lower and upper bounds of the model response can be ob-

tained with a single run of the developed method. Four numerical examples with varying complexity

are investigated to demonstrate the proposed method against some existing techniques, and results indicate

that significant computational savings can be achieved by making full use of prior knowledge and parallel

computing.

Keywords: Interval uncertainty propagation, Bayesian global optimization, Gaussian process, Infill

sampling criterion, Parallel computing
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Abbreviations

3-D three-dimensional

BGO Bayesian global optimization

EI expected improvement

EI-MAX expected improvement for maximum

EI-MIN expected improvement for minimum

GP Gaussian process

I-MLQMC interval multilevel quasi-Monte Carlo

LHS Latin hypercube sampling

N-PBGO non-parallel Bayesian global optimiza-

tion

NLML negative log marginal likelihood

PBGO parallel Bayesian global optimization

PEI pseudo expected improvement

PEI-MAX pseudo expected improvement for

maximum

PEI-MIN pseudo expected improvement for min-

imum

PEI-MIN-MAX pseudo expected improvement

for minimum and maximum

T-PBGO triple-engine parallel Bayesian global

optimization

T-PEI triple-engine pseudo expected improve-

ment

TLBO teaching–learning-based optimization

1. Introduction

Along with the rapid development of computation techniques, deterministic numerical analysis has made

great progress in various fields over the past several decades [1]. In this context, all parameters of a

computational model designed to describe underlying structures or systems are typically treated as precise

(crisp) numbers. This kind of numerical analysis, however, is essentially not suitable for situations where

non-determinism has to be properly considered, which is the common case for a broad range of modern

science and engineering disciplines. A typical example of such situations is the design and analysis of
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engineering systems at an early stage where many aspects could be only imprecisely known. Alternatively,

non-deterministic numerical analysis is emerging as an exciting research frontier with new opportunities

and also challenges. Such opportunities and challenges arise throughout the whole analysis, e.g.,

non-determinism characterization on the input side and response uncertainty quantification

on the output side.

In general, three types of approaches are available for modelling non-determinism: probabilistic approach,

imprecise probabilistic approach and non-probabilistic approach [2]. On the basis of classical probability

theory and statistical techniques, the probabilistic approach is most widely used. Herein, an uncertain

parameter is modelled as a random variable with a precisely known probability distribution. Thus, it is

often challenging to apply the probabilistic approach in reality since a large amount of high-quality data is

required to infer an accurate probability distribution. Against this background, by generalizing traditional

probability and statistics concepts, the imprecise probabilistic approach has evolved as a powerful and elegant

framework for quantifying uncertainty from incomplete information [3, 4]. Within this approach, one needs

to assign a pair of lower and upper probabilities to an event, rather than a single probability. On the other

hand, the non-probabilistic approach, such as interval models and fuzzy sets [5], is also gaining increasing

interest for non-determinism modelling, especially when the available information is limited. With

the interval concept, a non-deterministic parameter is treated as an interval variable specified by a pair

of numbers, i.e., the lower and upper bounds, and potentially a function modelling the auto-dependencies

among multiple interval parameters [6]. Thus, instead of a full probability distribution the analyst only needs

to determine the bounds and auto-dependency functions, which can be easily and objectively acquired from

a small number of samples. The present study limits its scope to interval uncertainty.

There have been plenty of methods developed to propagate interval uncertainty via a computational

model, which can be roughly classified into four kinds. The first kind of methods is based on using the

interval arithmetic of Moore, e.g., refer to [7]. Despite its efficiency, the interval calculus cannot trace

parameter dependency by definition (the so-called dependency problem), which therefore can lead to a

severe overestimation of the size of a response interval. Recent developments are focused on limiting
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the overestimation by, e.g., accounting for dependency among interval variables [8–12] or

using interval fields [13, 14], parameterizing intervals via trigonometric functions [15, 16]

and representing intervals by affine arithmetic [17, 18], etc. Although these methods are able to

provide sharp bounds within reasonable computational cost, their applicability is still limited due to the

intrusive nature of interval arithmetic. The approximate analytical methods that rely on constructing a

simplified approximation of true response function falls in the second group. Typical examples of such

methods include, Taylor series expansion methods [19–23] and Chebyshev series expansion methods [24, 25],

which are intrusive and non-intrusive, respectively. However, these Taylor methods tend to lose accuracy

when the considered problem involves large uncertainty (i.e.,the widths of interval variables being large)

and/or highly nonlinear behavior. For these Chebyshev methods, the required number of response function

evaluations grows exponentially with the number of dimensions. As for the third type, the vertex method

[26, 27] and interval multilevel quasi-Monte Carlo (I-MLQMC)) [28, 29] are non-intrusive and can produce

accurate response bounds under certain conditions. The classical vertex method is exact on the premise

that the response function is monotonic with respect to d interval parameters, while at the cost of 2d model

evaluations. More strictly, the I-MLQMC method requires a linearity assumption on the response function.

As such, these two methods suffer from non-linearity and/or dimensionality.

In the last group, global optimization methods are naturally applicable to the topic of interval numerical

analysis. In this context, several studies have been conducted by directly using, e.g., genetic algorithm

[30, 31]. Generally, global optimization algorithms require a large number of model evaluations to find the

minimum/maximum, and hence can be computationally demanding especially when each such evaluation

is expensive. To alleviate the computation burden, a cheap-to-evaluate surrogate model can be adopted to

substitute the original computational model based on some observations. Along this line, Kriging-assisted

global optimization (formally called Bayesian global optimization (BGO)) algorithms are attracting increas-

ing attention due to their high efficiency for optimizing expensive black-box functions. A typical BGO

method starts by building an initial Kriging model for the objective function based on a small number of

observations, and then refines the initial model by sequentially selecting more updating points according to a
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infill sampling criterion [32]. Existing studies then focus more on developing efficient infill sampling criteria

so as to reduce the total number of function evaluations. On this aspect, representative works in the context

of interval uncertainty propagation include the maximum improvement criterion [33], expected improvement

criterion [34, 35] and a comparison study of several criteria [36]. It is shown that these methods exhibit

encouraging features regarding the computational efficiency and accuracy for computationally

expensive black-box problems over other existing methods. Despite these advantages, one

of the major limitations of the existing BGO methods is that they are sequential in nature

and hence unsuitable for parallelization, or at least high-level parallelization, hindering the

potential benefits from parallel distributed processing.

In this paper, a parallel Bayesian global optimization (PBGO) method is proposed for estimating the

response bounds of a computational model in the presence of interval variables. Our main objective is to

further reduce the computational time of existing BGO methods by making use of parallelism. For this

purpose, a novel infill sampling criterion is developed to select multiple points at each iteration, and hence

corresponding model evaluations can be distributed on multiple processing cores simultaneously. Such

parallelisation is relevant when the model at hand is computationally intensive and parallel

computing facilities are available. Besides, in contrast to the traditional way of searching the

lower and upper bounds of a scalar response quantity via two separate optimization problems,

we consider it only as one problem. Following the developed scheme, the lower and upper bounds can

be obtained simultaneously with a single run. Last but not least, a Matlab implementation of the developed

algorithm is also readily available to the public 1.

The remainder of the paper is organized as follows. Section 2 describes the interval analysis problem to

be solved in this study. The proposed PBGO method is introduced in Section 3, with its relationship to other

PBGO methods also being discussed. Four numerical examples are studied in Section 4 to demonstrate the

performance of the developed method. In Section 5, some concluding remarks and perspectives are given to

end the paper.

1to be released upon acceptance of the paper
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2. Problem formulation

Let us consider a computational model represented by a deterministic, continuous, and real-valued func-

tion y = g(x) : Rd → R. Here the model response y is a scalar quantity of interest, the g-function is

assumed to be an expensive-to-evaluate black box, and the model input vector x consists of d variables, i.e.,

x = [x1, x2, · · · , xd].

Under the assumption that available information on the model inputs is poor or incomplete, we proceed

to treat them with interval models. For identifying intervals from real observations, one can refer

to, e.g., [37, 38]. An interval vector xI = [xI1, x
I
2, · · · , xId] ∈ IRd can be defined as:

xI = [x,x] =
{
x ∈ Rd|x ≤ x ≤ x

}
, (1)

and its component xIi satisfies

xIi = [xi, xi] = {x ∈ R|xi ≤ x ≤ xi} , i = 1, 2, · · · , d,

where x = [x1, x2, · · · , xd] and x = [x1, x2, · · · , xd] represent the lower and upper bounds of xI , respectively.

Further, the midpoint xC and radius xR of xI can be defined as:

xC =
x+ x

2
,

xR =
x− x

2
.

It follows that the interval vector defined in Eq. (1) can also be rewritten in terms of xC and xR as:

xI = xC + δx,

where δx ∈ [−1, 1]xR. For convenience, the interval variables are assumed to be independent.

In fact, for dependent interval variables one can transform them into independent ones by

applying a suitable transformation, e.g., [39].

With the interval vector xI as input, the g-function will also give rise to a interval output yI in our

context, i.e., yI =
{
y ∈ R|y = g(x),x ∈ xI

}
. The resulting interval can be fully characterized by its lower

and upper bounds, which correspond to the worst or best case of yI that we might be interested in. Therefore,
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the main objective is to determine the lower and upper bounds of yI , which are naturally defined as the

solutions of the following two optimization problems:

y = min
x∈xI

{y|y = g(x)} , (2)

y = max
x∈xI

{y|y = g(x)} , (3)

where y and y can be interpreted as the global minimum and maximum of y = g(x) subject to x ∈ xI ,

respectively.

Although their definitions are rather simple, the analytical solutions to y and y are unavailable for a

general black-box problem. Thus, numerical approximation techniques are necessary and useful tools for

practical applications. Existing numerical methods, however, still suffer from their respective limitations

as discussed in the introduction section. This motivates us to develop a PBGO method for propagating

interval uncertainty in the following section.

3. Triple-engine parallel Bayesian global optimization

In this section, the propagation of interval uncertainty via an expensive black-box computational model is

treated by a kind of Bayesian numerical method, i.e., the so-called Bayesian global optimization (BGO) [32].

Specifically, an efficient method, termed “Triple-engine parallel Bayesian global optimization” (T-PBGO),

is proposed to approximate the lower and upper bounds of the model output yI (defined in Eqs. (2) and

(3)) when the model input is characterized by a interval vector xI (defined in Eq. (1)). The proposed

method makes use of the Gaussian process model and a newly developed infill sampling criterion, as will be

introduced in what follows. For notational simplicity, the superscripts of xI and yI are omitted when there

is no confusion.

3.1. Gaussian process model

Under the black-box assumption, no additional knowledge on the inner structure of the g-function is

available and the only possibility for us is to evaluate it at some points. That is, we know nothing about

the behavior of the g-function (e.g., concavity and linearity) before seeing any observations, let along its
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minimum and maximum. The lack of knowledge on g(·) is referred to as a kind of epistemic uncertainty

simply because it is numerically unknown until we actually evaluate it, and hence reduceable. Following

a Bayesian approach, our prior beliefs on the g-function can be modeled by assigning a Bayesian prior

distribution. In this study, we adopt a Gaussian process (GP) prior over g. In the following, we only give

a brief introduction to the GP model, and for further details the reader can refer to [40]. The GP prior

assumes that the g-function is a realization of a GP indexed by x. To formalize this, we write the GP prior

as:

ĝ0(x) ∼ GP(m0(x), k0(x,x′)) = m0(x) + Z(x),

where ĝ0 denotes the prior distribution of g; m0(x) is the mean function of the GP prior; Z(x)

is a stationary GP with zero-mean and covariance function k0(x,x′). The GP prior is completely

characterized by its prior mean function m0(x) and covariance function k0(x,x′). The prior mean function

reflects the general trend of the GP model, while the prior covariance function encodes the key features of

the g-function, e.g., stationarity, isotropy, smoothness and periodicity. There are many kinds of specific

functional forms available in literature for the prior mean and covariance functions [40]. In

this paper, without loss of generality, the prior mean function is assumed to be a constant (i.e., m0(x) = β)

and the prior covariance function is of squared exponential form expressed as:

k0(x,x′) = σ2
g exp

[
−1

2
(x− x′)Σ−1 (x− x′)T

]
,

where σ2
g is the overall variance with σg > 0; Σ = diag

(
l21, l

2
2, · · · , l2d

)
with li > 0 being the characteristic

length-scale in i-th dimension; and diag(·) denotes a diagonal matrix whose entries are equal to the argument

values. The d+ 2 free parameters β, σ2
g and {li}di=1 are referred to hyper-parameters whose values need to

be determined, denoted by θ =
{
β, σ2

g , l1, l2, · · · , ld
}

.

Now assume that we have evaluated the g-function at several (e.g., n ∈ Z+) points. We aggregate the

sampled points in a n × d matrix X with its j-th row being the j-th point x(j), and the corresponding

g-function values in a n × 1 vector y with its j-th element being y(j), where y(j) = g(x(j)). The set of
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hyper-parameters can then be estimated by minimizing the negative log marginal likelihood (NLML) [40]:

θ̂ = arg min
θ

(− log [p(y|X,θ)]) , (4)

with

− log [p(y|X,θ)] =
1

2
(y − β)TK−10 (y − β) +

1

2
log [|K0|] +

n

2
log [2π] , (5)

where K0 is a n× n covariance matrix with its (i, j)-th entry being [K0]ij = k0(x(i),x(j)). Eq. (4) can be

solved by gradient-based optimization schemes since the derivatives of NLML in Eq. (5) with respect to θ

are analytically tractable.

Conditioning on the observations (X,y) and GP prior will give rise to a posterior distribution ĝn of g.

This distribution still follows a GP ĝn(x) ∼ GP(mn(x), kn(x,x′)), with the posterior mean and covariance

functions as follows:

mn(x) = m0(x) + k0(x,X)K−10 (y −m0(X)),

kn(x,x′) = k0(x,x′)− k0(x,X)K−10 k0(x′,X)T,

where k0(x,X) is a 1×n covariance vector between x and X, whose j-th element is k0(x,x(j)); k0(x′,X) is

similarly defined; m0(X) is a n×1 mean vector, whose j-th element is m0(x(j)). It is seen that via a Bayesian

treatment a full predictive distribution ĝ(x) ∼ N (mn(x), σ2
n(x)) is now available, where the posterior mean

function mn(x) can be used as a predictor, while the posterior variance function σ2
n(x) = kn(x,x) can

measure the prediction uncertainty.

3.2. Proposed triple-engine pseudo expected improvement criterion

In order to make inference about the minimum and maximum of the g-function using as few function

evaluations as possible, our main concern is to design an efficient infill sampling criterion that can effectively

suggest future evaluation points based on the posterior GP (implicitly the past observations). In particular,

we seek to identify a batch of informative and diverse points at each iteration. Hence, multiple evaluations

of the g-function can be distributed on several cores simultaneously so as to reduce the overall wall-clock

time. For convenience of illustration, we assume that the number of points we would like to select at
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each iteration is a even number q in sequel, though it should not to be. Our purposes are achieved by

generalizing the pseudo expected improvement (PEI) criterion [41], which has been recently developed in

the field of global optimization, to an enhanced version, termed ‘triple-engine pseudo expected improvement’

(T-PEI) criterion. The T-PEI criterion actually involves a set of three infill sampling criteria

that we call them ‘engines’, as discussed below.

3.2.1. Engine 1: PEI for minimum

The first engine is the PEI criterion originally developed in [41] for global minimization

problems (denoted by PEI-MIN for convenience). In the present study, this criterion will

be directly used to select q promising points for the propose of minimizing the g-function

wherever applicable.

Let ymin = min1≤j≤n y
(j) indicate the minimum value of y observed so far. The improvement

at point x over the current best solution ymin can be defined as [32]:

Imin(x) = max (ymin − ĝn(x), 0) =


ymin − ĝn(x), if ĝn(x) < ymin

0, otherwise

, (6)

which is a random variable at site x. The so-called expected improvement (EI) over the current

minimum ymin consists of taking expectation of Imin(x), and can be derived in a closed-form

expression as [32]:

EImin(x) = E [Imin(x)] = (ymin −mn(x))Φ

(
ymin −mn(x)

σn(x)

)
+ σn(x)φ

(
ymin −mn(x)

σn(x)

)
, (7)

where φ(·) and Φ(·) are the probability density function and cumulative distribution function

of the standard normal variable, respectively. The next best point be acquired within the

minimization process can be selected by maximizing EImin(x), i.e.,

x
(n+1)
min = arg max

x∈xI

EImin(x). (8)

This criterion is referred to as EI-MIN for the sake of convenience. Note that the first term of

EImin(x) (see Eq. (7)) prefers the point whose prediction mn(x) is small, whereas the second
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term prefers the point whose variance σ2
n(x) is large.Thus, the EI-MIN criterion gives an

elegant balance between exploitation (i.e., local search) and exploration (i.e., global search).

Despite this, the EI-MIN criterion can only produce one single point at each iteration, and

hence not suitable for parallelization.

To overcome the limitation, the basic idea of the PEI-MIN criterion is to modify the initial

EI function (Eq. (7)) sequentially, by multiplying it by an influence function. That is, the first

updating point x
(n+1)
min is still generated by using the initial EI-MIN criterion (Eq. (8)). Then,

the second one x
(n+2)
min can be identified by maximizing a modified EI function that considers

the possible impact of the first updated point bringing to the EI function. In such a sequential

way, a desired number of points can be obtained at each iteration without evaluating the g-

function at any newly selected points. Thus, a good influence function should capture the real

influence of the newly identified points on the initial EI function as much as possible, while

remaining computationally tractable. The influence function proposed in [41] is motivated by

the fact that the EI function (Eq. (7)) is zero at the sampled points, and positive in between.

After q− 1 points have been identified, the synthesized influence function for the q-th point is

formulated as [41]:

IF (x;x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q−1)

min ) =

q−1∏
j=1

[
1− ρ

(
x,x

(n+j)
min

)]

=

q−1∏
j=1

[
1− exp

[
−1

2

(
x− x(n+j)

min

)
Σ−1

(
x− x(n+j)

min

)T]]
,

(9)

where ρ
(
x,x

(n+j)
min

)
is the correlation function between two points x and x

(n+j)
min . It should be

noted that the influence function is zero at the q−1 newly selected points x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q−1)

min ,

and approaches to one when far away from these points. The PEI function for the q-th point

can be defined as [41]:

PEImin(x;x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q−1)

min ) = EImin(x)× IF (x;x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q−1)

min ). (10)

The PEImin function can be interpreted as an approximation of the ‘real’ EImin function

because it is constructed without evaluating the g-function at these q− 1 points and updating
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the GP model (i.e., re-evaluating the hyper-parameters). Besides, it reduces to the standard

EImin function when q = 1, and hence the standard EImin function can be seen as a special

case of the PEI function. The q-th point can be selected by maximizing the PEImin function

such that:

x
(n+q)
min = arg max

x∈xI

PEImin(x;x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q−1)

min ).

3.2.2. Engine 2: PEI for maximum

Inspired by the PEI-MIN criterion, we can also define a similar criterion to select q promis-

ing points for maximizing the g-function if needed. The resulting criterion is called PEI-MAX,

which is regarded as the second engine.

Let ymax = max1≤j≤n y
(j) denote the maximum value of y among the past n observations. In

analogy to Eq. (6), the improvement at point x beyond the current best solution ymax can be

defined as:

Imax(x) = max (ĝn(x)− ymax, 0) =


ĝn(x)− ymax, if ĝn(x) > ymax

0, otherwise

. (11)

The EI for the maximum is analytically derived in closed form as follows:

EImax(x) = E [Imax(x)] = (mn(x)− ymax)Φ

(
mn(x)− ymax

σn(x)

)
+ σn(x)φ

(
mn(x)− ymax

σn(x)

)
. (12)

However, by maximizing the EImax function (the EI-MAX criterion), only one point for max-

imization is produced. In order to obtain a batch of q points, the the first point x
(n+1)
max can be

identified by x
(n+1)
max = arg maxx∈xI EImax(x). The following q − 1 points should be sequentially

selected by using a modified EImax function. In analogy to the PEImin function (Eq. (10)), we

can define the PEImax function for the q-th point such that:

PEImax(x;x(n+1)
max ,x(n+2)

max , · · · ,x(n+q−1)
max ) = EImax(x)× IF (x;x(n+1)

max ,x(n+2)
max , · · · ,x(n+q−1)

max ), (13)

where the IF (·) function is defined in Eq. (9). The q-th point x
(n+q)
max is obtained by:

x(n+q)
max = arg max

x∈xI

PEImax(x;x(n+1)
max ,x(n+2)

max , · · · ,x(n+q−1)
max ).
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3.2.3. Engine 3: PEI for both minimum and maximum

As we would like to infer both the minimum and maximum simultaneously, rather than in

a sequential order, promising points for both extrema should be identified within one iteration

until some predefined criteria are satisfied. Based on the PEI-MIN and PEI-MAX criteria, a

infill sampling criterion for both minimizing and maximizing the g-function can be developed.

This criterion is denoted by PEI-MIN-MAX, and it is served as the third engine.

The proposed PEI-MIN-MAX criterion proceeds as follows. The first updating point is

identified by x
(n+1)
min = arg maxx∈xI EImin(x), which is used for minimization. Likewise, the sec-

ond one (the first point for maximization) is computed by maximizing the PEImax(x) function,

i.e., x
(n+2)
max = arg maxx∈xI PEImax(x;x

(n+1)
min ). The third point (the second for minimization) is

produced by maximizing the PEImin function, i.e., x
(n+3)
min = arg maxx∈xI PEImin(x;x

(n+1)
min ,x

(n+2)
max ),

and the fourth one (the second point for maximization) is determined by maximizing the

PEImax function, i.e., x
(n+4)
max = PEImax(x;x

(n+1)
min ,x

(n+2)
max ,x

(n+3)
min ). As the process goes on, a de-

sired q (≥ 2) updating points can be obtained sequentially ahead of observing their g-function

values. Note that one can also start the first point with x
(n+1)
max , and then generate a set of q

points (x
(n+1)
max ,x

(n+2)
min ,x

(n+3)
max , · · · ) following a similar procedure.

3.3. Proposed T-PBGO algorithm

Based on the GP model and T-PEI infill sampling criterion, we propose a T-PBGO algorithm for inter-

val analysis. The numerical implementation procedure of the proposed T-PBGO algorithm, which is also

illustrated in Fig. 1, includes the following main steps:

Step 1: Define the problem and initialize the optimization

Define the minimization and maximization problem to be solved in terms of its ojective

function g(x) and feasible region xI , as in Eqs. (2) and (3). Initialize the parameters of the

proposed T-PBQO method, namely, the initial sample size n0, and two thresholds εmin and
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εmax. Details about these parameters and possible numerical values for them are discussed

below.

Step 2: Generate an initial training dataset

Generate an initial set of n0 samples using Latin hypercube sampling (LHS) over xI , denoted by a n0×d

matrix X =
{
x(j)

}n0

j=1
. Observations of the g-function at these points can be computed in parallel, which

are denoted by a n0 × 1 vector y =
{
y(j)
}n0

j=1
with y(j) = g(x(j)). The initial training dataset is defined as

D = {X,y}. Set n = n0.

As we seek to enlarge the training dataset sequentially, the initial size n0 should not be chosen too large

and it is usually set as 5-10.

Step 3: Construct a GP model for the g-function

Construct a GP model GP(mn(x), kn(x,x′)) for y = g(x) based on the training dataset D. This step

mainly consists of specifying the hyper-parameters by using the maximum likelihood estimation. All the

numerical examples in this study are performed with the fitrgp function in Matlab Statistics and Machine

Learning Toolbox.

Step 4: Check the predefined criteria and select the engine

In this stage, we first need to check whether the GP has achieved reasonable accuracy at both the

minimum and maximum. If not, the GP should be then improved further, and this improvement means

computing additional points. Thus, it should be clear what kind of additional points is still required, for

minimization, maximization or both. Let ymin = min1≤j≤n y
(j) and ymax = max1≤j≤n y

(j) denote the

minimum and maximum values of y observed so far, respectively. Compute the maxima of EImin(x) and

EImax(x) by: δy1 = maxx∈xI EImin(x) and δy2 = maxx∈xI EImax(x). In this study, five criteria consisting

in judging the ratios of the maximum expected improvements (i.e., δy1 and δy2) to the best current minimum

and maximum (i.e., ymin and ymax) respectively, are given as follows:

•Criterion 1 (Stopping criterion). If both δy1
|ymin|+δ < εmin and δy2

|ymax|+δ < εmax are satisfied for two

successive iterations, go to Step 7; Else, check Criterion 2.

• Criterion 2 . If δy1
|ymin|+δ ≥ εmin and δy2

|ymax|+δ ≥ εmax, this indicates that the GP could be still not
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accurate enough for estimating both the minimum and maximum and one should go to Step 5c; Else, check

Criterion 3.

• Criterion 3 . If δy1
|ymin|+δ < εmin and δy2

|ymax|+δ < εmax, this indicates that the GP could be still not

accurate enough for both estimating the minimum and maximum (due to potential fake convergence) and

one should go to Step 5c; Else, check Criterion 4.

• Criterion 4 . If δy1
|ymin|+δ ≥ εmin and δy2

|ymax|+δ < εmax, this indicates that the GP could be still not

accurate for estimating the minimum one should go to Step 5a; Else, check Criterion 5.

• Criterion 5 . If δy1
|ymin|+δ < εmin and δy2

|ymax|+δ ≥ εmax, this indicates that the GP could be still not

accurate enough for estimating the maximum one should go to Step 5b.

In Criteria 1-5, δ is a small number to ensure that the denominators are always greater than zero, which

is specified as 10−6 in this study. It should be noted that these two quantities δy1
|ymin|+δ and δy2

|ymax|+δ play a

pivotal role for our decision-making. The first one represents the ratio of maximum expected improvement

for the minimum to the current absolute minimum, while the second one is the ratio of maximum expected

improvement for the maximum to the current absolute maximum, if δ is treated as zero. When the current

GP model is relatively accurate for both the minimum and maximum, it is expected that these two ratios

should be very small. Thus, it is appropriate to judge the convergence of the proposed method by monitoring

these two ratios. According to our experience, εmin and εmax can be set in the order of 0.001.

Step 5a: Identify q updating points for minimization (Engine 1)

Identify q updating points for minimization by using the PEI-MIN criterion. The first point is selected

by x
(n+1)
min = arg maxx∈xI EImin(x), the second one x

(n+2)
min = arg maxx∈xI PEImin(x;x

(n+1)
min ), and the

third one x
(n+3)
min = arg maxx∈xI PEImin(x;x

(n+1)
min ,x

(n+2)
min ), etc. The q updating points can be denoted by

Xadd =
{
x
(n+1)
min ,x

(n+2)
min , · · · ,x(n+q)

min

}
. Then, go to Step 6.

Step 5b: Identify q updating points for maximization (Engine 2)

Identify q updating points for maximization by using the PEI-MAX criterion. The first point is selected

by x
(n+1)
max = arg maxx∈xI EImax(x), the second one x

(n+2)
max = arg maxx∈xI PEImax(x;x

(n+1)
max ), and the

third one x
(n+3)
max = arg maxx∈xI PEImax(x;x

(n+1)
max ,x

(n+2)
max ), etc. The q updating points can be denoted by
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Xadd =
{
x
(n+1)
max ,x

(n+2)
max , · · · ,x(n+q)

max

}
. Then, go to Step 6.

Step 5c: Identify q updating points for both minimization and maximization (Engine 3)

Identify q updating points for both minimization and maximization by using the PEI-MIN-MAX crite-

rion. The first point is selected by x
(n+1)
min = arg maxx∈xI EImin(x), the second one x

(n+2)
max = arg maxx∈xI PEImax(x;x

(n+1)
min ),

and the third one x
(n+3)
min = arg maxx∈xI PEImin(x;x

(n+1)
min ,x

(n+2)
max ), etc. The q updating points can be de-

noted by Xadd =
{
x
(n+1)
min ,x

(n+2)
max , · · · ,x(n+q)

max

}
. Then, go to Step 6.

Step 6: Enrich the training dataset

The q updating points Xadd are evaluated on the g-function in parallel, and the corresponding ob-

servations are denoted by yadd =
{
y(n+1), y(n+2), · · · , y(n+q)

}
. The training dataset D is enriched by

Dadd = {Xadd,yadd}, i.e., D = D ∪Dadd. Set n = n+ q and then go to Step 2.

Step 7: Record results and end the algorithm

Record ymin = min1≤j≤n y
(j) and ymax = max1≤j≤n y

(j) as approximate solutions to the lower and upper

bounds of yI respectively, and end the algorithm.

In Steps 4 and 5a-5c, the involved optimization problems are solved by a nature-inspired

global optimizer, called Teaching–learning-based optimization (TLBO) [42], as they are usually

much more cheaper compared to one call of the computational model. As the proposed method

is rooted in the classical BGO method, its theoretical analysis may refer to, e,g., [43], which,

however, is beyond the scope of the present study.

The proposed method has four major advantages. First, the technique often requires relatively few g-

function evaluations. This is possible because one can incorporate prior knowledge to explore the design

space. Second, our method allows a high-level parallelization as the proposed T-PEI criterion is compu-

tationally tractable for selecting multiple informative and diverse points. This feature further makes the

method time-saving when parallel computing is available. Third, the proposed method is derivative-free and

directly works with black-boxes, and thus is easy to implement and widely applicable (e.g., no matter the

g-function is linear or non-linear and how large the supports of the input intervals are). Fourth, accurate
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Compute maxima of EImin(x) and EImax(x) by:
δy1 = maxx∈xI EImin(x), δy2 = maxx∈xI EImax(x)
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Figure 1: Flowchart of the proposed T-PBGO method.

approximate solutions to both lower and upper bounds of model response can be obtained with only one

single run of the proposed algorithm.

3.4. Relationship to existing PBGO approaches

With the emergence of the classical BGO (originally called efficient global optimization)

[32], there has been an growing interest to enable its capability of parallel processing. Repre-

sentative works of PBGO include the q-EI criterion [44–46], multi-modal EI criterion [47, 48],

PEI [41], Kriging Believer or Constant Liar strategy [45] and multiple surrogate assisted ap-

proach [49, 50], etc. The T-PEI criterion in the proposed T-PBGO method can be regarded as

an improved PEI. The difference between the proposed method and the other PBGO methods

is significant. The objective of the proposed method is to obtain both the minimum and maxi-

mum in one single run, while the other methods are only designed for minimum or maximum,

not both.
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4. Numerical examples

In order to illustrate and verify the proposed method, four numerical examples are studied in this section.

These examples cover a wide range of types, from simple test problems to real-world applications. In all

numerical examples, the proposed method is compared with several existing methods in terms of efficiency

and accuracy. Besides, we propose a non-parallel BGO (N-PBGO) (given in Appendix A) as a potential

competitor for the proposed method, which is also conducted for comparison.

4.1. Example 1: A one-dimensional test function

The first example consists of a test function with one interval:

y = g(x) = (2x− 1)
2

sin
(

4πx− π

8

)
,

where x ∈ [0, 1]. As can also be seen in Fig. 2, the g-function is multi-modal and has multiple maxima and

minima.

The lower and upper bounds of y are computed by the analytical method, vertex method, genetic

algorithm, N-PBGO and proposed T-PBGO method (n0 = 5 and εmin = εmax = 0.002). The results

are summarized in Table 1 together with the total number of function evaluations N , and the number of

iterations N?. Although the vertex method outperforms the other numerical methods in terms of both N

and N?, it produces totally wrong estimates for the response bounds. The inaccuracy of the interval method

is caused by its underlying assumption that y should be monotonic with respect to x. As a representative

of nature-inspired optimization algorithms, the genetic algorithm is able to yield accurate results, but at

the expense of large computation cost. The N-PBGO method requires a relatively small number of function

evaluations (N = 16), while still providing good results for both the lower and upper bounds. The N-

PBGO method, however, is limited by its non-parallelism. On the contrary, the proposed T-PBGO method

can overcome this limitation by taking advantage of the developed infill sampling criterion (i.e., T-PEI).

Compared to N-PBGO, T-PBGO can significantly reduce the function evaluations in terms of N?, while still

maintaining high accuracy. In addition, it also can be found that N? gradually decreases with the increase

of q, and remains the same when q = 8, 10, though N also increases non-monotonously.
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Table 1: Interval analysis for Example 1 by different methods.

Method Lower bound Upper bound N N? Reference

Exact solution −0.7081 0.5197 - - -

Vertex method (q = 2) −0.3827 −0.3827 2 1 [26]

Genetic algorithm (q = 10) −0.7081 0.5197 520 + 520 = 1040 104 [51]

N-PBGO (q = 1) −0.7081 0.5197 5 + 6 + 5 = 16 16 Appendix A

Proposed method (T-PBGO)

q = 2 −0.7081 0.5197 5 + 8 = 13 7 -

q = 4 −0.7081 0.5197 5 + 16 = 21 6 -

q = 6 −0.7081 0.5197 5 + 24 = 29 5 -

q = 8 −0.7081 0.5197 5 + 24 = 29 4 -

q = 10 −0.7081 0.5197 5 + 30 = 35 4 -

Note: N = the total number of g-function evaluations, and N? = the number of iterations

To visually illustrate the proposed method, one special case is considered here (i.e., q = 4). It can be

observed from Fig. 2 that the proposed method gradually approaches to the exact bounds as the iterative

process goes on. Besides, these added points are more densely distributed around the global minimum and

maximum, and thereby informative for our purposes.
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Figure 2: Illustration of the proposed method (q = 4) in Example 1: (a) True function, initial points and added points identified

by T-PEI criterion; (b) Exact bounds and approximate bounds after each iteration.
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4.2. Example 2: A two-dimensional test function

The second example takes a test function with two intervals [21]:

y = g (x) = (1.5x1 − 2)
2 − (x2 − 3)

2
+ x1x2 + 10 sin (2πx1) + 10 sin (2πx2) ,

where x1, x2 ∈ [2, 5]. As shown in Fig. 3, the test function is highly nonlinear and has several

local optima over the prescribed region.

Figure 3: Plot of the two-dimensional test function in Example 2.

The lower and upper bounds of y are computed by several methods, as listed in Table

2. The exact response bounds of y are obtained as −8.10 and 59.95. The genetic algorithm

can yield accurate results, but at the expense of 4000 g-function evaluations. Although the

classical vertex method requires the minimum number of g-function evaluations among all the

numerical methods, it gives completely wrong estimates for the lower and upper bounds. At

the cost of 6912 g-function calls (the largest among all the numerical methods), the subinterval

method is able to produce acceptable results. The subinterval decomposition analysis method

yields close results to these of the subinterval method, while requires significantly less g-

function evaluations. For the N-PGBO method, faily good results can be produced using a

total number of 74 g-function evaluations, and 65 iterations. The proposed T-PBGO method
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(n0 = 10, εmin = 0.002 and εmax = 0.001) is capable of generating quite accurate lower and upper

bounds, while reducing the number of iterations down to 9 when q = 8.

Table 2: Interval analysis results for Example 2 by different methods.

Method Lower bound Upper bound N N? Reference

Exact solution -8.10 59.95 - - -

Genetic algorithm -8.10 59.95 4000 - Tab. 7 in [21]

Vertex method (q = 4) 4.00 51.25 4 1 [26]

Subinterval method -8.70 60.39 6912 - Tab. 7 in [21]

Subinterval decomposition analysis -8.55 58.81 97 - Tab. 7 in [21]

N-PBGO (q = 1) -8.01 59.92 10 + 42 + 22 = 74 65 Appendix A

Proposed method (T-PBGO)

q = 2 -8.08 59.94 10 + 58 = 68 30 -

q = 4 -8.08 59.94 10 + 72 = 82 19 -

q = 6 -8.09 59.93 10 + 72 = 82 13 -

q = 8 -8.10 59.94 10 + 80 = 90 9 -

q = 10 -8.10 59.93 10 + 90 = 100 10 -

4.3. Example 3: A transmission tower subjected to wind loads

This example consists of a transmission tower subjected to wind loads (shown in Fig. 4), which is modified

from Ref. [52]. The tower is modelled as a three-dimensional (3D) truss structure with 24 joints and 80

elements in OpenSees. Three kinds of members, i.e., columns, diagonal members and horizontal members,

are included in the model, the cross-sectional area of which are denoted as A1, A2 and A3, respectively.

The geometry of the model is shown in Fig. 4(a). The wind effect acting on the tower is simplified to four

equivalent static loads at the top four nodes, and inclined by θ
◦

relative to the x-axis (Fig. 4(b)). The

constitutive law of the steel material adopts the bi-linear model, as depicted in Fig. 4(c). Eight interval

variables are included in the 3D truss model, which are descried in Table 3. The response of interest is
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defined as the horizontal displacement of node A, i.e.,

y = g(P, θ, Fy, E, b, A1, A2, A3) =
√
u2A,x + u2A,y,

where uA,x and uA,y denote the displacements of node A in x and y directions, respectively.
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(a)
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Figure 4: A transmission tower subject to wind loads: (a) 3D truss model; (b) loading at the top of tower; (c) bi-linear

constitutive model.

The bounds of y are solved by several methods, and the results are summarized in Table 4. The particle

swarm optimization (q = 10) is used to provide reference results for the bounds. For the proposed T-PBGO

method, we set the user-specified parameters as: n0 = 10, εmin = 0.002 and εmax = 0.001. The vertex

method requires 256 g-function calls, which, however, greatly underestimates the upper bound. Both N-

PBGO and T-PBGO can give close results to these of particle swarm optimization. The N-PBGO method is
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Table 3: Interval variables for Example 3.

Variable Description Interval Unit

P Wind load [100, 200] kN

θ Angle between the load direction and the x-axis [−45, 45]
◦

Fy Yield strength of steel [300, 400] MPa

E Young’s modulus of steel [1.8, 2.4]× 105 MPa

b Strain hardening ratio [0.015, 0.025] -

A1 Cross-sectional area of the column members [4000, 5000] mm2

A2 Cross-sectional area of the diagonal members [3000, 4000] mm2

A3 Cross-sectional area of the horizontal members [2000, 3000] mm2

computationally advantageous in terms of N among all methods, while the proposed T-PBGO can further

reduce N? by taking advantage of its parallelism.

Table 4: Interval analysis results for Example 3 by different methods.

Method Lower bound/mm Upper bound/mm N N? Reference

Particle swarm optimization (q = 10) 11.9592 57.2421 1920 + 3840 = 5760 576 [51]

Vertex method (q = 10) 11.9592 44.3887 256 25.60 [26]

N-PBGO (q = 1) 11.9592 57.2421 10 + 9 + 5 = 24 24 Appendix A

Proposed method (T-PBGO)

q = 2 11.9592 57.2403 10 + 22 = 32 16 -

q = 4 11.9592 57.2421 10 + 28 = 38 10 -

q = 6 11.9592 57.2372 10 + 36 = 46 8 -

q = 8 11.9592 57.2421 10 + 40 = 50 7 -

q = 10 11.9760 57.2388 10 + 60 = 70 7 -

4.4. Example 4: A spatial frame with viscous dampers subjected to earthquake

The last example considers a spatial frame with viscous dampers subjected to earthquake, as shown in

Fig. 5. The 3-D finite element model is developed in OpenSees, the geometry of which can be found in
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Fig. 5(a). Each beam/column member is modelled with an elastic beam-column element with cross section

IPE270/IPB300 (Fig. 5(b)/(c)). For each viscous damper (see Fig. 5(d)), a two-node link element is used

with the viscous damper material. We only consider the self weight as the mass source for the columns,

while for beams the mass source is determined based on “self weight + dead load + 0.2 live load”. The

structure is subjected to a base acceleration corresponding to the N-S component of the El-Centro 1940

earthquake, as shown in 5(e). The ground motion is applied along the direction with a rotation angle θ
◦

with respect to the y-axis (Fig. 5(a)). As summarized in Table 5, eleven interval variables are involved in

this example. Of interest is the maximum horizontal displacement of node A, i.e.,

y = g(θ,AF,DL,LL,KD, CD, α, ρ, E, v, ζ) = max
t

√
u2A,x(t) + u2A,y(t),

where uA,x(t) and uA,y(t) denote the displacements of node A in x and y directions, respectively.

Table 5: Interval variables for Example 4.

Variable Description Interval Unit

θ Angle between the earthquake direction and the y-axis [−45, 45] ◦

AF Amplification factor of the earthquake ground motion [0.5, 1.5] -

DL Floor dead load [4, 5] kN/m2

LL Floor live load [2, 3] kN/m2

KD Axial Stiffness of the viscous damper [3, 4]× 104 kN/m

CD Damping coefficient of the viscous damper [20, 30] kN(s/m)α

α Velocity exponent [0.2, 0.4] -

ρ Density of steel [7.8, 7.9]× 103 kg/m3

E Young’s modulus of steel [1.8, 2.2]× 105 MPa

v Poisson’s ratio [0.25, 0.30] -

ζ Damping ratio [0.02, 0.04] -

The bounds of the model response y are computed by the particle swarm optimization, vertex method,

N-PBGO and T-PBGO (n0 = 10, εmin = 0.002 and εmax = 0.001), and the results are summarized in Table

6. The reference solution is taken from the particle swarm optimization method. The vertex method is able
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Figure 5: A spatial frame with viscous dampers subject to earthquake: (a) 3D frame model; (b) IPE270 for beams; (c) IPB300

for columns; (4) Viscous Damper; (e) N-S component of El Centro earthquake (1940)

to produce good estimates, but requires a large number of g-function evaluations (N = 2048 and N? = 204.8)

in this example. Compared to the N-PBGO method and vertex method, the proposed T-PBGO method can

significantly reduce the number of g-function calls per core, though the total number of g-function calls may

increase (e.g., q = 4, 8) relative to the N-PBGO method. Besides, the proposed method still gives desirable

results for the response bounds. It should be emphasized that N? does not decrease monotonically as q

increases. This means that there may be an optimal parallelization level q that minimizes N?, e.g., q = 6 in

the example.
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Table 6: Interval analysis results for Example 4 by different methods.

Method Lower bound/mm Upper bound/mm N N? Reference

Particle swarm optimization (q = 10) 11.9762 137.4651 3000 + 2400 = 5400 540 [51]

Vertex method (q = 10) 12.0084 137.4651 2048 204.8 [26]

N-PBGO (q = 1) 12.0929 137.3746 10 + 14 + 4 = 28 28 Appendix A

Proposed method (T-PBGO)

q = 2 12.0483 137.4651 10 + 14 = 24 12 -

q = 4 12.0084 137.2062 10 + 24 = 34 9 -

q = 6 12.0489 137.4651 10 + 18 = 28 5 -

q = 8 12.0063 137.4651 10 + 32 = 42 6 -

4.5. Finial remarks

In practical applications, the g-function can be rather expensive-to-evaluate and the com-

putational budget is limited. In such cases, one may need to prespecify optimal values for

the parameters n0, q, εmin and εmax before running the proposed method in order to save the

computational time, while remaining a desired level of accuracy. As a rule of thumb, the initial

sample size n0 can be set as 10. As observed in the four numerical examples, the number of

iterations N? does not decrease monotonically with q and takes its minimum value when q = 8

in most cases. Therefore, q = 8 is recommended in case that at least 8 cores are available.

The two thresholds εmin and εmax not only influence the the efficiency of the proposed method,

but also the accuracy, The smaller εmin and εmax are, the proposed method usually requires

more iterations and more accurate results can be obtained. According to our experience,

εmin = 0.002 and εmax = 0.002 can be adopted.

5. Conclusions

In this study, a triple-engine parallel Bayesian global optimization (T-PBGO) method is proposed for

efficient interval numerical analysis, especially when the computational model is a expensive-to-

evaluate black box. The advancement of the proposed method lies in utilizing the Gaussian process (GP,
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also known as Kriging) prior for the expensive black-box g-function and an acquisition function (or infill

sampling criterion) that can suggest promising points to be evaluated next. To order to make full use of prior

knowledge and parallel computing, the main contribution of this paper is the development of a multi-points

selection strategy, called ‘triple-engine pseudo expected improvement’ (T-PEI), which can select a batch of

informative and diversity points for minimization and/or maximization at each iteration. Four numerical

examples are investigated to demonstrate the proposed method. The main advantages of T-PBGO can be

summarized as follows:

(i) The proposed method usually requires less g-function evaluations to achieve the same accuracy com-

pared to non-Bayesian methods, due to its ability to exploit prior knowledge;

(ii) Compared to N-PBGO, T-PBGO allows for identifying multiple points at each iteration, and hence

could be more efficient when parallel computing is available;

(iii) The developed method is non-intrusive in nature (directly works with black-box problems), and there-

fore easy-to-implement and broadly applicable;

(iv) Both lower and upper bounds can be obtained with one single run of the proposed method.

However, the proposed method still has several major limitations. First, T-PBGO typically works only

well in low dimensions (typically, d < 20), and for high-dimensional problems new developments are needed.

Second, as the parallelization level q and the size of training dataset increase, optimizing the T-PEI criterion

can be time-consuming. Third, only the bounds of a single model response can be captured by the proposed

method in its current form. Future works can be done along these directions.
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Appendix A. Non-parallel Bayesian global optimization

The traditional Bayesian global optimization is sequential in nature, which means that only one update

point is identified at each iteration. Therefore, it cannot take advantage of parallelism. Besides, finding the

minimum and maximum of a function is typically treated as two separate optimization problems. However,

this is not advisable when computational efficiency is of great concern. That is because that the observations

obtained when searching the minimum can be reused to speed up searching the maximum, and vice versa.

This strategy is adopted in this study as a potential competitor to the proposed method, and we simply call

it non-parallel Bayesian global optimization (N-PBGO). The main procedure of N-PBGO is summarized as

follows:

Step A.1: Generate an initial training dataset

Generate an initial set of n0 samples using LHS over xI , denoted by a n0 × d matrix X =
{
x(j)

}n0

j=1
.

Observations of the g-function at these points can be computed in parallel, which are denoted by a n0 × 1

vector y =
{
y(j)
}n0

j=1
with y(j) = g(x(j)). The initial training dataset can be written as D = {X,y}. Set

n = n0.

Step A.2: Construct a GP model

Construct a GP model GP(mn(x), kn(x,x′)) based on the initial training dataset D. This step mainly

consists of choosing the hyper-parameters by using the maximum likelihood estimation. All the numerical
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examples in this study are performed with the fitrgp function in Matlab Statistics and Machine Learning

Toolbox.

Step A.3: Compute maximum of EImin(x)

Let ymin = min1≤j≤n y
(j) denote the minimum value of y observed so far, respectively. Compute the

maximum of EImin(x) by δy1 = maxx∈xI EImin(x).

Step A.4: Check stopping criterion for minimization

if δy1
|ymin|+δ < εmin is satisfied for two successive times, go to Step A.7; Otherwise, go to Step A.5.

Step A.5: Identify one point by EI-MIN criterion

Identify the next point to evaluate by x
(n+1)
min = arg maxx∈xI EImin(x).

Step A.6: Enrich the training dataset

Compute the corresponding g-function value at the identified point at x
(n+1)
min , i.e., y(n+1) = g(x

(n+1)
min ).

Enrich the training dataset D with (x
(n+1)
min , y(n+1)). Set n = n+ 1, and go to Step A.2.

Step A.7: Compute maximum of EImax(x)

Let ymax = max1≤j≤n y
(j) denote the maximum value of y observed so far, respectively. Compute the

maxima of EImax(x) by δy2 = maxx∈xI EImax(x).

Step A.8: Check stopping criterion for maximization

if
µmax
max

|ymax|+δ < εmax is satisfied for two successive times, go to Step A.12; Otherwise, go to Step A.9.

Step A.9: Identify one point by EI-MAX criterion

Identify the next point to evaluate by x
(n+1)
max = arg maxx∈xI EImax(x).

Step A.10: Enrich the training dataset

Compute the corresponding g-function value at the identified point at x
(n+1)
max , i.e., y(n+1) = g(x

(n+1)
max ).

Enrich the training dataset D with (x
(n+1)
max , y(n+1)). Set n = n+ 1.

Step A.11: Construct a GP model

Construct a GP model GP(mn(x), kn(x,x′)) based on the initial training dataset D, and go to Step

A.7.

Step A.12: End the algorithm
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Take ymin = min1≤j≤n y
(j) and ymax = max1≤j≤n y

(j) as approximate solutions to the lower and upper

bounds of y respectively, and end the algorithm.

In the above steps, TLBO is used for all optimization problems. Besides, for fair comparison the user-

specified parameters (n0, δ, εmin and εmax) are set according to the proposed method in all numerical

examples.
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